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Abstract: Hyperspectral Images (HSIs) have been utilized in many fields which contain spatial and
spectral features of objects simultaneously. Hyperspectral image matching is a fundamental and
critical problem in a wide range of HSI applications. Feature descriptors for grayscale image matching
are well studied, but few descriptors are elaborately designed for HSI matching. HSI descriptors,
which should have made good use of the spectral feature, are essential in HSI matching tasks.
Therefore, this paper presents a descriptor for HSI matching, called HOSG-SIFT, which ensembles
spectral features with spatial features of objects. First, we obtain the grayscale image by dimensional
reduction from HSI and apply it to extract keypoints and descriptors of spatial features. Second, the
descriptors of spectral features are designed based on the histogram of the spectral gradient (HOSG),
which effectively preserves the physical significance of the spectral profile. Third, we concatenate
the spatial descriptors and spectral descriptors with the same weights into a new descriptor and
apply it for HSI matching. Experimental results demonstrate that the proposed HOSG-SIFT performs
superior against traditional feature descriptors.

Keywords: hyperspectral image; SIFT; spatial-spectral descriptors; image matching

1. Introduction

Hyperspectral remote sensing application has made significant progress in the past
few years [1] and shown competitive performance in a wide range of fields from remote
sensing to biomedicine [2–8]. Hyperspectral image (HSI) matching is essential for hy-
perspectral applications but lacking attention. Therefore, constructing an HSI descriptor
with good discriminative power and matching performance is of significant importance
to a large number of hyperspectral vision tasks [9,10]. On the contray, feature matching
algorithms are prosperous for grayscale images and applied in many vision tasks, e.g.,
image mosaic [11–13], image registration and fusion [14,15], structure-from-motion [16–18]
and image-based localization [19,20].

Different from the grayscale image, HSI is represented as a three-dimensional (x, y, λ)
data cube, where x and y represent two spatial dimensions of the scene, and λ represents
the spectral dimension (comprising a range of wavelengths) [21,22]. In other words, HSI
contains a sequence of scalar image which represents a narrow wavelength range of the
spectrum [23], providing much spectral information. Such spectral information includes
distinct material properties of objects, offering the potential to improve the overall perfor-
mance of the initial matching. Although spatial descriptors are spatially structural distinct,
invariant to rotation and some certain geometric transformations with the advantage of
difference of Gaussian (DOG) function and histogram of gradient (HOG), they are not
designed for HSI matching. When applied in HSI, the spatial descriptors usually extract
features on a single band or on a grayscale image produced by reducing the dimension of
the HSI. In this way, the spectral information is ignored, which is significant to distinguish
objects with similar appearances but different materials. Therefore, spatial descriptors do
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not perform well in the HSI matching task since they are not designed for it and do not
exploit the superiority of HSI.

On the other hand, methods are applied for HSI matching by extending the 2D fea-
ture extraction function into 3D space, such as 3D SIFT [24], 3D gray level co-occurrence
matrix [25] and 3D wavelet transform [26]. To use spectral information, developing de-
scriptors which describe data distribution in both spatial and spectral domains is a natural
solution [27]. Spatial and spectral scale descriptors are constructed depending on the
corresponding 3D voxels. These methods can serve as the basic tools for HSI processing
tasks. However, simply extending the 2D feature extraction function into 3D space ignores
the physical significance of HSI that the spectral profile in each pixel represents the unique
components of objects. Meanwhile, existed spectral descriptor such as SS-SIFT [28] takes
advantage of spatial and spectral features by 3D HOG that breaks the continuity of spectral
profile and the whole process is time-consuming. Although these methods can extract
spectral and spatial features of multiband image, the performance for HSI matching is still
limited in accuracy and efficiency.

Generally, feature descriptors elaborately designed for HSI matching are still in short.
We consider that existing descriptors perform limitedly for HSI matching from two aspects.
(1) The spatial descriptors extract features on a single band by reducing the dimension of
the HSI that ignores the spectral information. Therefore, these descriptors are failed to
distinguish objects with similar appearance but different materials. (2) The existing spectral
descriptors ignore the physical significance that breaks the continuity of spectral profile
and makes the whole process time-consuming.

Regarding the aforementioned issues, we propose a descriptor named HOSG-SIFT
for HSI matching, which applies the HOSG (Histogram of Spectral Gradient) to represent
the spectral features. For the first problem, HOSG-SIFT extracts the spatial and spectral
features simultaneously to construct a feature descriptor. In this way, our descriptor can
recognize objects with different materials but similar appearances. For the second problem,
we apply HOSG to define the spectral descriptors that preserve the physical significance of
the spectral profile. Moreover, HOSG can effectively reduce the reversed impact caused by
unstable imaging conditions.

In summary, the main contributions of this work lie in the following two folds. First,
this paper presents a spatial-spectral descriptor for HSI matching, considering the spatial
and spectral information simultaneously. The proposed method performs superiority
compared with state-of-the-art spectral descriptors. Second, HOSG is first used to con-
struct the spectral descriptor, which effectively preserve the physical significance of the
spectral profile.

The remainder of this paper is organized as follows. Related works on spatial feature
extraction and spectral feature extraction methods are discussed in Section 2. The proposed
HOSG-SIFT and its key steps, including dimensionality reduction, spatial interest points
detection and local spectral descriptors construction, are described in Section 3, which
effectively promotes the spectral feature extraction tasks. Experiments are introduced and
analyzed in Section 4. Sections 5 and 6 present the discussion and conclusion, respectively.

2. Related Work
2.1. Spatial Descriptors

Feature descriptors for grayscale image matching are pretty mature in many vision
tasks [29]. Among them, SIFT [30] has been one of the most successful algorithms for more
than a decade. Inspired by SIFT, methods including SURF [31], ROOT-SIFT [32], PCA-
SIFT [33] and DSP-SIFT [34], have been proposed to promote the performance of descriptors.
Specifically, SURF accelerates SIFT by approximating the Hessian matrix-based measure
for the detector and a distribution-based descriptor. PCA-SIFT applies the Principal
Component Analysis (PCA) algorithm to normalized gradient patch-based SIFT interest
points. DSP-SIFT modify the SIFT descriptors by domain-size pooling. Additionally, in
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recent years, learning descriptors are proposed for grayscale image matching, performing
better than the hand-craft descriptors in terms of discriminative ability [35–38].

However, the fore-mentioned spatial descriptors are elaborately designed for grayscale
or RGB image with notable performance. When applied to HSI matching, spatial features
are usually extracted on a single band without using the superiority of spectral information
which is beneficial to improve the performance of feature descriptors.

2.2. Multidimensional Descriptors

Multimodal image, which can be regarded as an n-dimensional (N-D) data cube, is
structurally similar to the hyperspectral image in some aspects [39]. Multidimensional
descriptors, designing for multimodal image matching and performing well in specific
applications, can be used for HSI matching directly. Methods developed from SIFT utilize
the multidimensional information to present multimodal image features. Particularly,
n-dimensional scale invariant feature transform (N-SIFT) [40] uses hyperspherical coor-
dinates for gradients and multidimensional histograms to create the feature vector from
multimodal medical image. 3D-SIFT [41] is proposed for action recognition based on
extracting repeatable keypoint features from video data. This work shows the feasibility of
3D SIFT used for spatial-temporal data. In addition, the work [42] presents a method for
volumetric image registration by making changes to orientation assignment and gradient
histograms based on 3D SIFT.

Although HSI is similar to multidimensional image and can be regarded as an N-D
data cube, HSI has different physical significance from other types of N-D data. The
spectral dimension feature of HSI corresponds to continuous reflectance change across
wavelengths, while the counterpart indexes time or spatial location in videos or medical
image. In other words, each spectral dimension of HSI has similar spatial construction,
while the spatial features of videos and medical image change a lot in each slice. Such
differences between HSI and other N-D images should be considered when developing 3D
SIFT for HSI to construct the spectral descriptors.

2.3. Hyperspectral Descriptors

Few efforts are made to explore the HSI matching. Dorado-Muñoz [43] proposed
a vector SIFT detector for HSI, improving the edge performance by taking the vectorial
nature of the HSI into account. The multiscale representation of the HSI is generated by
vector nonline diffusion. Additionally, spectral-spatial scale invariant feature transform
(SS-SIFT) [28] is designed for HSI matching. It adopts the 3D Gaussian filter and 3D-DOG to
detect keypoints in spectral and spatial domains simultaneously. After that, two descriptors
are proposed for each keypoint by exploring the distribution of spectral-spatial gradient
magnitude in its local 3D neighborhood. However, using 3D-DOG breaks the continuity of
spectral signature, which reflects the features of objects.

In general, more works should be made to promote HSI matching. The performances
of spatial descriptors are limited since they are designed for grayscale image without using
spectral information. On the other hand, for multidimensional descriptors, the differences
in physical significance between HSI and other N-D images are failed to be considered.
Moreover, the existing HSI descriptors break the continuity reflectance of the spectral
profile, depressing the effectiveness of methods.

3. Method

HSI augments the spectral information of grayscale or RGB image, yet spectral in-
formation is usually ignored by state-of-the-art spatial descriptors. Meanwhile, existing
spectral descriptors break the continuity of spectral profile. Spectral gradient [44] pro-
vides a material descriptor invariant to geometry and incident illumination with high
performance. Thus, this paper proposes a method to construct HSI descriptors based
on HOSG.
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In this section, we introduce the overall framework of HOSG-SIFT construction. To
clarify our approach straightforwardly, we apply Unmanned Aerial Vehicle (UAV) HSIs to
display keys steps in this section. More details of UAV HSIs are illustrated in Section 4.1.
Figure 1 depicts the overall structure of the proposed method. The main steps are as follows:

(1) Spatial descriptors construction. There are two steps to construct spatial descriptors.
The first step is to extract spatial interest points from an HSI in a new space pro-
duced by dimensional reduction. The second involves descriptors generating which
describes the image spatial feature.

(2) Spectral descriptors construction. After obtained the spatial interest points, we
construct the spectral descriptors from the spectral gradient of surrounding neighbors.
HOSG is used to construct the spectral descriptors. Additionally, normalized methods
are used to eliminate the influences caused by incident changes in the environment.

(3) A combination of the spatial and spectral feature. We obtain a spatial-spectral de-
scriptor of 256 elements by concatenating the spatial descriptor of 128 elements and
the spectral descriptor of 128 elements. The spatial and spectral descriptors have the
same weight.
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Figure 1. Overall framework of HOSG-SIFT construction. The spatial-spectral descriptor of 256 elements is constructed
by concatenating the spatial and spectral descriptor. The weights of the spatial and spectral descriptor are w1 and w2,
respectively. In this paper, we use the same w1 and w2.

3.1. Spatial Descriptor
3.1.1. Dimensional Reduction by PCA

HSI contains much information and generates better discriminant performance for
many applications. However, for a number of narrow bands, they have a strong correlation
that results in massive redundant information in HSI. The strong correlation between
several narrow bands results in massive redundancy in HSI such that it is more challenging
to process HSI. Additionally, the redundancy in HSI may have a negative impact on spectral
feature extraction. To resolve this problem, we transform the original features into a new
space by PCA algorithm. Then, the feature keypoints and descriptors are generated in the
new space.

PCA [45] is the process of computing the principal components and using them to
perform a change of basis on the data, always using only the first few principal components
and ignoring the rest. In fact, the PCA projects along the eigenvectors of the covariance
matrix corresponding to the largest eigenvalues, where the eigenvectors points in the
direction with the highest amount of data variation. Figure 2 shows the results of applying
PCA with the UAV HSIs dataset.

From Figure 2 and Table 1, it can be observed that using the first principal component
of HSI produces more spatial interest points than single band image. More detected
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keypoints allows higher number of matches and inliers (correct matched). The number of
matches and inliers has a great impact on following applications, such as image mosaic,
3D-reconstruction.

(a) (b) (c) (d)

Figure 2. A comparision: extracting the spatial interest points from single band image (red, green and blue band) and the
first principal component of HSI generated by PCA. Figures (a–c) depict the spatial interest points extracted from red, green,
and blue band, respectively. Figure (d) shows the spatial interest points extracted from the first principal component of HSI,
which is generated using PCA.

Table 1. The number of detected points using sift of each image.

Source Image Figure 2a Figure 2b Figure 2c Figure 2d

number of detected points 582 728 345 5455

3.1.2. Spatial Descriptor Construction

Grayscale images have been obtained by reducing the dimension of HSI in the last
section. The next step is to construct the local spatial feature based on grayscale image.
Local spatial features typically involve three distinct steps: keypoint detection, orientation
estimation and spatial descriptor extraction. SIFT is used to extract spatial features in this
work. The main steps of SIFT algorithm are as follows:

(1) Local extremum detection. Local extremum points are identified by constructing a
Gaussian pyramid and searching for local peaks in a series of DOG images. Taylor
expansion is also applied to get the interpolated estimate for a more accurate local
extremum. Moreover, candidate interest points are eliminated if found to be unstable.

(2) Dominant orientation assignment. To achieve invariance to image rotation, dominant
orientation are assigned to each keypoint based on local image properties. An orien-
tation histogram is formed from the gradient orientation of sample points within a
region around the keypoint.

(3) Keypoint descriptors. A keypoint descriptor that should be highly distinctive and
invariable to some environmental variations is then created by first computing the
gradient magnitude and orientation at each image sample point in a region around the
keypoint location. Figure 3 illustrates an example of constructing a spatial descriptor.
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Figure 3. Spatial descriptor construction using the histogram of gradient. The image sample points are then accumulated into
8 orientation histograms summarizing the contents over 4× sub-regions. Therefore, a 8 × 4 × 4 elements spatial feature vector is
constructed for each keypoint.

3.2. Spectral Descriptor

Taking advantage of the spectral structure to build feature descriptors is beneficial to
HSI matching. Generally, 3D HOG is used to construct the spectral descriptors, yet it is
time-consuming. In addition, 3D HOG ignores the physical significance of HSI that the
spectral profile in each pixel represents the unique components of objects.

The appropriate description for the spectral feature is a benefit to distinguish different
objects with similar appearance but different spectral features. Spectral gradient, which is
commonly used in many HSI applications, describes the spectral profile rather than the
original one with the advantage of reducing the magnitude offsets caused by illumination
change and other impact factors. The difference between the original spectral profile and
spectral gradient profile is shown in Figure 4. Meanwhile, Using spectral gradient avoids
the destruction of spectral profile and save the computing time of spectral features.

(a) (d) (e)

A

B

reflectan
ce

reflectan
ce

Sp
ectral grad

ien
t

Sp
ectral grad

ien
t

wavelength wavelength

wavelength wavelength

(b) (c)

Figure 4. The difference of original spectral profile and spectral gradient profile. Figure (a) represents the RGB image
synthesized by selecting the red, green and blue bands. We select two points A and B for comparison. Figure (b) and Figure
(c) show the original spectral profile of point A and B, respectively. Figure (d) and Figure (e) are the spectral gradient profile
of point A and B, respectively.



Remote Sens. 2021, 13, 4912 7 of 18

Different from 3D HOG, we build the spectral descriptors using the HOSG. As shown
in Figure 5, the main steps to generate the spectral descriptors are as follows:

(1) Keypoints assignment. Same as SIFT, the potential keypoints, which should be
invariant to scale and orientation, are identified by using a DOG function. Thereby,
the coordinate and orientation of each spatial keypoint are determined and applied to
construct the spectral descriptors

(2) Sub-region division. We first designate a 16 × 16 × n (n is the number of spectral
bands) patch surrounding the centre of each keypoint and rotate it to align its orienta-
tion assigned by previous step. Then, the patch is split up regularly into 16 sub-regions
with a size of 4 × 4 × n.

(3) Vertices division. In this paper, the spectral gradient is evenly divided into eight
vertices whose magnitude primarily ranges from −0.04 to 0.04. However, a few
spectral gradient values are larger than 0.04 or smaller than −0.04. According to our
statistics, most of those values are abnormal caused by the unstable imaging state
of the hyperspectral sensor. Thus, we modify them to moderate the adverse effects.
Specifically, the values smaller than −0.04 are increased to −0.04, while the values
larger than 0.04 are decreased to 0.04. Moreover, most datasets of HSI have a similar
range of spectral gradient magnitude (−0.04 to 0.04) after normalization. In this case,
we believe the range (−0.04 to 0.04) can be applied to most HSI datasets.

(4) Extracting the HOSG of the sub-region. The main steps of extracting the HOSG of
a sub-region is depicted in Figure 6. Specifically, the spectral gradient profile is first
calculated for each pixel in the sub-region. Second, we obtain a gradient histogram for
the sub-region by accumulating the spectral gradient magnitude into eight vertices,
which summarizes the contents of the sub-region. Finally, a vector with eight elements
is constructed to represent HOSG of a sub-region.

(5) Spectral feature vector construction and normalization. Based on the previous steps,
we obtain 16 vectors from one patch, which respectively represent 16 sub-regions. Con-
sequently, a spectral feature vector of 8 × 16 elements is constructed for each keypoint
by concatenating the vectors of sub-regions. In that way, our method preserves the
physical significance of HSI. In addition, the spectral descriptor should be normalized
to reduce the negative impacts resulting from the changes in incident illumination.
Specifically, the spectral feature vector is firstly normalized to the range of [−1,1]. A
change in spectral profile in which each pixel value is multiplied by a constant will
multiply gradients by the same constant, so this change will be canceled by vector
normalization. Therefore, the descriptor is invariant to spectral changes. After that,
we update the large gradient magnitudes by thresholding the values in the feature
vector to each be no larger than 0.2 and no smaller than −0.2, and then renormalizing
to the range of [−1,1]. This means that matching the magnitudes for large gradients is
no longer as important, and that the distribution of orientations has greater emphasis.
Note that the threshold values of 0.2 and −0.2 are commonly used for feature vector
normalization in many works, such as SIFT [30], 3D-SIFT[24], and SS-SIFT[28], to
reduce the negative impacts resulting from the changes in incident illumination.
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Figure 5. The pipeline of the spectral descriptor construction. A patch with the size of 16 × 16 × n is first designated
surrounding the centre of each keypoint. Then the patch is split up regularly into 16 sub-regions with the size of 4 × 4 × n.
We extract the spectral gradient histogram for each sub-region. Finally, the spectral gradient histogram of 16 sub-regions are
concatenated to construct the spectral descriptor of 128 elements.
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Figure 6. Extracting the HOSG of the sub-region.

3.3. Spatial-Spectral Descriptor

We obtain a spatial descriptor of 128 elements by SIFT and a spectral descriptor of
128 elements by HOSG, of which the method are detailedly depicted in Sections 3.1 and 3.2,
respectively. In this section, we introduce the construction of spatial-spectral descriptor,
which is effective for HSI matching.

Spatial-Spectral Descriptor Construction

Based on the previous steps, we construct the spatial-spectral descriptor of 256 ele-
ments by concatenating the spatial and spectral descriptors. Considering that the weights
of two feature vectors may influence the performance of the spatial-spectral descriptor,
a comparison test of descriptors weights is conducted. Specifically, we assume that the
weights of the spatial and spectral descriptors are w1 and w2, respectively. The sum of w1
and w2 is one (i.e., w1 + w2 = 1). And the ratio of w1 and w2 is set to 1/9, 2/8, 3/7, 4/6,
5/5, 6/4, 7/3, 8/2, and 9/1 for comparison test. The performance of the spatial-spectral
descriptor with different w1 and w2 is shown in Figure 7a.

As shown in Figure 7a, the spatial-spectral descriptor performs the best with the
weight ratio of 5/5. It tells the spatial and spectral descriptor are equally important for
HSI feature representation. Consequently, in our method, we concatenate two vectors (the
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spatial and the spectral descriptor) of 128 elements with the same weights to obtain the
spatial-spectral descriptor of 256 elements.

（b）（a）

0.3843

0.4876

0.6275

0.6733 0.6831

0.6492
0.621

0.5922
0.5701
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Figure 7. Parameters Testing. Figure (a) shows the performance of the spatial-spectral descriptor with the different weights
of the spatial and spectral feature vector. The results tell that the spatial and spectral descriptor are equally important for
HSI feature representation. Figure (b) shows that the number of sub-regions and vertices affect the performance of the
descriptor. The spatial-spectral descriptor performs the best with 16 sub-regions and eight vertices.

3.4. Evaluation Metrics

In our experiments, some popular metrics are used to evaluate the performance of
HOSG-SIFT on a per-image pair basis, including recall, precision, putative match ratio,
matching score and F1-score.

Recall measures the ability of descriptor to identify the possible correct matches.

Recall =
Correct Matches
Correspondences

(1)

Precision defines the inlier ratio of putative matches, as determined by geometric verification.

Precision =
Correct Matches
Putative Matches

(2)

The putative match ratio represents the selectivity of the descriptor and illustrates
which kind of the detected features will be initially identified as a match.

Matching Ratio =
Putative Matches

Features
(3)

Matching score describes the number of initial features that will result in correct matches.

Matching Score =
Correct Matches

Features
(4)

F1-score represents the harmonic mean between precision and recall. It is used as a
statistical measure to rate performance. The higher F1-score, the better performance.

F1-score = 2 × Precision × Recall
Precision + Recall

(5)

4. Experiments
4.1. Experiment Settings

In this section, experiments are performed to evaluate the performance of proposed
method. The HSIs with various spectral and spatial resolutions are collected via different
hyperspectral cameras carried on unmanned aerial vehicles (UAV) and ground platforms
in the different imaging environments. The descriptions of datasets are as follows.
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(1) UAV HSIs. The UAV dataset, containing 18 sequence images, are collected via a
UAV-borne hyperspectral sensor carried on a DJI M600 UAV provided by Sichuan
Dualix Spectral Imaging Technology Company, Ltd., Chengdu, China. The aerial
images have 176 spectral bands ranging from 400 nm to 1000 nm, with a spectral
resolution of 3 nm, an image size of 1057 × 960 pixels, and a ground sample distance
(GSD) of 10 cm. These images may come across projective distortion or nonrigid
transformation due to the unstable imaging condition. The data is collected in a
botanic garden, containing various objects, such as vegetation, artifacts, soil and many
other categories. The transformation matrices of dataset are calculated previously.

(2) Ground platform HSIs. The ground platform HSIs are provided by a public dataset
(http://icvl.cs.bgu.ac.il/hyperspectral, accessed on 12 September 2021)—“BGU ICVL
Hyperspectral Image Dataset” [46]. Images are collected at 1392 × 1300 spatial reso-
lution over 31 spectral bands ranging from 400 nm to 700 nm. The data exhibit large
changes in illumination, imaging condition and viewpoint. Images with overlapping
regions are selected to perform matching experiments.

To demonstrate the feasibility of proposed method, we evaluate our method against
some well-known spatial descriptors and multimodal descriptors, including SIFT [30]
and SURF [31] , Root-SIFT, 3D-SIFT [24] and SS-SIFT [28], which have shown competitive
performance in many vision applications [47,48]. With the experimental environment
shown in Table 2 , all descriptors are evaluated using the same steps and parameters as the
following steps.

(1) Descriptor construction. The spatial descriptors are extracted from the first principal
component of HSI produced by PCA algorithm while the multimodal descriptors are
extracted from the whole HSI cube.

(2) Descriptor matching. Euclidean distances of descriptors are used to measure the
similarity between the descriptor of images I1 and I2. Nearest neighbor matching has
been detected if the minimum Euclidean distance between descriptor of one point in
I1 and its nearest neighbour in I2 is less than 0.7.

(3) Matching metrics. We evaluate the raw matching performance on a per image pair
basis using the evaluation metrics demonstrated in Section 3.4. In addition, we also
focus on the downstream performance of descriptors by evaluating the matching
results obtained from RANSAC [49]. RANSAC is one of the most popular algorithms
for outlier removal with a superior precision in complex scenes according to the
existing studies.

Table 2. Experimental Environment.

Name Version

Operation System Windows 10
CPU AMD Core R5-4600U@2.1 GHz
Language Python 3.6
RAM 16GB

4.2. Parameters Initialization

Here, we discuss parameters initialization before applying our scheme. Regarding
the method of spectral descriptor construction, the number of sub-regions and vertices
can be used to vary the complexity and performance of the descriptor. We evaluate our
spatial-spectral descriptor with different parameters using F1-score.

Specifically, to test the influence of sub-regions number, we evaluate the performance
with of descriptor with 1, 4, 9, 16, 25, 36 sub-regions. As shown in Figure 7b, the perfor-
mance of descriptor is improved with the growth of sub-regions number—however, the
performance decrease when the sub-regions number is larger than four. It shows that, in a
certain range, the information of surrounding points is beneficial to enhance the robustness
and discrimination ability of descriptor.

http://icvl.cs.bgu.ac.il/hyperspectral
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In addition, we verify the influence of the vertices numbers on descriptor performance
by changing them with 4, 8, 16. Figure 7b indicates that the spectral descriptor constructed
with eight and 16 vertices perform well in the same sub-region range. However, considering
the computing complexity of the descriptor, we design 8 vertices to construct HOSG.
Consequently, we designate 16 sub-regions for each patch surrounding the centre of each
keypoint and divide the spectral gradient into eight vertices to construct spectral descriptors
by practical value.

4.3. Matching Results in UAV Dataset

To demonstrate the effectiveness of the proposed method, we analyze the putative
matching results and the downstream performance of different descriptors. The matching
results obtained from RANSAC are utilized to evaluate the downstream performance
of descriptors.

4.3.1. Detected Feature Points of Putative Matching Results

The putative matching results of SIFT, SURF, ROOT-SIFT, 3D-SIFT, SS-SIFT and HOSG-
SIFT on UAV images are shown in Figure 8. We also count the number of detected feature
points, putative matches and inliers as listed in Table 3 to compare the putative matching
results of different methods clearly. The statistical results in Table 3 conform to the matching
results in Figure 8.

Table 3. The number of detected points and matching point pairs.

Method Number of
Feature Points

Number
of Matches

Number
of Inliers

Number
of Outliers

Ratio of
Inliers (%)

SIFT 7162 710 553 157 77.99
SURF 7844 644 452 192 70.32
ROOT-SIFT 7162 780 614 166 78.61
3D-SIFT 5908 364 269 95 73.98
SS-SIFT 11,673 1107 431 676 38.97
HOSG-SIFT 7162 915 727 188 79.54

Among the spatial descriptors, ROOT-SIFT, as an improved version from SIFT, does
the best with the matches number of 780 and the inliers number of 614. However, the
keypoints with similar spatial structures are falsely regarded as matching point pairs since
the spatial descriptors are designed for gray scales images without considering the spectral
feature of objects.

3D-SIFT pictured in Figure 8d generates a minimun number of putative matches of
364 and inliers of 269 since it is proposed for medical image registration and performs
relatively low when applied to HSI cube. By exploring both spectral and spatial dimensions
simultaneously, SS-SIFT produces a largest number of putative matches but with a small
number of inliers of 431, as shown in Figure 8e.

Compared with the methods mentioned above, HOSG-SIFT pictured in Figure 8f
obtains a relatively high matches number and the largest inliers number. Different with
SS-SIFT, we use a HOSG instead of 3D HOG to combine the spatial feature and spectral
feature. Using spectral feature increases the number of putative matches. On the other
hand, spectral profile is completely preserved by using the HOSG, thus the number of
outliers (wrong matches) is decreased. Consequently, our method generates more high-
quality putative matches with fewer outliers, demonstrating the effectiveness of the spectral
feature in HSI matching tasks.
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(a) (b) (c) (d) (e) (f)

Figure 8. Putative Matching Results. (a–f) represent the putative matching result of SIFT, SURF, ROOT-SIFT, 3D-SIFT,
SS-SIFT, and HOSG-SIFT respectively. The green lines present inliers while the red lines are outliers.

4.3.2. Evaluation Metrics of Putative Matching Results

The Quantitative evaluation metrics are summarized in Figure 9 by precision, recall,
matching ratio and matching score with cumulative distribution. Moreover, the average
values of each evaluations is demonstrated in Table 4 for a more straightforward and
comprehensive comparison.

(a)
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Cumulative Distribution Cumulative Distribution
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Figure 9. Cumulative distribution of precision, recall, matching ratio, matching score and F1-score. Figures (a–e) are the
cumulative distribution of precision, recall, matching ratio, matching score, and F1-score, respectively. A point on the
curve with coordinate (x,y) denotes that there are (100 × x) percents of image pairs which have the performance value no
more than y.
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Table 4. Quantitative performance of methods on UAV dataset.

Method Precision Recall Matching Ratio Matching Score F1-Score

SIFT 77.99 46.19 9.92 7.74 57.37
SURF 70.32 38.98 8.21 5.66 49.39
ROOT-SIFT 78.61 50.73 10.90 8.59 61.10
3D-SIFT 73.98 18.01 6.17 4.59 28.77
SS-SIFT 38.97 33.61 9.48 3.69 35.71
HOSG-SIFT 79.54 59.87 12.77 10.10 67.77

Regarding the spatial descriptors, it is hard to distinguish those false matches with
similar spatial features due to the lack of spectral information. Among them, ROOT-SIFT
achieves superior results of the highest precision and the best recall due to the benefits
of using a square root kernel instead of the standard Euclidean distance to measure the
similarity. SURF is designed to accelerate SIFT and improve matching efficiency, which
is sensitive to viewpoint and illumination. Therefore, regarding UAV HSIs where the
viewpoint and illumination change frequently, SURF obtains inferior results in matching
tasks compared with SIFT and ROOT-SIFT.

On the contrary, the evaluation results of 3D descriptors, including 3D-SIFT and
SS-SIFT, are relatively poor, same as the results in Figure 8 and Table 3. 3D-SIFT is usually
used for medical image processing with an outstanding performance. Medical image is
structurally different from HSI, whose pixels in different slices represent different spatial
locations. Thus, 3D-SIFT is limited in HSI matching. Additionally, SS-SIFT takes advantage
of spatial and spectral features by 3D HOG. In this way, the falsely extracted matches
increase along with the number of putative matches result in a deficient performance
of SS-SIFT.

By comparison, the proposed method obtains a considerable precision of 79.54%, a
recall of 59.87%, and the best F1-score of 67.77%. Our descriptor outperforms the spatial
descriptors since we simultaneously explore the spatial and spectral information, which are
essential to distinguish objects with similar spatial features but different spectral features.
On the other hand, our approach also surpasses the performance of 3D descriptors, telling
that extracting the HOSG to describe spectral features is effective and robust.

4.3.3. Matching Results from RANSAC

As shown in Figure 8 the putative matches contain a lot of outliers inevitably [50,51].
Using outlier filtering algorithms to improve the performance of image matching is com-
monly used. Here, we use RANSAC to remove outliers in the experiments and evaluate
the descriptors in matching tasks.

The matching results by RANSAC filtering are shown in Figure 10. Most outliers
are erased by the RANSAC algorithm. However, the number and ratio of outliers in
putative matching significantly impact the performance of RANSAC. Although RANSAC
improves the SS-SIFT results to a large extent, the performance of SS-SIFT is still limited
due to numerous outliers in putative matching. Fewer matching pairs are preserved and
distribute unevenly (see the first and second figures in Figure 10e. Regarding 3D-SIFT, a
part of outliers is removed in putative matching results. Thus, fewer matching pairs are
preserved after outliers filtering.

By comparison, our method produces densely correct matches distributed evenly
across the image after outliers filtering, exceeding the performance of other conventional
methods pictured in Figure 10. The results generated by RANSAC also demonstrate that
the feasibility of the proposed method.
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(a) (b) (c) (d) (e) (f)

Figure 10. Matching Results using RANSAC. (a–f) represent the matching result of SURF, SIFT, ROOT-SIFT, 3D-SIFT,
SS-SIFT, and HOSG-SIFT method respectively.

4.4. Matching Results on ICVL Dataset

To verify the robustness of our method, we also compare matching ability on the
ICVL dataset collected by the ground platform. The ground platform HSIs are usually
used for spectral reconstruction, thus there is no ground truth of the dataset for matching
evaluation. Considering such a situation, we apply the RANSAC algorithm to estimate the
homography and regard the results as the transformation matrix of images. The putative
matching results of ground platform HSIs are shown in Figure 11. The quantitative metrics
are listed in Table 5.

Similar to the matching results of UAV HSIs, ROOT-SIFT obtains a precision of 47.12%
that is higher than SIFT and SURF but poorer than our method, whose precision is 49.08%.
The matching results of descriptors are depressed without considering the benefits spectral
features. SURF produces a large amount of putative matching, and receives the best recall
of 78.93% that is higher than our method by 18.25%.

Due to the limits of algorithms, matching errors prevalently exist. Although 3D-SIFT
pictured in Figure 11d eliminates some false matches by taking advantage of multiband
information, the putative matching number of 3D-SIFT results decrease along with the
errors. Similarly, SS-SIFT shows the inferior performance on evaluation metrics since it
requires outliers filtering for enhancement.
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By contrast, our method outperforms other methods with more correct matches while
preserving the precision, as depicted in Figure 11f. The matching results in the ICVL dataset
also reveal that the robustness and effectiveness of proposed method.

(a) (b) (c) (d) (e) (f)

Figure 11. Putative Matching Results of ground platform HSIs. (a–f) represent the putative matching result of SIFT, SURF,
ROOT-SIFT, 3D-SIFT, SS-SIFT, and our method respectively. The green lines present inliers while the red lines are outliers.

Table 5. Quantitative performance of six methods on ICVL dataset.

Method Precision Recall Matching Ratio Matching Score F1-Score

SIFT 45.98 56.71 9.15 6.23 50.35
SURF 41.50 78.93 14.33 9.55 53.95
ROOT-SIFT 47.12 57.66 10.11 6.99 51.30
3D-SIFT 43.78 45.33 5.18 3.29 44.19
SS-SIFT 23.97 37.45 4.41 2.17 29.32
HOSG-SIFT 49.08 60.68 11.52 7.87 53.72

4.5. Running Time Comparison

We compare the running time of different methods, as shown in Table 6. Without con-
sidering the spectral feature, spatial descriptors perform more effective than 3D descriptors.
In other words, constructing a descriptor based on multiple dimensions features is much
more time-consuming. SURF operates fastest since it simplifies the extracting process by
using the Hessian matrix instead of DOG to detect key points. In addition, ROOT-SIFT
yields a relatively good performance without increasing computational costs.

3D descriptors, including 3D-SIFT and SS-SIFT, cost much time in keypoints detection
and descriptors construction as they use 3D Gaussian convolution kernel and 3D-DOG to
generate spatial-spectral keypoints. Although our descriptor is less effective than spatial
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descriptors, we get higher results both in precision and recall. We also learn that considering
the spatial and spectral features both will increase the computing time. On the other hand,
compared with existed 3D descriptors, our approach, constructing a HOSG profile in
surrounding neighbors, is much more time-saving and performs more outstanding.

Table 6. Average running time(s).

Method UAV ICVL

SIFT 8.7 1.1
SURF 4.1 1.7
ROOT-SIFT 9.2 1.6
3D-SIFT 1917.5 88.2
SS-SIFT 2354.9 105.2
HOSG-SIFT 305.8 17.9

5. Discussion

The proposed method to construct HSI descriptors has three main steps: spatial
descriptor extraction from grayscale images, spectral descriptor generation using HOSG
and spatial-spectral descriptor construction. Although HSI descriptors perform well in HSI
matching, limitations still exist.

On the one hand, regarding the spatial and spectral features, they have the same
weights in our spatial-spectral descriptor. We concatenate the spatial descriptor of 128 ele-
ments and the spectral descriptor of 128 elements to obtain a spatial-spectral descriptor of
256 elements. Generally, the weights of spatial and spectral features are supposed to vary
in different scenarios. Although we verify the performance of the descriptor with fixed
ratio of weights, we have yet to discuss this with the adaptive ratio of weights.

On the other hand, although our descriptor outperforms the common spatial descrip-
tors in precision for HSI matching, our method is limited in efficiency since the spectral
information increases the computing complexity. On the other hand, compared with 3D
descriptors such as 3D-SIFT and SS-SIFT, our descriptor is superior as we apply the HOSG
to present spectral features. Thus, we believe our method is an alternative for those cases
without a request for very high efficiency.

6. Conclusions

This paper presents an HSI descriptor constructed using SIFT and HOSG, which com-
bines spatial and spectral features. The proposed HSI descriptors improve the performance
of HSI matching with a precision of 79.54% in the UAV dataset and 49.80% in the ground
platform dataset. In terms of overall performance, the proposed method outperforms other
popular descriptors. Moreover, compared to spatial descriptors, the proposed method
can better distinguish objects with the same material but different structures, providing a
reference for descriptor construction in HSI. Considering the limitations of our work, we
will enrich the diversity of hyperspectral image datasets in the future. Meanwhile, we will
develop better feature extractors and matches with fewer errors using spectral information.
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