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Abstract: Recently, unstructured 3D point clouds have been widely used in remote sensing appli-
cation. However, inevitable is the appearance of an incomplete point cloud, primarily due to the
angle of view and blocking limitations. Therefore, point cloud completion is an urgent problem in
point cloud data applications. Most existing deep learning methods first generate rough frameworks
through the global characteristics of incomplete point clouds, and then generate complete point
clouds by refining the framework. However, such point clouds are undesirably biased toward
average existing objects, meaning that the completion results lack local details. Thus, we propose a
multi-view-based shape-preserving point completion network with an encoder–decoder architecture,
termed a point projection network (PP-Net). PP-Net completes and optimizes the defective point
cloud in a projection-to-shape manner in two stages. First, a new feature point extraction method is
applied to the projection of a point cloud, to extract feature points in multiple directions. Second,
more realistic complete point clouds with finer profiles are yielded by encoding and decoding the fea-
ture points from the first stage. Meanwhile, the projection loss in multiple directions and adversarial
loss are combined to optimize the model parameters. Qualitative and quantitative experiments on
the ShapeNet dataset indicate that our method achieves good results in learning-based point cloud
shape completion methods in terms of chamfer distance (CD) error. Furthermore, PP-Net is robust to
the deletion of multiple parts and different levels of incomplete data.

Keywords: 3D point clouds; shape completion; deep learning; multi-view-based methods

1. Introduction

With the rapid development of 3D scanning technology, point clouds, as an irregular
set of points that represent 3D geometry, have been widely used in various modern vision
tasks, such as remote sensing application [1–3], robot navigation [4–6], autonomous driv-
ing [7–9], and object pose estimation [10–12]. However, owing to occlusion, limited viewing
angles, and sensor resolution, real-world 3D point clouds captured by LiDAR and/or depth
cameras are often irregular and incomplete. Therefore, point cloud completion has always
been an urgent problem in point cloud data applications. Most traditional methods of
shape completion are based on the geometric assumption [13–15] that the incomplete area
and some parts of the input are geometrically symmetric. These assumptions significantly
limit the real-world applications of these methods. For example, Poisson surface recon-
struction [16–18] can usually repair the holes in 3D model surfaces, but discard fine-scale
structures. Another geometry-based shape completion method is retrieval matching or
shape similarity [19–21]. Such methods are time consuming when applied to the matching
process according to the database size, and cannot tolerate noise in the input 3D shape.
Owing to the disadvantages of structural assumptions and matching time in traditional
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methods, the depth learning method of 3D point clouds has gradually increased recently
with the emergence of large 3D model datasets, such as ModelNet40 [22] and ShapeNet [23].
Many deep learning-based approaches have been proposed for point cloud repair and
completion.

The methods based on deep neural networks [24–31] directly map the partially miss-
ing shape input into a complete shape, among which the voxel-based method is widely
used in 3D point clouds. Dai et al. [32] proposed a point cloud completion method using a
3D encoder–predictor volumetric neural network, which inputs low-resolution missing
shapes and outputs high-resolution complete shapes. Wang et al. [33] proposed a network
architecture to complete 3D shapes by combining cyclic convolution networks with antago-
nistic networks. A series of neural networks based on voxels were built for point cloud
data processing and achieved some results; however, voxel grids were found to reduce the
resolution of fine detailed shapes, and required significant calculations.

With the further development of deep learning in point cloud data processing, the
proposed point cloud processing network, PointNet [34] and PointNet++ [35], overcome
the limitation of building neural networks based on voxels. Compared with traditional
voxel representation, using the point cloud as the direct input can considerably reduce
the number of network parameters, and can represent fine details with less computation.
This can significantly improve the training speed of the deep completion network, while
retaining the shape structures of the input 3D shapes. Based on PointNet, many new
methods [3,36] for extracting point features have been proposed.

Owing to the advantages in extracting features, the encoder–decoder approach pro-
vides a promising solution for completing point clouds with real-world structures in the
missing area on inputs. The encoder encodes the input point cloud as a feature vector, and
the decoder generates a dense and complete output point cloud from the feature vector.
Learning Representations and Generative Models for 3D Point Clouds (L-GAN) [37] is the
first point cloud completion network based on the encoder–decoder architecture, which
applies the Autoencoder Based Generative Adversarial Nets [38] to point cloud completion.
Considering that the network structure of L-GAN is generalized and not specifically de-
signed for point cloud completion, it fails to achieve the desired effect. PCN [39] is the first
deep learning network architecture to focus on point cloud completion, which is achieved
using a folding-based decoding operation to approximate a relatively smooth surface and
conduct shape completion. A folding-based decoder (FBD) can hardly deform a 2D grid
into subtle fine structures. PCN does not work well in completing these structures; however,
in RL-GAN-Net [40], reinforcement learning was combined with a Generative Adversarial
Network (GAN) [41] for point cloud completion for the first time. An RL agent is used
to control the GAN to convert the noisy part of the point cloud data into a high-fidelity
complementary shape. The network focuses more on the speed of prediction rather than
improving the accuracy of prediction. PF-Net [36] uses a multi-layer Gaussian pyramid
network model to divide the feature vector encoding of the point cloud into different levels,
from rough to fine, and to predict the results of different layers; these results are combined
to generate the final point cloud. In addition, PF-Net only generates the missing part of the
point cloud, which effectively avoids the problem of changing existing points during the
generation process.

These methods typically use an encoder structure to extract the overall shape informa-
tion from the input partial data, to generate a coarse shape, and subsequently, refine the
coarse shape to a fine detailed point set to generate a complete point cloud. This method of
generating point clouds typically extracts only the global characteristics of point clouds,
and ignores the local characteristics of the point clouds, resulting in the predicted point
clouds being generalized as the average of objects of the same class. The degradation of
the local details is predictable. There are two main reasons for this problem. (1) The charac-
teristics of the input point cloud are not fully utilized, where only the global characteristics
of the point cloud are utilized, and the local characteristics are not considered. (2) The
two-stage point cloud generation method, which ranges from rough to dense, results in a
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loss of local detail. To solve these problems, this study uses a multi-view-based method
with an encoder–decoder architecture to leverage the structure and local information of
sparse 3D data.

The multi-view-based method [42–47] is used to project shapes into multiple views,
to extract profile features in multiple directions of point clouds. In MVCNN [42], a 3D
shape classification method based on multiple views is employed for the first time. A 2D
rendering graph obtained from the different perspectives of the 3D model is then used to
generate a 3D shape classifier. The method then max-poles multi-view features into a global
descriptor to assist the classification. MHBN [43] uses harmonized bilinear pooling to
generate global descriptors, which integrate local convolution features to make the global
descriptor more compact. On this basis, several other methods [44–46] have been proposed
to improve the recognition accuracy. In the latest paper by Wei, View-GCN [47] applies
graph convolutional networks to multiple views, and uses 2D multi-views of 3D objects
to construct view-graphs as graph nodes. The experiments show that the view-GCN can
obtain the best 3D shape classification results.

Given that it can be challenging for networks to directly exploit edge features in
irregularly distributed incomplete point clouds, this study introduces a multi-view-based
method for point cloud completion, and designs a convolutional neural network with an
encoder–decoder architecture, comprising (1) multi-view-based boundary feature point
extraction and (2) point cloud generation based on the encoder–decoder structure. In the
first stage, the point cloud is projected in multiple directions. The 3D point clouds can
easily cause higher density in the overlapping regions, and increase the computational
cost when projected onto a plane. Therefore, a new boundary extraction method is used
to sample each projection. This method eliminates the overlap caused by projection, and
makes the network focus on characteristic profile information. In the second stage of the
point projection network (PP-Net), an encoder–decoder structure is designed based on
point cloud multi-directional projection. It extracts global features, and combines profile
features from the projection and boundary feature points in different directions, which
are fused into the feature vector by the encoder; then, a point cloud with fine profiles
is generated by the decoder. In addition, a joint loss that combines the distance loss of
multi-directional projections of a point cloud with adversarial loss is proposed to make the
output point cloud more evenly distributed and closer to the ground truth.

The main contributions of the study follow.

1. A multi-view-based method using encoder–decoder architecture is proposed to com-
plete the point cloud, which is performed through projections in multiple directions
of an incomplete point cloud.

2. For the projection stage, a boundary feature extraction method is proposed, which
can eliminate the overlap caused by projection and make the network focus on the
characteristic profile information.

3. A new joint loss function is designed to combine the projected loss with adversarial
loss to make the output point cloud more evenly distributed and closer to the ground
truth.

2. Materials and Methods
2.1. Data Preprocessing

The point cloud data generated from a subset of the Shapenet [23] dataset were used
to train the network model. It contains 13 object types in ShapeNet: airplane, skateboard,
car, chair, table, lamp, pistol, guitar, bag, cap, mug, laptop, and motorbike. There are 14,473
models in total; 11,705 are used for training, and 2768 are used for testing. The original
ground truth point cloud was obtained by sampling 2048 points for each point cloud. As
shown in Figure 1, an incomplete point cloud is obtained by deleting a certain number of
points around a random center point. In addition, the incomplete point cloud is randomly
generated in real time during each training, meaning that the missing parts of the same
model in each iteration will be different, thereby enhancing the robustness of the network
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significantly. When compared with other methods, this study used a point cloud with 25%
missing data for training and testing. Note that data preprocessing was not performed
on the training dataset using operations such as rotation and translation. However, the
proposed network is still robust to these operations because of the embedding provided by
the PointNet and FoldingNet [48] modules.

Figure 1. The process of generating incomplete point cloud data, where the random center point is at
the center of the circle.

2.2. Network Structure Overview

Most existing deep learning point cloud completion models first generate a rough
frame based on the input global features, and then, refine the frame to obtain a complete
point cloud. There are two main problems with this method. (1) Only the global features of
the point cloud are used in the encoding process, while the local features are ignored. (2)
During the decoding process, generalization to complete the point cloud also generalizes
the unique structure of the model. A multi-view-based point completion network with an
encoder–decoder architecture is designed to solve these two problems. This network takes
multiple projections of the point cloud as input and directly generates a complete point
cloud. The projection is taken as the input to ensure that both the global features of the
point cloud and multi-directional boundary features are utilized, and the complete point
cloud is directly generated to avoid the loss of local information caused by the refinement
process. The network structure is illustrated in Figure 2. The entire network structure
comprises four basic modules: projection boundary extractor (PBE; Section 2.3), multi-
resolution encoder (MRE; Section 2.4), FBD (Section 2.5), and discriminator (Section 2.6).
The PBE is the first stage of the projection-to-shape manner of two stages. It extracts the
boundary feature points of the multi-directional projection of the point cloud as the input
of the encoder. The MRE and FBD form the second stage of the projection-to-shape manner
of two stages. It takes the boundary feature points of the first stage as input, uses the
MRE to extract a 1792-dimensional feature vector, and then, serves as the input of the
decoder module. The decoder generates the predicted point cloud through two consecutive
folding operations; to ensure that the existing point cloud structure will not be destroyed,
only the missing part of the point cloud is generated when generating the predicted point
cloud. To optimize the network parameters, a joint loss function is designed (Section 2.6),
and divided into two parts: adversarial loss and multi-directional projection distance loss.
The point cloud is input into the discriminator module to obtain adversarial loss. The
discriminator is then trained to ensure that the output of the real point cloud is as close
to 1 as possible, and the output of the predicted point cloud is as close to 0 as possible.
Simultaneously, the predicted point cloud generated by other modules makes the output
of the discriminator as close to 1 as possible. The two are alternately trained to make
the generated point cloud more realistic. The multi-directional projection distance loss is
defined as the chamfer distance (CD) error between the output point cloud and ground
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truth of the multi-directional projection, which is trained to optimize the overall shape of
the complete point cloud.

Figure 2. PP-Net architecture. In the PBE module (Section 2.3), the point cloud is projected to different directions (indicated
in red). The boundary extraction method is used to extract the projected boundary feature points (indicated in yellow).
After generating the predicted point cloud (indicated in blue), the point cloud is projected in multiple different directions
(indicated in red). Then, the CD errors of both the point cloud and projection are calculated (Section 2.6).

2.3. PBE

The PBE is used to project the point cloud in multiple directions and extract feature
points. The PBE is divided into three stages: projection transformation, overlap elimination,
and boundary extraction. In the first stage, projection transformation is used to project the
incomplete 3D point cloud in different directions. In the second stage, overlap elimination
is used to eliminate overlapping effects caused by projecting. In the third stage, boundary
extraction is used to extract the boundary feature points of each projection.

In the first stage, a multi-view-based method is used to map the point cloud from
3D space to a 2D plane. As shown in Figure 3a, projection planes are automatically
generated by the program. The 3D point cloud coordinates are recorded through the spatial
rectangular coordinate system, and the point cloud is projected onto three planes: xoy, yoz,
and zox. The point cloud is projected after being rotated by 0◦, 30◦, and 60◦ along the x-,
y-, and z-coordinate axes to obtain nine projection surfaces.

Figure 3. Projection transformation and boundary extraction. (a) Projection transformation projects the point cloud
(indicated in red) onto three planes (indicated in blue). (b) Boundary extraction algorithm extracts the number of neighbors
around each point (indicated in black). A group of points with the least number of adjacencies is selected as boundary
feature points (indicated in blue). (c–e) Projection transformation and boundary extraction of the point cloud (indicated in
blue) in a certain direction (indicated in red).
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In the second stage, the point cloud projection onto a plane can easily lead to over-
lapping areas. Regions with different densities increase the computational cost and affect
feature extraction. To eliminate the effect of overlap, farthest point sampling (FPS) is used
to downsample each projection. FPS is a sampling strategy applied to PointNet++, which
can obtain a good set of skeleton points from the point cloud.

In the third stage, boundary extraction is used to extract the boundary feature points.
As shown in Figure 3e, a chair with only 341 boundary points can also describe the shape
of the chair, and it is more evenly distributed. To extract the boundary feature points of
the downsampled projection, this research proposes boundary recognition based on the
number of adjacencies, which is the number of points within a certain distance from a point
in the point cloud. This distance is determined by multiplying a hyperparameter α and the
average of the distance between all points in the point cloud. The number of points around
the boundary points was found to be generally less than that of the nonboundary points.
As shown in Figure 3b, a group of points with the least number of adjacencies in the point
cloud is selected as the boundary points. As shown in Figure 3c–e, the boundary of the
chair projection is extracted. The figure shows that this method can extract the peripheral
boundary and hollow backrest boundary.

2.4. MRE

Notably, all the results of point cloud repair and completion should be unaffected
by the rotation or translation of the input shape. In the current deep learning method,
the PointNet encoder effectively solves the problems of rotation and disorder of the point
cloud input. However, PointNet only extracts high-level feature information, and does
not effectively use low- and mid-level features that contain rich local information. To fully
extract the input data information, this study introduces combined multi-layer perceptron
(CMLP) in the model coding stage. As shown in Figure 4, the structure of each layer of the
encoder is the same as that of the PointNet encoder; it comprises two layers: a parameter-
sharing multi-layer perceptron (MLP) and maximum pooling layer. Different layers of the
MLP encode each point into different dimensions (64-128-256-512-1024), and the output of
the last three layers is maxpooled and concatenated to obtain a 1792-dimensional feature
vector. To fully utilize the input incomplete point cloud, the input of the network is nine
projections of size N/6× 2. The nine projections are input to the encoder to obtain nine
individual combined latent vectors Fi, where i= 1, . . . , 9. Fi represents the feature extracted
from the projection of the point cloud. All Fi are then concatenated, forming a latent feature
map M with a size of 1792× 9 (i.e., nine vectors each with a size of 1792). MLP (9–1) is then
used to integrate the latent feature map into a final feature vector V = 1792.

Figure 4. Structure of the proposed CMLP.
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2.5. FBD

The decoder structure of the PP-Net is based on the FoldingNet [48] decoder. The
decoder based on FoldingNet duplicates the encoded 512-dimensional codeword, and
concatenates with the 2D grid. The completed point cloud is generated after using two
consecutive folding operations. As FoldingNet notes, the folding operation is equivalent to
a “transformation” such as deforming, cutting, or stretching, which can fold a 2D plane
into the target 3D shape. The feature codeword can store the required “transformation.”
A two-stage decoding structure from a plane to point cloud based on FoldingNet is used
to generate the predicted point cloud. The first stage generates a 2D square plane with
uniform grid points. In the second stage, a folding operation is applied to the plane, and
the plane obtained in the first stage is folded into a predicted point cloud.

Figure 5 shows the network details of the decoder architecture. Before the folding
operation, to match the output of the encoder with the input of the decoder, the feature
vector V generated by the encoder is input into the MLP to obtain the 512-dimensional
codeword as the input of the folding operation. Then, two consecutive folding operations
are used to help restore the lost shape and structure. The folding operation in FoldingNet
is implemented using the MLP, because the activation function in the MLP provides a
nonlinear transformation that can simulate 3D space transformations, such as folding and
stretching. Therefore, the MLP has sufficient expression capability to effectively simulate
most of the transformation operations.

Figure 5. Details of the FBD. First, input the feature vector into the MLP to obtain the codeword used for the folding
operation. Then, concatenate the codeword and 2D grid points to obtain the predicted point cloud after two consecutive
folding operations.

Specifically, the first stage generates a square plane with uniform grid points with
a size M× 2. Here, the size of M is the square number, which is close to the number of
missing points; for example, when the number of missing points is 512, the number of M
is 576. In the second stage, two consecutive folding operations are performed. First, the
M× 512 codeword matrix is obtained by repeating the 512-dimensional feature codeword
M times. Then, the grid points and codeword matrix are concatenated to form an M× 514
matrix, and a three-layer MLP is used for the first folding operation to generate an M× 3
intermediate point cloud. In addition, the codeword matrix and intermediate point cloud
are concatenated to form an M× 514 matrix, and then, the second folding operation is
performed to obtain the final M× 3 point cloud. The PP-Net includes two consecutive
folding operations. The first operation folds the 2D grid into 3D space, and the operation
folds inside the 3D space. The decoding result of these two operations can generate the
missing point cloud data, and the folding operation can reduce the number of network
parameters and accelerate the network training.

2.6. Loss Function

A joint loss function was designed to generate a more realistic point cloud with
fine boundary profiles. It contains two parts: (1) multi-directional projection distance
loss and (2) adversarial loss. Multi-directional projection distance loss optimizes the
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distance between prediction and ground truth to generate a point cloud with fine profiles.
Concurrently, adversarial loss compares the difference between the predicted point cloud
and ground truth to make the prediction result more realistic.

2.6.1. Multi-Directional Projection Distance Loss

Owing to the disordered property of discrete point cloud data, the loss function
should also be insensitive to the order of the sampling points. Fan [49] has proposed
two permutation-invariant methods to measure the distance between unordered point
clouds, which are CD and Earth Mover’s Distance (EMD). In practical applications, EMD
calculation is time consuming and requires two point clouds to have the same size; therefore,
the CD was selected to calculate the loss.

dCD(S1, S2) =
1
S1

∑
x∈S1

min
y∈S2
‖x− y‖2

2 +
1
S2

∑
y∈S2

min
x∈S1
‖y− x‖2

2 (1)

Here, CD calculates the shortest distance from each point in the point cloud to a point
in another point cloud, and then, sums and averages the distances of all points. It calculates
the average closest distance between the predicted point cloud and ground truth, which
contains two items: (1) CD from the ground truth to the predicted point cloud and (2) that
from the predicted point cloud to the ground truth. The first iteration makes the predicted
point cloud closer to the ground truth, and the second iteration forces the predicted point
cloud to cover the ground truth. The PP-Net uses projections in each direction of the
point cloud to assist in optimizing the network parameters, and the multi-directional
projection distance loss is composed of four items in Equation (2) (dCDxyz , dCDxoy , dCDyoz ,
and dCDxoz ) that are weighted by hyperparameter β. The first item calculates the squared
distance between the predicted points Ypre and ground truth of the missing region Ygt. The
following items are used to calculate the squared distance between the predicted points
(Yprexoy , Ypreyoz , Yprexoz ) and ground truth (Ygtxoy , Ygtyoz , Ygtxoz ) of the three projection planes.

Lcom = dCDxyz

(
Ypre, Ygt

)
+ βdCDxoy

(
Yprexoy , Ygtxoy

)
+βdCDyoz

(
Ypreyoz , Ygtyoz

)
+ βdCDxoz

(
Yprexoz , Ygtxoz

) (2)

2.6.2. Adversarial Loss

The adversarial loss of the PP-Net is based on the adversarial loss of PF-Net. First,
F is defined as F() := FBD(MRE()). The partial input X is mapped to the missing point
cloud Y′ through F. Then, the discriminator (D()) is used to distinguish the missing area
Y′ from the true missing area Y. The discriminator differs from the MRE as it uses a serial
MLP layer (64-64-128-256). The outputs of the last three layers are maxpooled to obtain the
feature vector fi, where size fi := 64, 128, 256 for i = 1, 2, 3, respectively. The three layers
are concatenated into a latent vector F, where the size of F is 448. Then, F is passed through
the fully connected layer (256, 128, 16, 1). Finally, the sigmoid classifier is used to obtain
the predicted value. The adversarial loss in PF-Net is defined as follows:

Ladv = ∑
1≤i≤S

log(D(yi)) + ∑
1≤i≤S

log(1− D(F(xi))) (3)

where xi ∈ X, yi ∈ Y, i = 1, . . . , S. S is the dataset size of X and Y. Both F and D are
optimized jointly using alternating ADAM during training.

As proposed by the GAN, the discriminator ensures that the predicted value is close
to the true value. The discriminator is trained to ensure that the output of the real point
cloud is as close to 1 as possible, and the output of the predicted point cloud is as close
to 0 as possible. Concurrently, the predicted point cloud generated by the PP-Net makes
the output of the discriminator as close to 1 as possible. The two are alternately trained to
make the generated point cloud more realistic.
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2.6.3. Joint Loss

A new joint loss function was designed to train the network; it comprises two parts:
multi-directional projection distance loss and adversarial loss. The multi-directional pro-
jection distance loss measures the difference between the real point cloud and predicted
point cloud in the missing area. The adversarial loss attempts to make the point cloud
more realistic by optimizing the encoder and decoder.

L = λcomLcom + λadvLadv (4)

where Lpro represents the multi-directional projection distance loss, Ladv represents the
adversarial loss, λcom and λadv represent the weights of the multi-directional projection
distance loss and adversarial loss, respectively; here, λcom+λadv=1.

3. Experiment and Result Analysis

This section first introduces the environment and parameters when training the
completion network, and then, quantitatively and qualitatively evaluates the PP-Net and
other existing point cloud completion methods. These methods will be used to complete
some actual examples of point clouds for comparison and to visualize their completion
results.

3.1. Experimental Implementation Details

To make the proposed PP-Net converge quickly during the network training, the
mean value of the sampling point coordinates of the incomplete and complete point cloud
models is normalized to zero; that is, the range of coordinates of each sampling point is
scaled to (−1,1). PyTorch is then used to implement the proposed network. All network
modules are alternately trained using the ADAM optimizer, with an initial learning rate of
0.0001 and a batch size of 25. Batch normalization and RELU activation units were used in
the MRE and discriminator, but only used RELU activation units in the FBD.

In the data preprocessing, complete point cloud data are read in and processed to
generate the incomplete point cloud in real time during each training. In the projection
boundary extraction, the number of projection points is set to 2N3 , where N is the size of
the incomplete point cloud. The boundary takes 14 of the number of projection points, the
number is N6 , and the hyperparameter α is 0.5; nine projections of size N6 are obtained. In
the MRE, the network uses a five-layer PointNet encoder, and the output feature sizes are
64, 128, 256, 512, and 1024. The network inputs nine projections separately, and connects
the output of the last three layers to obtain a 9 × 1792-dimensional feature vector. Finally,
the feature vector V is obtained through a three-layer MLP (9–1). In the first stage of the
FBD, the decoder generates M× 2 grid points, where the decoder sets M to the number of
squares, which is close to the number of missing point clouds; for example, if the number
of missing point clouds is 512, M is set to 576 (24× 24). The grid points are then converted
into an M× 2 matrix. In the second stage of the FBD, before the folding operation, to match
the output of the encoder with the input of the decoder, the decoder inputs the feature
vector V (with a size of 1792) generated by the encoder into the three-layer MLP (the output
dimensions of each layer are 1792, 1792, and 512) to obtain a 512-dimensional codeword as
the decoder input. Then, two consecutive folding operations are performed to obtain the
final predicted point cloud. The MLP output sizes of the two folding operations were 512,
512, and 3. In the joint loss, the hyperparameter β of multi-directional projection distance
loss is 0.2, the hyperparameter λcom of the multi-directional projection distance loss is 0.95,
and the hyperparameter λadv of the adversarial loss is 0.05.

3.2. Evaluation Standard

The network uses the point cloud completion accuracy of 13 categories in the dataset
to evaluate the performance of the model. The evaluation used in this study contains two
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types of errors: predicted point cloud (Pred)→ ground truth (GT) error and ground truth
(GT)→ predicted point cloud (Pred) error, which has been used in other papers [50,51].

dCD(SPred, SGT) =
1

SPred
∑

x∈SPred

min
y∈SGT

‖x− y‖2
2 (5)

The Pred→GT error calculates the CD from the predicted point cloud to the ground
truth, which represents the difference between the predicted point cloud and ground truth.

dCD(SGT , SPred) =
1

SGT
∑

x∈SGT

min
y∈SPred

‖x− y‖2
2 (6)

The GT→Pred error calculates the CD from the ground truth to the predicted point
cloud, which represents the extent to which the predicted point cloud covers the real point
cloud. The error of the complete point cloud is caused by the change in the original point
cloud and the prediction error of the missing point cloud. Because only the missing part
of the point cloud is output, the original part of the shape is not changed. To ensure that
the evaluation is fair, the Pred→GT and GT→Pred errors of the missing point cloud are
compared. When the two errors are smaller, the complete point cloud generated by the
model and the ground real point cloud are more similar, and the model performs better.

3.3. Experimental Results

After the data were generated, the proposed completion network was verified on the
ShapeNet-based dataset. Figure 6 shows part of the results of the shape completion. For
each point cloud model, the first column shows the input point cloud model, the second
column shows the result output of the completed network, and the third column shows
the ground truth. The high-quality point cloud predicted by the PP-Net matches well with
part of the input.

Figure 6. Visualization of partial point cloud completion results. “Input” represents the input incom-
plete point cloud, “PP_Net” represents the completion result of the network, and “GT” represents
the ground truth.
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Table 1 shows the average value of the 13-category point cloud completion accuracy
of some classic point cloud completion methods (details are in Section 3.4). In the table,
the Pred→GT error (left side) represents the difference between the predicted point cloud
and ground truth, and the GT→Pred error (right side) represents the extent to which
the predicted point cloud covers the ground truth. It can be seen that the PP-Net has
advantages in both errors, indicating that the proposed method is effective.

Table 1. Comparison of average errors of different methods.

Method Pred→GT/GT→Pred

L-GAN 5.388/2.679
PCN 4.276/2.724

PF-Net 2.469/2.168
PP-Net 2.455/2.166

The PP-Net can encode the multi-directional projection of an incomplete point cloud
as a 1792-dimensional feature, which represents the global feature of the 3D shape and
multi-directional boundary feature. To verify its robustness for point cloud completion
with different degrees of missing areas, the network parameters were adjusted to train it
to repair point clouds with missing degrees of 25%, 50%, and 75%. Figure 7 and Table 2
show the performance of the network in the test set. Figure 7 shows that, even in the case
of a large missing area, the network can still fully identify and repair the outline of the
overall point cloud. Table 2 show that, for predicted point clouds generated with different
degrees of missing areas, the error between the predicted point cloud and ground truth
is unchanged, which proves the robustness of the proposed network to varying degrees
of missing information. To further prove the robustness of the network, the network was
trained to complete missing point clouds at multiple locations. The results are shown in
Figure 8. The network can still correctly predict the missing point cloud, while ensuring
that the error is unchanged.

Figure 7. Examples of repairing results when the input has different extents of incomplete data. (1),
(2), and (3) lose 25%, 50%, and 75% points of the original point cloud, respectively. Blue represents
the prediction. Gray denotes the undamaged point cloud.

Table 2. Pred→GT/GT→Pred error of the missing point cloud obtained using the PP-Net. The
incomplete point cloud loses 25%, 50%, and 75%, respectively, compared to the original point cloud.

Missing Ratio 25% 50% 75%

Airplane 0.973/0.951 0.962/0.968 0.996/0.989
Guitar 0.459/0.477 0.452/0.486 0.473/0.495
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Figure 8. Examples of repairing results with missing point clouds at multiple locations. (1–3) Blue
represents the prediction. Gray denotes the undamaged point cloud.

3.4. Comparison with Other Methods

To verify the advanced nature of the proposed method, in this study, three existing
strong baseline point cloud completion methods were selected for comparison with the
PP-Net. These three methods are the same as those in the PP-Net. The network was trained
based on an encoding–decoding structure. All methods were trained and tested using the
same dataset for a quantitative comparative analysis.

L-GAN [37]: L-GAN is the first point cloud completion method based on deep learning,
which also uses an encoder–decoder structure, specifically, a PointNet-based encoder and
simple fully connected decoder in the decoding module.

PCN [39]: This is the most well-known method for point cloud completion. It provides
good results, and is one of the best performing methods for point cloud completion. Similar
to the PP-Net, PCN uses an FBD to output the final result.

PF-Net [36]: PF-Net employs a CMLP based on PointNet, which concatenates the
features extracted by MLP to obtain the feature vector. The encoder of the PP-Net is
inspired by the CMLP. It proposes a three-stage point cloud completion method from rough
to fine in the decoding module.

The results are presented in Table 3. Comparing the results of 13 different categories
of different objects of point cloud completion, the proposed method (PP-Net) outperforms
the existing methods in 6 of the 13 categories for the Pred→GT and GT→Pred errors,
namely, airplane, car, laptop, motorbike, pistol, and skateboard. One of the Pred→GT and
GT→Pred errors for PP-Net is better than those for the existing methods in four categories:
cap, bag, table, and lamp. There are also three types of completion results that are not
dominant, namely, chair, guitar, and mug. It can be found that the completion result
is mainly affected by the following three factors: (1) whether object is symmetrical, (2)
whether there are subtle fine structures, and (3) whether there is occlusion. The PP-Net
projects the point cloud in various directions; for symmetrical objects, the missing structure
can be inferred from the projection. Objects, such as airplanes, cars, laptops, motorbikes,
pistols, and skateboards, are symmetrical in at least one direction, meaning good results
can be obtained. The shape of a guitar with a sound hole is not necessarily symmetrical,
thus affecting the completion result. The decoder of the PP-Net is based on a folding
decoder. It is difficult to deform the grid into subtle, fine structures; because such structures
exist in bag, table, chair, and mug, the completion is affected. The disadvantage of the
multi-view-based method is that information loss is inevitable when projecting complex
structures. Most lamps are equipped with lampshades. During projection, the structural
information of the lamp cannot be extracted, thus affecting the completion result. However,
in general, the PP-Net achieved better results in some categories, while demonstrating
advantages in the average error of all categories.
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Table 3. Point cloud completion results of missing areas. The training data comprise 13 different
types of objects. The numbers displayed from left to right are Pred→GT/GT→Pred error, which are
all multiplied by 1000. The last line represents the overall average error.

Category L-GAN [37] PCN [39] PF-Net [36] PP-Net

Airplane 3.342/1.205 4.936/1.278 1.121/1.076 1.091/1.072
Bag 5.642/5.478 3.124/4.484 3.957/3.867 4.414/3.466
Cap 8.935/4.628 7.159/4.365 5.295/4.812 6.898/4.237
Car 4.653/2.634 2.673/2.245 2.495/1.840 2.238/1.812

Chair 7.246/2.372 3.835/2.317 2.093/1.955 2.232/2.046
Guitar 0.895/0.565 1.395/0.665 0.473/0.458 0.484/0.551
Lamp 8.534/3.715 10.37/7.256 5.237/3.611 4.222/3.799

Laptop 7.325/1.538 3.105/1.346 1.242/1.067 1.134/1.063
Motorbike 4.824/2.172 4.975/1.984 2.253/1.898 1.897/1.865

Mug 6.274/4.825 3.574/3.620 3.067/3.175 3.078/3.763
Pistol 4.075/1.538 4.739/1.479 1.268/1.067 1.046/1.051

Skateboard 5.736/1.586 3.069/1.784 1.131/1.335 1.043/1.232
Table 2.567/2.578 2.638/2.589 2.376/2.025 2.073/2.211
Mean 5.388/2.679 4.276/2.724 2.469/2.168 2.455/2.166

In Figure 9, the output point cloud generated by the abovementioned methods is
visualized, and all were from the test set. Compared with other methods, the PP-Net
prediction shows a clear boundary, with a more complete recovery level and finer profile.
In (1), (5), and (9), the outputs of the other methods are blurred in the fine profile. In (3)
and (8), the outputs of the other methods fail to generate a reasonable shape. In (6), (7), and
(8), there is a certain deviation in the outline of the other methods. We also take advantage
of PF-Net. Only the missing parts are output, and the hollows and backrests are properly
filled in (2) and (4). To summarize, the proposed approach focuses more on boundaries
and produces finer profiles.

Figure 9. Comparison of point cloud completion results of other methods and those of the proposed
network.



Remote Sens. 2021, 13, 4917 14 of 18

4. Discussion

This section discusses three sets of comparative experiments designed to analyze
some of the design of the network structure: (1) comparison between using and not using
boundary extraction, (2) comparison of grid point folding and projection folding, and (3)
comparison of using joint loss and only using CD loss between two point clouds.

4.1. Boundary Extraction Analysis

In the projection boundary extraction module, a new boundary extraction algorithm
is proposed to extract the boundary points that can reduce the computational cost, while
retaining the boundary information of the point cloud, and make the point cloud focus
on the structural features. To prove that the proposed method is effective, the boundary
extraction module was removed and the projection was directly input into the encoder. The
generated result was then compared with the boundary extraction result. The results are
shown in Figure 10. It can be seen that the points in the upper half of the red box are dense;
these points represent the borders of the chair. As shown in Figure 3d, the borders are more
likely to overlap during the projection. The uneven distribution of points when extracting
features leads to an uneven distribution of points when generating results. In the lower
part of the red frame, a part of the chair legs was not generated. Through comparison, it can
be concluded that boundary extraction makes the network focus on the boundary features,
while eliminating the influence of overlap. A quantitative comparative experiment was
performed on chairs, and the results are shown in Table 4. Here, the boundary extraction
method has significantly optimized the error of the results, which proves the effectiveness
of boundary extraction.

Figure 10. Comparison experiment of boundary extraction methods.

Table 4. Pred→GT and GT→Pred error obtained via boundary and projection as encoder input.

Method Boundary Projection

Pred→GT/GT→Pred errors 2.014/1.755 2.347/2.228

4.2. Plane Folding Analysis

Both folding and PCN adopt a strategy of forcing the concatenation of 2D point
grid features. By visualizing the experimental results, it was found that the edge of the
generated point cloud geometry was extremely smooth when using these methods. In fact,
the original idea of the PP-Net is to use a point cloud projection for folding. Quantitative
comparison experiments were performed on chairs; one of which was folded with grid
points, and the other was folded with projection. The results are listed in Table 5. Notably,
the GT→Pred error using grid point folding is smaller, implying that the completion point
cloud covers the ground truth to a higher degree, because of the grid points being folded
from the entire plane and the coverage being wider. The Pred→GT error using projection
folding is smaller, and represents the difference between the predicted point cloud and
real point cloud. Because the projection records the profile information of the point cloud,
it can generate a predicted point cloud closer to the real point cloud. Although analyzed
from a quantitative perspective, the results generated by the two are almost the same in
sum, except for that from the analysis of the visualization effect; the results are shown in
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Figure 11. Compared with the projection, the distribution of the point cloud generated
based on 2D grid point folding is uniform in the red box. The experimental results show
that concatenating the features of a 2D point grid can improve the quality of the completed
point cloud.

Table 5. Pred→GT and GT→Pred error obtained via grid point and projection as decoder input.

Method Grid Point Projection

Pred→GT/GT→Pred errors 2.014/1.755 1.974/1.804

Figure 11. Comparison experiment of plane folding analysis.

4.3. Loss Function Analysis

The PP-Net uses a joint loss function that combines multi-directional projection dis-
tance loss and adversarial loss to optimize network parameters, making the profile of the
point cloud finer and closer to the ground truth. To prove that the method is effective,
the conventional CD loss function was used between two point clouds for comparison;
the results are shown in Figure 12. It can be seen that, without the constraints of multi-
directional projection distance loss and adversarial loss, the edge of the point cloud in the
red box is blurred. Quantitative comparative experiments were performed on chairs; one of
which used joint loss, and the other used conventional loss. The results are listed in Table
6. It can be seen that the joint loss mainly optimizes Pred→GT error, which represents
the difference between the predicted point cloud and ground truth. Because the joint
loss includes multi-directional projection loss and adversarial loss, the multi-directional
projection loss makes the profile of the predicted point cloud closer to the true value, and
the adversarial loss makes the predicted point cloud more realistic, both of which optimize
the predicted point cloud, thus reducing the Pred→ GT error.

Figure 12. Comparison experiment of loss function.

Table 6. Pred→GT error and GT→Pred error obtained via joint loss and CD loss as loss function.

Method Joint Loss CD Loss

Pred→GT error/GT→Pred error 2.014/1.755 2.296/1.763

5. Conclusions

This study proposes a new network, PP-Net, to accomplish the task of point cloud
shape completion. It directly processes the raw input point cloud with a certain noise
without any voxelization or structural assumption. The PP-Net uses a multi-view-based
method to directly generate fine point clouds through projections in various directions
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of the point cloud. The method based on multi-view projection combines global features
and multi-directional boundary features to input into the encoder. The MRE of the PP-Net
can extract low-, medium-, and high-level features. For the decoder, the PP-Net uses a
folding operation to make the distribution of the generated point cloud more uniform.
Further, the combination of multi-directional projection distance loss and adversarial loss
is used to guide the continuous optimization of the network; finally, a more realistic point
cloud with fine profiles is obtained. The experimental results showed that the PP-Net
achieved good results and is robust to the lack of different positions and different degrees of
incompleteness. The good effect of PP-Net in many categories shows its wide applicability
in the field of remote sensing, such as the repair and completion of photogrammetric
models in urban basic information mapping and the optimization of 3D shapes in the
construction of smart city databases.

However, the completion network is occasionally unable to recover these subtle fine
structures. Potential reasons for this are that these structures have small surface areas; this
makes the feature extraction more difficult for the encoder, and makes it difficult for the
decoder to deform a 2D grid into subtle fine structures. Future work will need to consider
methods for improving the feature extraction of these fine structures by combining their
local geometric features.
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