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Abstract: The heterogeneity of urban landscape in the vertical direction should not be neglected in ur-
ban ecology research, which requires urban land cover product transformation from two-dimensions
to three-dimensions using light detection and ranging system (LiDAR) point clouds. Previous
studies have demonstrated that the performance of two-dimensional land cover classification can
be improved by fusing optical imagery and LiDAR data using several strategies. However, few
studies have focused on the fusion of LiDAR point clouds and optical imagery for three-dimensional
land cover classification, especially using a deep learning framework. In this study, we proposed a
novel prior-level fusion strategy and compared it with the no-fusion strategy (baseline) and three
other commonly used fusion strategies (point-level, feature-level, and decision-level). The proposed
prior-level fusion strategy uses two-dimensional land cover derived from optical imagery as the prior
knowledge for three-dimensional classification. Then, a LiDAR point cloud is linked to the prior in-
formation using the nearest neighbor method and classified by a deep neural network. Our proposed
prior-fusion strategy has higher overall accuracy (82.47%) on data from the International Society for
Photogrammetry and Remote Sensing, compared with the baseline (74.62%), point-level (79.86%),
feature-level (76.22%), and decision-level (81.12%). The improved accuracy reflects two features:
(1) fusing optical imagery to LiDAR point clouds improves the performance of three-dimensional
urban land cover classification, and (2) the proposed prior-level strategy directly uses semantic infor-
mation provided by the two-dimensional land cover classification rather than the original spectral
information of optical imagery. Furthermore, the proposed prior-level fusion strategy provides a
series that fills the gap between two- and three-dimensional land cover classification.

Keywords: three-dimensional urban land cover; LiDAR classification; multi-modal data fusion;
deep learning

1. Introduction

Sustainable development of the urban environment is related to human well-being,
and monitoring and managing the urban environment have long been a research hotspot
wherein two-dimensional land cover products have played an important role [1–3]. Geo-
objects in the urban environment are diverse and have unique three-dimensional structures,
such as a building with a roof and façade, or a tree with a height and diameter. While these
three-dimensional structures cannot be derived from current two-dimensional land cover
products, they should not be neglected in the study of the urban environment, including
urban form analysis [4], local climate zone [5], and urban woody biomass estimation [6].
Thus, the urban land cover should proceed from two-dimensional to three-dimensional
analysis, where the type of land cover is indexed by point cloud instead of pixels in the
three-dimensional land cover (Figure 1).
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Earth’s surface and has become the most important instrument for acquiring 
three-dimensional geospatial data. A LiDAR point cloud is the optimal data source for 
three-dimensional land cover classification and storage. Support vector machines, 
random forest, and other supervised learning methods are often used for point cloud 
classification [7–9]. These supervised classification methods require features that can 
express the characteristics of the point and its neighborhood; these features are vital to 
the performance of the classification. Commonly used features include histogram and 
covariance features. Histogram features, such as the fast point feature histogram [10], 
accumulate information about the spatial interconnection between a point and its 
neighbors into a histogram representation [11,12]. Covariance features, including line, 
plane, and volume attributes, are calculated from the covariance matrix of all points in 
the point’s neighborhood [13,14]. Although this manual-constructed feature is useful for 
land cover classification, it cannot produce three-dimensional land cover classification 
with sufficient quality owing to the complexity and diversity of actual geo-objects. 

Deep neural networks (DNNs) learn the features of objects in “end-to-end” ways, 
and as such can achieve high performance in many computer vision and remote sensing 
classification tasks. In particular, three-dimensional DNNs, such as PointNet [15], 
PointCNN [16], and SSCNs [17] have overcome the difficulty caused by the sparseness 
and disorder of the point cloud for learning features. With these developments, deep 
learning has achieved rapid development in point cloud classification and has been used 
in the processing of outdoor LiDAR data [18]. For example, Yousefhussien et al. used 
multi-scale PointNet to improve the accuracy of urban LiDAR point cloud classification 
[19]. Zhang et al. used smoothing error enhanced data to solve the overfitting of 
PointCNN in urban LiDAR point cloud classification [20]. 

Although three-dimensional urban land cover is indexed by point clouds, the data 
used for this task are not only the LiDAR point clouds; optical images can also provide 
supplementary information. Numerous studies have demonstrated that fusing optical 
imagery and LiDAR point clouds can improve the performance of two-dimensional land 
cover classification [21,22]. For example, Singh et al. integrated structural and intensity 
surface models extracted from LiDAR data with Landsat Thematic Mapper (TM) imagery 
to derive large-area urban land cover [23]; Paisitkriangkrai et al. trained a 
multi-resolution convolution neural network (CNN) for combined data that would stack 
orthophotos, a digital surface model (DSM) from LiDAR, and a normalized DSM [24]; 

Figure 1. Schematic diagram of two-dimensional (2D) and three-dimensional (3D) land cover.

The point cloud for indexing three-dimensional land cover can be provided by a light
detection and ranging system (LiDAR), which uses a laser beam to measure the Earth’s
surface and has become the most important instrument for acquiring three-dimensional
geospatial data. A LiDAR point cloud is the optimal data source for three-dimensional
land cover classification and storage. Support vector machines, random forest, and other
supervised learning methods are often used for point cloud classification [7–9]. These
supervised classification methods require features that can express the characteristics of the
point and its neighborhood; these features are vital to the performance of the classification.
Commonly used features include histogram and covariance features. Histogram features,
such as the fast point feature histogram [10], accumulate information about the spatial
interconnection between a point and its neighbors into a histogram representation [11,12].
Covariance features, including line, plane, and volume attributes, are calculated from
the covariance matrix of all points in the point’s neighborhood [13,14]. Although this
manual-constructed feature is useful for land cover classification, it cannot produce three-
dimensional land cover classification with sufficient quality owing to the complexity and
diversity of actual geo-objects.

Deep neural networks (DNNs) learn the features of objects in “end-to-end” ways, and
as such can achieve high performance in many computer vision and remote sensing classifi-
cation tasks. In particular, three-dimensional DNNs, such as PointNet [15], PointCNN [16],
and SSCNs [17] have overcome the difficulty caused by the sparseness and disorder of the
point cloud for learning features. With these developments, deep learning has achieved
rapid development in point cloud classification and has been used in the processing of
outdoor LiDAR data [18]. For example, Yousefhussien et al. used multi-scale PointNet to
improve the accuracy of urban LiDAR point cloud classification [19]. Zhang et al. used
smoothing error enhanced data to solve the overfitting of PointCNN in urban LiDAR point
cloud classification [20].

Although three-dimensional urban land cover is indexed by point clouds, the data
used for this task are not only the LiDAR point clouds; optical images can also provide
supplementary information. Numerous studies have demonstrated that fusing optical
imagery and LiDAR point clouds can improve the performance of two-dimensional land
cover classification [21,22]. For example, Singh et al. integrated structural and intensity
surface models extracted from LiDAR data with Landsat Thematic Mapper (TM) imagery
to derive large-area urban land cover [23]; Paisitkriangkrai et al. trained a multi-resolution
convolution neural network (CNN) for combined data that would stack orthophotos, a
digital surface model (DSM) from LiDAR, and a normalized DSM [24]; Audebert et al.
compared early and later fusion strategies in multimodal deep networks for multispectral
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and composite images built on DSM, normalized DSM, and the Normalized Difference
Vegetation Index (NDVI) [25]; Rasti et al. fused hyperspectral information with spatial
and elevation information extracted from hyperspectral imagery and rasterized LiDAR
features using orthogonal total variation component analysis [26]. In these studies, LiDAR
represents auxiliary data for two-dimensional urban land cover classification, where optical
imagery is the primary data. Thus, LiDAR is usually rasterized to DSM [27,28] and
other structural features including height difference and deviation angle [29]. Unlike in
two-dimensional land cover classification, LiDAR point clouds play a key role in three-
dimensional land cover classification, where the space occupied by geo-objects is sparse. In
this case, optical imagery represents the auxiliary data and its spectral information is often
simply interpolated as the attributes of the LiDAR point cloud, also known as point-level
fusion [19].

Apart from the point-level fusion strategy, feature-level and decision-level fusion [30]
can also be adapted to three-dimensional land cover classification. However, they rarely
receive attention, especially under a deep learning framework. In contrast, deep learning
models require sufficient training data or pre-trained models. There are fewer training
data available in large-scale outdoor LiDAR point clouds, while several are available
in optical imagery, such as International Society for Photogrammetry and Remote Sens-
ing (ISPRS) two-dimensional semantic labeling dataset, WHU building dataset [31], and
DeepGlobal [32].

Thus, to make full use of the two-dimensional neural network pre-training model
and comprehensively compare different fusion strategies in three-dimensional land cover
classification, we proposed a prior-level fusion of LiDAR point cloud and optical imagery
for three-dimensional land cover classification under a deep learning framework. We then
compared our proposed method with the no-fusion strategy (baseline) and three other
fusion strategies (point-level, feature-level, and decision-level). The proposed prior-level
fusion strategy assumes that there is a certain relationship between two-dimensional and
three-dimensional land covers, that is, two-dimensional land cover can provide a prior
knowledge for the three-dimensional land cover classification. For example, vegetation in
the two-dimensional classification may be shrubs or trees in the three-dimensional classi-
fication, and the façade is under the building edge. The proposed prior-level strategy is
based on a widely used DNN, whereby optical imagery is classified by a fully convolutional
network and its result, namely two-dimensional land cover prior knowledge, is assigned to
the LiDAR point cloud. Then, the LiDAR point cloud assigned with the prior knowledge is
classified by a three-dimensional deep learning network to obtain the three-dimensional
urban land cover classification. Thus, our proposed prior-level fusion strategy can fill the
gap between two- and three-dimensional land cover through a series form.

In the following, Section 2 provides a comprehensive description of the proposed
strategy, including two kinds of DNNs and three other fusion strategies. The experimental
data and results are given in Section 3 and discussed in Section 4. The conclusions and
proposed future work are given in Section 5.

2. Methods

The proposed prior-level fusion of LiDAR point clouds and optical imagery for three-
dimensional urban land cover classification includes three main parts (Figure 2).

(1) Obtain two-dimensional land cover, namely prior knowledge, from the optical
image (see Section 2.1). Here, optical imagery is classified by a deep convolutional neural
network (DCNN), and the result of DCNN is the probability belonging to each class. The
probability is considered as prior to the subsequent three-dimensional classification. The
DCNN used in this study was SegNet [33].

(2) Assign the prior knowledge to the LiDAR point cloud (see Section 2.2). The prior
derived from the optical imagery is two-dimensional; however, the LiDAR point cloud is
three-dimensional. These can be linked through their coordinates. We use (x, y) of the
LiDAR point to search for its nearest pixel in the optical image to obtain a prior.



Remote Sens. 2021, 13, 4928 4 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18 
 

 

three-dimensional. These can be linked through their coordinates. We use (𝑥, 𝑦) of the 
LiDAR point to search for its nearest pixel in the optical image to obtain a prior. 

(3) Classify the LiDAR point cloud that has been assigned the prior knowledge to 
produce the three-dimensional urban land cover by three-dimensional DNN (see Section 
2.3). The LiDAR point cloud is sparse and irregular, which renders traditional 
convolution unusable. PointNet++ represents pioneering work on point clouds to 
overcome this problem [34] and was used to classify urban LiDAR point clouds in this 
study where the hyper-parameter of PointNet++ was redesigned. 

3D DNN

2D DCNN

2D land cover

3D land coverLiDAR point cloud

Optical imagery

 
Figure 2. Framework of the proposed prior-level fusion for three-dimensional (3D) land cover 
classification. In this study, the two-dimensional (2D) deep convolutional neural network (DCNN) 
was SegNet [33] and the 3D deep neural network (DNN) was PointNet++ [34]. 

2.1. Obtaining Prior Knowledge from Optical Image Using Deep Convolutional Neural Network 
(DCNN) 

Obtaining prior knowledge corresponds to optical image semantic segmentation, 
which gives every pixel a classification vector and can be accomplished by using fully 
convolutional networks (FCNs), a popular DCNN. There are many FCNs, such as UNet 
[35], SegNet [33], and PSPNet [36]. Among these, SegNet exhibits a good balance between 
operating efficiency, required memory, and classification accuracy, and has high 
efficiency in space and time utilization [33]. Thus, we selected SegNet as the base model 
for optical imagery semantic segmentation. 

SegNet consists of a trainable encoding network and a corresponding decoding 
network, with a pixel-level Softmax classifier after the decoding network. The encoding 
network is the convolutional neural network VGG-16 [37] without a fully connected 
network, which can extract encoding features. The encoding network contains five 
groups of encoders. Each group uses a convolutional layer, a batch normalization layer, a 
rectified linear unit (ReLU) activation layer, and a max-pooling layer to extract features 
and expand their receptive field. The output of the encoding network is 1/32 of the 
original image. The parameters in the encoding network can be initialized by a VGG-16 
pre-trained model, which is convenient for learning an improved classifier on the remote 
sensing data. 

Unlike the encoding network, the decoding network up-samples low resolution 
features (1/32 of the original image) through the up-sampling layer, convolutional layer, 
batch normalization layer, and ReLU activation layer to obtain a feature image that is of 
the same size as the original image. The up-sampling layer uses indices of corresponding 
max-pooling to obtain sparse features with higher resolution, and the sparse features are 

Figure 2. Framework of the proposed prior-level fusion for three-dimensional (3D) land cover classification. In this study,
the two-dimensional (2D) deep convolutional neural network (DCNN) was SegNet [33] and the 3D deep neural network
(DNN) was PointNet++ [34].

(3) Classify the LiDAR point cloud that has been assigned the prior knowledge to pro-
duce the three-dimensional urban land cover by three-dimensional DNN (see Section 2.3).
The LiDAR point cloud is sparse and irregular, which renders traditional convolution
unusable. PointNet++ represents pioneering work on point clouds to overcome this prob-
lem [34] and was used to classify urban LiDAR point clouds in this study where the
hyper-parameter of PointNet++ was redesigned.

2.1. Obtaining Prior Knowledge from Optical Image Using Deep Convolutional Neural
Network (DCNN)

Obtaining prior knowledge corresponds to optical image semantic segmentation,
which gives every pixel a classification vector and can be accomplished by using fully
convolutional networks (FCNs), a popular DCNN. There are many FCNs, such as UNet [35],
SegNet [33], and PSPNet [36]. Among these, SegNet exhibits a good balance between
operating efficiency, required memory, and classification accuracy, and has high efficiency
in space and time utilization [33]. Thus, we selected SegNet as the base model for optical
imagery semantic segmentation.

SegNet consists of a trainable encoding network and a corresponding decoding net-
work, with a pixel-level Softmax classifier after the decoding network. The encoding
network is the convolutional neural network VGG-16 [37] without a fully connected net-
work, which can extract encoding features. The encoding network contains five groups of
encoders. Each group uses a convolutional layer, a batch normalization layer, a rectified
linear unit (ReLU) activation layer, and a max-pooling layer to extract features and expand
their receptive field. The output of the encoding network is 1/32 of the original image. The
parameters in the encoding network can be initialized by a VGG-16 pre-trained model,
which is convenient for learning an improved classifier on the remote sensing data.

Unlike the encoding network, the decoding network up-samples low resolution
features (1/32 of the original image) through the up-sampling layer, convolutional layer,
batch normalization layer, and ReLU activation layer to obtain a feature image that is of
the same size as the original image. The up-sampling layer uses indices of corresponding
max-pooling to obtain sparse features with higher resolution, and the sparse features are
densified through a convolution layer, a batch normalization layer, and a ReLU activation
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layer. The featured image with the same size as the original image is classified by the
pixel-level Softmax classifier to obtain the needed prior for each pixel.

2.2. Assigning Prior Knowledge to the Light Detection and Ranging (LiDAR) Point Cloud

The prior knowledge obtained from the optical imagery are raster data that is indexed
by pixel (r, c), where r is the row and c is the column of pixel relative to the upper left
corner of the raster. Each pixel contains classification probability vectors p.

p = (p1, p2 . . . , pk) (1)

where k indicates the k type of two-dimensional land cover.
We can use the x and y in the coordinates (x, y, z) of a LiDAR point to calculate the

corresponding row and column (r′, c′) in the raster data as follows:

r′ =
bx− Xc

gsd
, c′ =

by−Yc
gsd

(2)

where (X, Y) are the coordinates of the upper left corner of the raster, and gsd is the ground
sample distance, namely, the spatial resolution of the raster

The prior value is assigned to the LiDAR point cloud according to its corresponding
calculated (r′, c′) value. Then, a point in the LiDAR point cloud can be represented
by (x, y, z, p1, p2, . . . , pk) instead of (x, y, z), which establishes a link between the two-
dimensional and three-dimensional land cover classification.

2.3. Classification of LiDAR Point Cloud Assigned Prior to Three-Dimensional Deep Neural
Network (DNN)

Unlike optical imagery, whose regular grid makes it convenient for convolution
and automatic feature extraction in the end-to-end framework, a LiDAR point cloud is
disordered and irregular, which make it difficult to design DNNs for learning point cloud
features. In PointNet, an MLP-Max operation is designed to overcome the difficulty, where
a multi-layer perceptron (MLP) is operated on (x, y, z, p1, p2, . . . , pk) to extract a feature for
every point, and then maximum pooling is used to summarize the extracted features of all
points within the spherical neighborhood to a single vector [15].

PointNet++ extends PointNet to extract hierarchical point features and forms an
encoder-decoder structure for point cloud semantic segmentation [34]. PointNet++ includes
sampling and grouping, feature extraction, up-sample, and feature set propagation layers.
The sampling and grouping layer use the farthest point sampling method to obtain abstract
points and their spherical neighborhood. The feature extraction layer uses PointNet to
extract abstract features for abstract points. The sampling and grouping layer and feature
extraction layer are repeated to form an encoder network. For point cloud semantic
segmentation, a decoder network is needed to up-sample the abstract points into their
original point cloud size. The up-sample layer is accomplished by the distance-based
interpolation and level skip link, and the features of the up-sample layer are readjusted
through a feature set propagation layer (i.e., a PointNet). Finally, the Softmax classifier is
used to derive the three-dimensional classification result.

PointNet++ was originally designed for small-scale indoor point clouds and cannot
be directly used for urban LiDAR point clouds. Therefore, we redesigned the hyper-
parameters of every layer in PointNet++ (Table 1).

2.4. Fusion Strategies on Three Other Different Levels

To evaluate our proposed prior-level fusion strategy, we compare it with three other
commonly used fusion strategies including point-level, feature-level, and decision-level
fusion strategies [30]. We accomplished all the fusion strategies under the DNN framework
by using SegNet and PointNet++ to ensure the fairness of the comparison as much as
possible (Figure 3).
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Table 1. Redesigned hyper-parameters in PointNet++ for urban light detection and ranging (LiDAR)
point clouds.

Layer Parameter

Sampling and grouping N = 1024, r = 2, K = 32
Feature extraction [32, 32, 64]

Sampling and grouping N = 256, r = 4, K = 32
Feature extraction [64, 64, 128]

Sampling and grouping N = 64, r = 8, K = 32
Feature extraction [128, 128, 256]

Sampling and grouping N = 16, r = 16, K = 32
Feature extraction [256, 256, 512]

Feature set propagation [256, 256]
Feature set propagation [256, 256]
Feature set propagation [256, 128]
Feature set propagation [128, 128, 128]

Notes: N is the number of abstract points, r is the radius of the spherical neighborhood, K is the maximum number
of used points in a local region, and numbers in [·] represent multi-layer perceptron (MLP) in PointNet.
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Figure 3. Four fusion strategies for LiDAR point cloud and optical imagery for three-dimensional
(3D) urban land cover classification.

The point-level fusion strategy assigns multispectral information from optical imagery
to the points and then trains the classifier using three-dimensional DNN to classify the
point cloud with spectral information (point level in Figure 3). The feature-level fusion
strategy first concatenates the features extracted from the multispectral image by DCNN
and the features extracted from the LiDAR point cloud by three-dimensional DNN, and
then the concatenated features are fed to an MLP to derive the three-dimensional land
cover classification result (feature-level in Figure 3). Unlike point-level and feature-level
fusion, the decision-level fusion strategy directly classifies the optical imagery and LiDAR
point cloud to obtain two- and three-dimensional classification results, which are then
combined using a heuristic fusion rule (decision-level in Figure 3). The heuristic fusion
rule used in this study was to update the probability of a three-dimensional classification
results based on the two-dimensional classification results.

The updating procedure included two steps: (1) three-dimensional classification prob-
abilities are multiplied by two-dimensional classification probabilities according to land
cover type; for example, the probabilities of a façade and roof in three-dimensional land
cover are multiplied by the probability of a building in two-dimensional land cover, and
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the probabilities of a shrub and tree in three-dimensional land cover are multiplied by
the probability of vegetation in two-dimensional land cover; (2) then, multiplied proba-
bilities normalized to ensure that the sum of probabilities belonging to three-dimensional
land cover type is one. The final classification result of decision-level fusion strategies is
determined by the type whose probability is the maximum.

3. Experimental Data and Results
3.1. Experimental Data

The LiDAR point cloud and optical imagery used in this experiment were provided
by the International Society for Photogrammetry and Remote Sensing (ISPRS) and down-
loaded from https://www.isprs.org/education/benchmarks.aspx on 12 July 2019. The
LiDAR point cloud is an airborne LiDAR dataset that was collected by Leica Geosystems in
Vaihingen using the Leica ALS50 system with a 45◦ field of view. Its geographic coordinate
system is WGS84 and the projected coordinate system is UTM-32N. The average point
density is 8 pts/m2. The ISPRS working group labeled some parts of these data as training
and testing data to evaluate the three-dimensional land cover classification (Figure 4a,b).
The labeled categories are power line, low vegetation, impervious ground, car, fence, roof,
façade, shrub, and tree.
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Figure 4. Data used in this study. (a) LiDAR training data; (b) LiDAR testing data; (c,d) corresponding
optical multispectral imagery of LiDAR training and testing data.

The optical multispectral imagery provided by the ISPRS is ortho photographic images
comprising three bands: near-infrared, red, and green (IR-R-G; Figure 4c,d). The spatial
resolution of the optical multispectral image is 1 m. The projected coordinate system of the
orthophoto images is the same as the airborne LiDAR point cloud. Thus, registration of
LiDAR data and optical imagery was not needed in this experiment. The ISPRS working
group selected 16 blocks from Vaihingen’s ortho photographic images and manually

https://www.isprs.org/education/benchmarks.aspx
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labeled six categories including impervious surface, building, low vegetation, tree, car, and
background. The background includes water bodies and other objects.

To simplify the design of the rule of the decision-level fusion strategy, the categories
used for the point cloud were low vegetation, shrub, tree, impervious surface, façade, and
roof. The categories used for the optical imagery were impervious surface, building, low
vegetation, and tree.

3.2. Details of Experimental Setting

The optical imagery used in this experiment has three spectral bands. SegNet can
be directly used and its encoder network parameters were initialized using a pre-trained
VGG-16 model. We randomly selected 12 blocks of the optical image to fine-tune SegNet
and set aside four other blocks for evaluation. The input image block for SegNet was a
randomly cropped 256 × 256 image unit. For training SegNet, we set a batch size of 16,
and the parameter optimizer selected the Stochastic Gradient Descent (SGD) method. The
loss function used in SegNet was the weighted cross-entropy loss, calculated as:

loss
(
yp, yg

)
= w

[
yg
](
−yp

[
yg
]
+ log

(
∑

j
exp

(
yp[j]

)))
(3)

where yp is the predicted probability vector, yg is the ground truth, and w is the weight
vector for every class, which is calculated by dividing the class frequency by the median of
all class frequencies.

Although the three-dimensional geometry information (x, y, z) of the LiDAR point
cloud was the same for all four fusion strategies, we trained different PointNet++ mod-
els because the different strategies have different auxiliary information. First, baseline
trained the PointNet++ by only using three-dimensional geometry information. The
point-level fusion strategy trained PointNet++ using geometry and spectral information
[i.e., (x, y, z, IR, R, G)]. The prior-level fusion strategy trained PointNet++ using geometry
and prior information [i.e., (x, y, z, p1, p2, . . . , pk)]. The batch size of these models was set to
16, and the parameters were initialized using the Xavier initializer provided in TensorFlow.
The optimizer was the adaptive moment estimation method. The loss function was the
weighted cross-entropy loss (Equation (3)). The learning rate decreased by an exponential
decay. The input unit of PointNet++ was a point set that had 8192 points. Thus, we split the
LiDAR training data (Figure 4a) into 30× 30 m blocks and resampled them into 8192 points
for training PointNet++. When classifying the LiDAR testing data (Figure 4b), we also
down-sampled the original data using the same procedure for the training data to obtain
the classification result of down-sampled point cloud by using the trained PointNet++
model; we then classified every point of testing data to the type of its nearest point in the
down-sampled point cloud.

3.3. Classification of the Prior-Level Strategy with other Fusion Strategies

Figure 5 shows the ground truth and results of the four fusion strategies. All four
fusion strategies achieved acceptable performance. In particular, three dominant geo-
objects, namely tree, impervious surface, and roof, presented high accuracy (Table 2).
Figure 6 shows the error distribution for different fusion strategies. Compared with
the baseline, the red area in the other classification error distribution plots is smaller,
indicating that the four fusion strategies had fewer classification errors and improved
overall classification accuracy. The increase in overall classification accuracy was 5.24%
for the point-level, 1.60% for the feature-level, 6.50% for the decision-level, and 7.85% for
the prior-level (Table 2). The F1-scores of the decision-level and prior-level were >80%.
Among the fusion strategies, prior-level had the highest accuracy and lowest error (Table 2,
Figures 5 and 6).
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Table 2. Classification performance of the baseline and four fusion strategies.

Classification Performance Baseline Point-Level Feature-Level Decision-Level Prior-Level

Low vegetation
Precision 73.18 84.27 75.97 91.91 89.83

Recall 63.58 68.40 66.94 65.46 72.69
F1-score 68.04 75.51 71.17 76.46 80.36

Shrub
Precision 33.25 31.12 34.51 34.50 35.58

Recall 71.60 58.61 58.15 66.02 66.19
F1-score 45.42 40.66 43.31 45.32 46.28

Tree
Precision 77.37 83.02 75.38 85.21 85.45

Recall 74.68 80.21 81.70 80.67 80.74
F1-score 76.00 81.59 78.41 82.88 83.03

Impervious surface
Precision 80.59 86.61 81.64 84.23 88.38

Recall 79.99 91.99 83.42 95.99 94.74
F1-score 80.29 89.22 82.52 89.73 91.45

Roof
Precision 94.27 94.68 95.23 96.57 96.52

Recall 86.27 91.73 40.84 91.45 91.27
F1-score 90.10 93.18 90.25 93.94 93.82

Facade
Precision 49.04 41.31 85.76 42.73 44.08

Recall 67.69 53.69 65.31 71.88 70.90
F1-score 56.87 46.69 50.25 53.60 54.36

Weighted Average
Precision 76.73 81.45 77.51 83.70 84.39

Recall 74.62 79.86 76.22 81.12 82.47
F1-score 75.08 80.15 76.46 81.35 82.79
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4. Discussion

Studying the heterogeneity of urban landscapes is important for managing the ur-
ban environment, and requires a three-dimensional urban land cover product. Three-
dimensional LiDAR classification is a fundamental task for producing this three-dimensional
land cover product. Traditionally, LiDAR data always act as auxiliary data in two-
dimensional land cover classification where an optical image is the core data, to improve
accuracy. We fused optical images into LiDAR classification and found that the three-
dimensional accuracy could also be improved by the fusion (Table 2, Figure 5). Among the
different fusion strategies, our proposed prior-fusion approach had the highest accuracy.
The phenomenon was analyzed using the loss during the training process (see Section 4.1).
Moreover, we checked the error region in Figure 6 to identify the data bottleneck in the
three-dimensional land cover classification (see Section 4.2). Finally, we compared the
results with other methods to indicate the limitations of the approach and the scope (see
Section 4.3).

4.1. Loss Variation during Training

The loss used in this study was cross-entropy loss, which measures the difference
between two probability distributions (Equation (3)), indicating that the lower the loss,
the better the prediction of the model; loss variation is an important indication for the
DNN training process. During the training process, the loss was decreased by updating
the parameters of the DNN (Figures 7 and 8). Note that there was no overall loss in the
decision-level classification, which included the loss with the baseline and the loss with
the SegNet (Figure 8). When the training loss was stable, the largest loss occurred with
the feature-level, followed by the baseline, point-level, and prior-level. Moreover, the
prior-level offered the fastest convergence because it directly used the two-dimensional
land cover classification result, which contained semantic information. When the test
loss was stable, the largest loss occurred with the baseline, followed by the feature-level,
point-level, and prior-level, consistent with the overall accuracy of the classification in the
prediction results. These phenomena imply that, after embedding the information from the
optical imagery, the loss becomes smaller and reaches a stable state faster.

Of the two losses with the decision-level, irrespective of training or testing, the loss
with baseline was greater than the loss with SegNet (Figures 7 and 8), confirming that
it is reasonable to train different DNN for the optical imagery and LiDAR point cloud
separately, and that the prior-level fusion strategy can make use of the two-dimensional
neural network pre-training model in three-dimensional land cover classification when
the training data are insufficient. The training loss with the feature-level was greatest
because the MLP classifier in the feature-level only had two layers, and a dropout was
added, resulting in a weak learning capability.
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4.2. Detailed Analysis of the Error Region

Among all fusion strategies, the error region of the prior-level was smallest (Figure 6),
and the performance of the prior-level fusion strategy was highest (Table 2 and Figure 5).
Therefore, we selected eight typical regions that were misclassified by the prior-level fusion
strategy (Figure 9). Generally, the elevation of the misclassified regions varied abruptly
(Figure 10). For example, there were significant elevation differences between grassland
and adjoining impervious surface (i.e., region 1 in Figure 10), and between the bottom
of a building and the adjacent grassland (i.e., a narrow ditch in region 2 of Figure 10).
Grassland was misclassified as shrubs in region 4 of Figure 10, because the elevation
difference suddenly increased after the road bifurcated. Compared with regions with
gentle elevation change, the density of the point cloud in these areas was lower, and the
distribution of the point cloud was sparser. Thus, there were insufficient points to resolve
local features, likely leading to the misclassification.
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Errors also occurred when two geo-objects of the same type had large elevation
differences. For example, when high and low trees were mixed, the prior-level strategy
misclassified some of the smaller trees as shrubs (i.e., regions 3 and 5 in Figure 10). Some
shrubs were also misclassified as trees (i.e., region 6 in Figure 10). Similarly, when two
buildings were connected and the lower roof was near the ground level, the lower roof
was likely to be misclassified as ground (i.e., region 7 in Figure 10). These errors may be
significantly reduced by incorporating vertical information (i.e., tree trunks and building
façades), such that integration of multi-platform LiDAR, such as backpack LiDAR and
vehicle LiDAR, is necessary for three-dimensional urban land cover classification. Although
some errors existed in the classification results of the prior-level fusion strategy, the majority
situations were more accurate than the manually labeled results (i.e., region 8 in Figure 10).

4.3. Comparison with Other Methods

The purpose of this study was to explore the fusion strategy for LiDAR point clouds
and optical imagery for three-dimensional urban land cover classification. Therefore, we
used the basic PointNet++ and SegNet models. Apart from PointNet++, some machine
learning methods were also used for point cloud classification. To compare our prior-level
fusion strategy with these methods and determine the limitations of our method, we used
the prior-level fusion strategy to classify the ISPRS LiDAR point cloud into the nine original
categories and then compared it with other methods (Table 3).

Table 3. Comparison of fusion-level strategy results with other methods.

Classification Result
Non-Deep Learning Deep Learning

ISS_7 UM HM1 LUH RIT1 WhuY4 PointCNN A-XCRF Ours

Power line 54.4 46.1 69.8 59.6 37.5 42.5 61.5 63.0 27.5
Low vegetation 65.2 79.0 73.8 77.5 77.9 82.7 82.7 82.6 79.8

Impervious surface 85.0 89.1 91.5 91.1 91.5 91.4 91.8 91.9 91.9
Car 57.9 47.7 58.2 73.1 73.4 74.7 75.8 74.9 71.4

Fence 28.9 05.2 29.9 34.0 18.0 53.7 35.9 39.9 29.0
Roof 90.9 92.0 91.6 94.2 94.0 94.3 92.7 94.5 92.7

Façade - 52.7 54.7 56.3 49.3 53.1 57.8 59.3 53.8
Shrub 39.5 40.9 47.8 46.6 45.9 47.9 49.1 50.8 44.3
Tree 75.6 77.9 80.2 83.1 82.5 82.8 78.1 82.7 82.3

Average F1 55.3 59.0 66.4 68.4 63.3 69.2 69.5 71.1 63.6
Overall Accuracy 76.2 80.8 80.5 81.6 81.6 84.9 83.3 85.0 81.4

The methods in Table 3 are divided into non-deep learning and deep learning. ISS_7 [38]
first extracts the super-prime with the help of point cloud geometry and optical spectral
information, and then uses machine learning to classify the super-prime. UM [39] uses
the multiple attributes of the point cloud (intensity, echo number, etc.), texture features
(locally fitted surfaces), and morphological features (differential morphological profile
lines) to train a one-to-one class machine learning strategy classifier. HM_1 uses k-nearest
neighbors (KNN) to select domain points to extract features, and then uses a conditional
random field (CRF) to complete the context classification. LUH [40] uses high-order CRF
to complete the classification with the help of extracted super-primes. RIT_1 [19] extracts
the ground to obtain a normalized elevation and then uses PointNet to process the LiDAR
point cloud fused with optical imagery. WhuY4 [41] uses a multi-scale CNN to process
feature images obtained from LiDAR point clouds. The features used include normalized
elevation, intensity, normal vector, and local plane features. PointCNN is the baseline in the
A-XCR method [42], and its processing method is similar to that of the point-level fusion
strategy described in this paper. Based on PointCNN training, A-XCR introduces an error
smoothing process generated by CRF to avoid the over-fitting of PointCNN.

The deep learning methods were superior to the non-deep learning methods (Table 3),
and by normalizing the elevation of the LiDAR point cloud, extracting some features
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for deep learning can achieve higher accuracy. Furthermore, using an advanced neural
network architecture, such as PointCNN that uses a dilated convolution technique to obtain
multiple models and integrates these to get superior results, can also improve accuracy.
Thus, in the future, we plan to embed PointCNN or other more advanced three-dimensional
classification networks, such as KPConv [43], into the prior-level fusion strategy; such
embedding will be simple owing to the serial form of the proposed prior-level fusion
strategy (Figure 2).

5. Conclusions

In this study, a novel prior-level fusion strategy of LiDAR point clouds and optical
imagery for three-dimensional land cover classification was proposed and compared with
other fusion strategies, namely point-level, feature-level, and decision-level. The proposed
prior-level fusion strategy builds a link between two-dimensional and three-dimensional
land cover through the prior knowledge obtained from the optical imagery. The point-
level fusion strategy directly assigns multispectral information of the optical imagery
to the point cloud, and classifies the point cloud with multispectral information. The
feature-level fusion strategy concatenates the features extracted from the optical image
and the features from the LiDAR point cloud, and then the concatenated feature is used
to obtain classification results. The decision-level fusion strategy fuses the results of two-
dimensional land cover from optical imagery and three-dimensional land cover from a
LiDAR point cloud based on the heuristic rule. The experimental results using ISPRS data
show that the proposed prior-level fusion strategy delivers the best performance, which is
manifested mainly in the lowest losses in the training process and highest F1-score (82.79%)
in the classification results. The F1-score of point-level, feature-level, decision-level, and
prior-level were 80.15%, 76.46%, 81.35%, and 82.79%, respectively.

Through detailed analysis of the error distribution of the prior-level fusion strategy, we
found that some errors arose due to date problems, such as the airborne LiDAR point cloud
being very sparse at locations where elevation changed abruptly, as airborne LiDAR lacks
vertical information. If other platforms of LiDAR, such as backpack LiDAR and vehicle
LiDAR, were integrated with the airborne LiDAR, more reliable three-dimensional urban
land cover could be achieved, which would help urban ecology research. On the other
hand, since the pioneering work of PointNet++, a few three-dimensional deep learning
structures with better performance have emerged to encode the point cloud neighborhood
relationship. We anticipate that it will be necessary to adopt a more advanced neural
network structure in the prior-level fusion strategy to improve the performance of three-
dimensional land cover classification.
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