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Abstract: As Arctic warming continues, its impact on vegetation greenness is complex, variable
and inherently scale-dependent. Studies with multiple spatial resolution satellite observations, with
30 m resolution included, on tundra greenness have been implemented all over the North American
tundra. However, finer resolution studies on the greenness trends in the Russian tundra have only
been carried out at a limited local or regional scale and the spatial heterogeneity of the trend remains
unclear. Here, we analyzed the fine spatial resolution dataset Landsat archive from 1984 to 2018 over
the entire Russian tundra and produced pixel-by-pixel greenness trend maps with the support of
Google Earth Engine (GEE). The entire Russian tundra was divided into six geographical regions
based on World Wildlife Fund (WWF) ecoregions. A Theil–Sen regression (TSR) was used for the
trend identification and the changed pixels with a significance level p < 0.05 were retained in the final
results for a subsequent greening/browning trend analysis. Our results indicated that: (1) the number
of valid Landsat observations was spatially varied. The Western and Eastern European Tundras (WET
and EET) had denser observations than other regions, which enabled a trend analysis during the
whole study period from 1984 to 2018; (2) the most significant greening occurred in the Yamal-Gydan
tundra (WET), Bering tundra and Chukchi Peninsula tundra (CT) during 1984–2018. The EET had a
greening trend of 2.3% and 6.6% and the WET of 3.4% and 18% during 1984–1999 and 2000–2018,
respectively. The area of browning trend was relatively low when we first masked the surface water
bodies out before the trend analysis; and (3) the Landsat-based greenness trend was broadly similar
to the AVHRR-based trend over the entire region but AVHRR retrieved more browning areas due
to spectral mixing adjacent effects. Higher resolution images and field measurement studies are
strongly needed to understand the vegetation trend over the Russian tundra ecosystem.

Keywords: Russian tundra ecosystem; Landsat; GEE; AVHRR; vegetation greenness trend; NDVI;
Theil–Sen regression

1. Introduction

The Arctic is warming twice as fast as the global average [1]. Arctic warming has
impacts on the tundra ecosystem function because of its interactions with the vegetation
cover [2–4], wildlife [5,6] and human communities. Understanding the spatial distribution
of Arctic greening and browning trends is important to evaluate the Arctic vegetation re-
sponse to the changing climate or anthropogenic factors [7,8]. Satellite-derived vegetation
indices have been used to quantify these changes over high northern latitudes during the
past four decades [3,9–12] with coarse, moderate or high spatial resolution datasets. In-
creases in vegetation productivity have been completely observed by satellite observations
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over tundra ecosystems [13,14] and those changes have been linked to shrub expansion
and an accelerated annual growth at locations throughout the Arctic [3,15–17]. However,
the shrub expansion has been spatially uneven over the Arctic because of deer grazing [7,8].
Additionally, the appearance of highly productive herbaceous plant communities in the
basins of drained thermokarst lakes can also have a significant effect on the greening of
the tundra [18–20]. Thermokarst activities also play an important role in the Arctic green-
ing over ice-rich permafrost where an abrupt thaw has taken place [21,22]. The thawing
permafrost brings in soil fertility [18]; significant reserves of nutrients have been found in
frozen bogs, which then enter floodplains and drained lakes during thawing as a result
of increased biological productivity [23]. Ukraintseva et al. [24] also discovered that there
was an increase in the growth of willow bushes on outcrops of more saline marine rocks.

The normalized difference vegetation index (NDVI) has been the most commonly
used vegetation index to measure aboveground vegetation greenness and it highly cor-
relates with vegetation productivity. The long term (more than 20 years) public access
NDVI datasets have been produced from satellite-based sensors with different spatial and
temporal resolutions. The three most commonly used datasets are from: (1) the Advanced
Very-High-Resolution Radiometer (AVHRR; 1982–2013); (2) the Moderate Resolution Imag-
ing Spectroradiometer (MODIS; 2000–present); and (3) USGS Landsat (1972–present). Due
to the shorter observation period of MODIS, AVHRR and Landsat are the longest term
NDVI providers at an annual scale for time series analyses. For AVHRR, the Global Inven-
tory Modeling and Mapping Studies (GIMMS) NDVI developed at the NASA Goddard
Space Flight Center was found to be the best for vegetation monitoring [25,26]. The most
recent version of the GIMMS dataset is index-3rd generation. Although AVHRR is well-
suited for a circumpolar-scale trend detection, the coarse spatial resolution AVHRR NDVI
data (typically ~8 km) cannot meet the requirements for directly associating the sensor
signal with an ecological change in heterogeneous tundra landscapes [2,10] and further
limits the ability to conduct an attribution analysis on greenness trends, which include
permafrost thaw, wildfires and human disturbances [2]. Thus, the trend results retrieved by
AVHRR data are inconsistent with those of higher resolution datasets, i.e., MODIS, because
of data processing issues [27].

The finer resolution Landsat is a good complement to AVHRR to evaluate the long term
tundra greenness trends and identify the drivers of the changes. Both Landsat and AVHRR
have almost the same observation period and the higher resolution of Landsat observations
more closely matches the scale of field measurements and ecological changes than AVHRR
observations [2]. Although higher resolution data lead to the problem of an increased data
volume and high speed computing power, the cloud computing platform Google Earth
Engine can help to facilitate scientific discoveries by providing researchers with free access
to the Landsat archive. The Landsat satellites have been used for local [28,29] or even
regional evaluations of tundra greenness trends [10,11]. To the best of our knowledge, most
of these previous studies using the Landsat datasets focus on regional or continental scales
in the North American Arctic; the entire Russian tundra is still poorly quantified in the
English scientific literature.

The entire Russian tundra occupies more than half of the circumpolar tundra and
has more than half of the shrub and tussock-shrub dominated tundra over the circum-
arctic area [30]. Shrub vegetation has been considered to expand in numerous tundra
areas [3,31] and has the ability to mitigate greenhouse gas (GHG) emissions from thawing
permafrost [32]. Additionally, after decades of disturbances due to a variety of drivers
such as fires, thermokarst formation and coastal erosion, the Russian Arctic landscape has
not previously been described at a fine spatial and temporal scale. The prior greenness
trend studies on the Russian tundra with Landsat satellites mainly focused on local sites
in northwestern Siberian [15], the Beringian Arctic [33], the Arctic Lena Delta [29] and the
Yamal Peninsula [34,35]. There are no comprehensive studies on greenness trends over
the entire Russian tundra with the Landsat dataset although Berner et al. [2] extracted all
available summer Landsat data for 50,000 random sampling sites (where each site was 50 m
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in radius) in the Arctic and found that tundra greenness increased (greening) in ~37.3%
of the sampling sites and browning increased in ~4.7% of the sampling sites from 1985 to
2016. They did not separate these trends for the Russian Arctic and the spatial distribu-
tion of these trends remains unknown. Therefore, it is of importance to understand how
the Russian tundra is changing in space and time and how these changes have potential
impacts on landscape processes, which can help us to improve the projections of future
environmental change across the entire tundra [15].

In this study, we mapped the vegetation greenness trends for the entire Russian
tundra across a ~1.9 million km2 continent based on a time series analysis of all available
Landsat images from 1984 to 2018 with the support of GEE. In this way, we not only reveal
the potential of the Landsat archive for detecting vegetation trends across the Russian
tundra but we also provide the finest resolution spatially complete trend maps of the entire
Russian tundra to date. In order to understand the spatial variability of the observed
greening/browning trends, we compared the Landsat-based trends and the AVHRR-based
trends after separating the whole study area into six geographical regions. Our objectives
were: (1) to explore the potentialities of all available Landsat images for pixel-by-pixel
vegetation greenness trends across the Russian tundra; (2) to produce fine resolution
greenness trend maps from 1984 to 2018 and perform spatiotemporal analyses of the maps;
and (3) to compare these fine results with coarse resolution greenness maps and calculate
the discrepancies between them over the highly heterogeneous Russian tundra.

2. Materials and Methods
2.1. Study Geographical Regions

The entire study area contained polar desert and tundra zones. It was divided into six
large geographic regions; one polar desert and five tundras (Figure 1). Our geographic re-
gions mainly corresponded with the World Wildlife Fund (WWF) terrestrial ecoregions [36].
They differed only in the Novosibirskie Islands and Wrangel Island. These were originally
separated in the WWF ecoregions and named the Novosibirsk Islands Arctic Desert and
the Wrangel Island Arctic Desert; here, we included them both in one category as a polar
desert. Another difference between the WWF ecoregions and ours is that we combined
the Bering Tundra and the Chukchi Peninsula Tundra into one, labeled the Chukotka
Tundra, because of their closeness (see Table 1). This zoning strategy was convenient in
terms of a future comparison between the independent regional estimates found in the
Russian literature. The total study area was ~1.9 million km2 with the MST subregion
being the biggest geographical region (~0.6 million km2) and PD being the smallest region
(~0.1 million km2).
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Figure 1. Location of the study area: (a) situation of the Russian tundra; (b) geographical regions
of the tundra zone and the polar desert in Russia. Regions: EET: Eastern European Tundra; WET:
Western European Tundra; MST: Middle Siberian Tundra; PD: Polar Desert; EST: Eastern Siberian
Tundra; CT: Chukotka Tundra.



Remote Sens. 2021, 13, 4933 4 of 15

Table 1. Geographic regions of the tundra zone and the polar desert and their corresponding ecozones
in the WWF scheme.

Ecozone Geographical Zone Area (km2) 1

Bering Tundra
Chukotka Tundra (CT) 413,852.6Chukchi Peninsula Tundra

Northwest Siberian Coastal Tundra Eastern European Tundra (EET) 253,632
Northeast Siberian Coastal Tundra Eastern Siberian Tundra (EST) 222,635

Taimyr-Central Siberian Tundra Middle Siberian Tundra (MST) 593,717
Novosibirsk Islands Arctic Desert

Polar Desert (PD) 133,041.5Wrangel Island Arctic Desert
Arctic Desert

Yamal–Gydan Tundra Western European Tundra (WET) 308,689
1 Areas are calculated based on the projected coordinate system of the WGS 1984 EPSG Russia Polar Stereographic.

2.2. Data and Methods
2.2.1. Landsat Imagery Collection and Pre-Processing

Orthorectified top-of-atmosphere (TOA) reflectance data (L1T) Tier 1 from Landsat
4/5 TM, 7 ETM+ and 8 OLI sensors were used in this study. The TOA data rather than the
surface reflectance data were used because this was consistent with the existing studies on
continental arctic greenness trends [10,11]. Landsat images have a 30 m spatial resolution
and all the used images were acquired during the melt season (1 July to 30 August) from
1984 to 2018. Unlike other existing greenness trend studies in the arctic area [12,28], we
used all the available Landsat archive images during the melt season from 1984 to 2018
in the study area, including scenes with image contaminations due to clouds, ice/snow,
aerosols, shadows and ETM+ scan line corrector (SLC) errors. The use of contaminated
images could increase the temporal resolution of the observations. The number of Landsat
observations during 1984–2018 in the Russian Arctic is shown in Figures 2 and 3. We ob-
served that western Russia had denser observations during 1984–2018 (Figure 3a) because
of denser observations across this area during 1984–1999 compared with eastern Russia
(Figure 3b). After 2000, most areas of the western and eastern Russian Arctic had more than
60 observations during those 19 years, which indicated more than three observations each
year (Figure 3c). All of the Landsat data were acquired and processed with the help of GEE.
The SimpleCloudScore algorithm implemented in the GEE was used to evaluate the cloud
cover in the TOA reflectance images. This algorithm has been widely used for Landsat TOA
imagery cloud detection [37], in which a “simple cloud-like score” is calculated by the joint
use of brightness, temperature and a Normalized Difference Snow Index (NDSI) [38]. We
set the threshold score at 20 to exclude the high cloud cover images according to our visual
interpretation because high cloud cover could lead to a decreased number of available
ground control points and, therefore, the geolocation accuracy could decrease [10].

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

1 Areas are calculated based on the projected coordinate system of the WGS 1984 EPSG Russia 
Polar Stereographic. 

2.2. Data and Methods 
2.2.1. Landsat Imagery Collection and Pre-Processing 

Orthorectified top-of-atmosphere (TOA) reflectance data (L1T) Tier 1 from Landsat 
4/5 TM, 7 ETM+ and 8 OLI sensors were used in this study. The TOA data rather than the 
surface reflectance data were used because this was consistent with the existing studies 
on continental arctic greenness trends [10,11]. Landsat images have a 30 m spatial 
resolution and all the used images were acquired during the melt season (1 July to 30 
August) from 1984 to 2018. Unlike other existing greenness trend studies in the arctic area 
[12,28], we used all the available Landsat archive images during the melt season from 1984 
to 2018 in the study area, including scenes with image contaminations due to clouds, 
ice/snow, aerosols, shadows and ETM+ scan line corrector (SLC) errors. The use of 
contaminated images could increase the temporal resolution of the observations. The 
number of Landsat observations during 1984–2018 in the Russian Arctic is shown in 
Figures 2 and 3. We observed that western Russia had denser observations during 1984–
2018 (Figure 3a) because of denser observations across this area during 1984–1999 
compared with eastern Russia (Figure 3b). After 2000, most areas of the western and 
eastern Russian Arctic had more than 60 observations during those 19 years, which 
indicated more than three observations each year (Figure 3c). All of the Landsat data were 
acquired and processed with the help of GEE. The SimpleCloudScore algorithm 
implemented in the GEE was used to evaluate the cloud cover in the TOA reflectance 
images. This algorithm has been widely used for Landsat TOA imagery cloud detection 
[37], in which a “simple cloud-like score” is calculated by the joint use of brightness, 
temperature and a Normalized Difference Snow Index (NDSI) [38]. We set the threshold 
score at 20 to exclude the high cloud cover images according to our visual interpretation 
because high cloud cover could lead to a decreased number of available ground control 
points and, therefore, the geolocation accuracy could decrease [10].  

 
Figure 2. Number of Landsat scenes using the selection criteria per month (July or August) over the 
entire study area during the observation period. 

Figure 2. Number of Landsat scenes using the selection criteria per month (July or August) over the
entire study area during the observation period.



Remote Sens. 2021, 13, 4933 5 of 15

Figure 3. Number of Landsat observations during three periods: (a) 1984–2018; (b) 1984–1999;
(c) 2000–2018.

2.2.2. NDVI Trend Derivation

The NDVI time series data during melt seasons were used for each 30 m land pixel
except for non-water or non-snow locations. The values from Landsat 4, 5, 7 and 8 were
calibrated using equations from Roy et al. [39]. Valid time series were defined in that there
were at least two observations in the study period or the NDVI trend was not calculated.
This requirement led to a few data gaps in the trend maps, particularly in eastern Russia,
because of the low data coverage as described above.

Linear trends were conducted for the NDVI time series with non-parametric Theil–Sen
regression (TSR) models within GEE, which were better than an ordinary least square
regression analysis because a TSR is sensitive to outliers with a breakdown point of
approximately 29% [40]. Additionally, a TSR has been successfully applied to the trend
analysis of a Landsat NDVI time series across Alaska [11], a Landsat Tasseled Cap (TC)
time series in the Canadian North-West and the Arctic Lena Delta in Russia [29,41,42].

Each 30 m pixel was observed to determine the slope between every data pair and
the median value was then calculated. This slope of regression was set as the annual
NDVI trend. The TSR prediction precision could be improved when the number of valid
observations increased. A Student’s t-test was used to evaluate the significance of the trend.
Trends with p < 0.05 were determined to be significant and only the changed pixels were
retained in the final results. As prior studies have defined [10,11], a greening trend has a
significant positive slope and a browning trend has a significant but negative slope.

In order to compare spatial and trend differences, a GIMMS NDVI3g v3.1 time series
(hereafter GIMMS) [25] was also used in this study. The GIMMS data are bi-monthly with
a spatial resolution of 1/12 degrees (~8 km at the equator). A maximum NDVI composite
for every year in July and August was derived and then used for the trend calculation.
The same regression method, the TSR, was performed on this dataset over the same study
period, 1984–2015.
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3. Results
3.1. Landsat Data Availability

The more valid Landsat observations obtained, the better the robustness of the green-
ness trend achieved. There were 28,531 scenes (WRS-2) in total that met the screening
criteria for the greenness trend analysis from 1984–2018 (Figure 2). The data availability
over time was not consistent. The number of available scenes over the entire study area
fluctuated between a minimum of 19 in 1984 and a maximum of 2534 in 2018 (Figure 2).
Landsat 4 and 5 were the only data sources from 1984–1998 with around 350 scenes each
year. After 2000, thanks to a combined data availability from Landsat 4, 5 and 7, the number
of usable scenes nearly doubled (2000–2011). From 2013–2018, the number of usable scenes
dramatically increased to around 2200 scenes each year due to the launch of Landsat 8 in
2013. It is noteworthy that there were more valid observations in July than in August in
our study area.

The number of valid observations was spatially varied. Figure 3 displays the number
of valid Landsat observations during the entire study period (1984–2018) and two separated
subperiods (1984–1999 and 2000–2018). The Middle Siberian Tundra, Eastern Siberian
Tundra and Chukotka Tundra had a smaller number of valid observations due to data
limitations when Landsat 4 and 5 were the only data sources and there were not enough
ground stations acquiring the data (Figure 3a,b) [43]. However, the Western Siberian tundra
still had high numbers of observations during 1984–1999 with up to 108 observations for
several locations. Owing to the combined acquisition of Landsat 7 and 8, the amount
of available data increased after 2000. The majority of the study area was captured by
more than 100 observations during this period (Figure 3c). Only 2% of the area had fewer
than 20 observations, located in the northeast of the Chukotka Tundra. The good coverage
during this time can be attributed to the overlap between the neighboring path images
increasing at high latitudes and the integration of two sensors, i.e., TM and ETM+ or ETM+
and OLI.

3.2. Landsat NDVI Trends over the Decades

The greening trend was significant across the entire Russian tundra biome for the
1984–2018 period (Figure 4). The most significant greening occurred in the Yamal-Gydan
tundra (WET), Bering tundra and Chukchi Peninsula tundra (CT). The greening trend value
was mainly around 0.002–0.004 NDVI units per year. Several locations achieved as high
as 0.008 (e.g., CT). In order to observe the detailed changes over the decades, two study
phases were identified: 1984–1999 (Phase 1) and 2000–2018 (Phase 2). As several parts of
the Russian tundra (e.g., MST, CT and EST) did not have enough satellite observations
during 1984–1999, we only showed the trend analysis for 2000–2018. During 2000–2018,
the greening trend area was lower compared with that during the whole study period
(Figure 4b). Over 80% of the Russian tundra showed no systematic trend toward greening
or browning. In 2000–2018, a significant greening trend occurred in the northern and
southern Yamal Peninsula, the middle of the Gydan Peninsula and the northeast of the CT.
However, EST, MST and PD had relatively stable conditions (Figure 5c–e). The EST and PD
also had 0.9% and 1.5% browning trends during this period, respectively.

When different ecozones were evaluated separately, they showed different trend
patterns in 1984–1999 and 2000–2018 (Table 2 and Figure 6). As full observations over the
EET and WET were achieved during both periods, we could compare the greening results
for them in 1984–1999 and 2000–2018. Although significant greening occurred both in the
EET and WET from 1984 to 2018 (40.3% and 56.5%, respectively), these trend values were
relatively low in 1984–1999 (2.3% and 3.4%, respectively). The WET experienced much
higher greening trends in 2000–2018 of 18%. Additionally, the greening trend values were
mostly around 0.002–0.004 and 0.004–0.006 NDVI units per year (see Figure 6d).
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Figure 4. The greenness trend maps based on Landsat data: (a) the greenness trend values from 1984
to 2018; (b) the greenness trend values from 2000 to 2018.

Figure 5. NDVI trend in the period of 2000–2018 for the geographical regions: (a) CT; (b) EET; (c) EST;
(d) MST; (e) PD; (f) WET. The color of the labels below the horizontal axis matches the legend in
Figure 4.

Table 2. Area percent of the greenness trends in the selected geographical regions (EET and WET)
during 1984–2018.

Period Region Greening Browning Stable

1984–2018
EET 40.3 0.3 59.4
WET 56.5 0.3 43.2

1984–1999
(Phase 1)

EET 2.3 1.0 96.7
WET 3.4 0.3 96.3

2000–2018
(Phase 2)

EET 6.6 0.4 93.0
WET 18 0.4 81.6
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Figure 6. NDVI trend for the EET and WET in the periods of 1984–1999 and 2000–2018. (a) NDVI
trend over EET in 1984–1999; (b) NDVI trend over WET in 1984–1999; (c) NDVI trend over EET in
2000–2018; (d) NDVI trend over WET in 2000–2018. The color of the labels below the horizontal axis
matches the legend in Figure 4.

Before comparing our greenness trend results with those of AVHRR NDVI, it was
helpful to see the spatial detail of the trend maps acquired from the Landsat data. Figure 7
is a good example of a 200 km × 100 km area on the Lena River delta. The Lena River
delta has plenty of water bodies and very similar patterns to others in the Arctic tundra
landscape. In this small area with little vegetated or exposed land [29], the Landsat data
showed quite different greenness trends within a distance of ~100 km, as indicated by the
relatively unchanged NDVI in location a and the increased NDVI in location b. The NDVI
values in both sites showed a few outliers because of intra-annual variations or cloud mask
omission errors. However, the TSR models were sensitive to these outliers and the trend
was not biased, as the plots indicate in Figure 7c,d.

Figure 7. The NDVI trend details of a 200 km × 100 km area at the Lena River delta, Northern
Yakutia, Russia, from 1984 to 2018: (a) NDVI stable site (73.503◦N, 124.428◦E); (b) greening site
(73.074◦N, 126.655◦E); (c) the Landsat NDVI time series of location a; (d) the Landsat NDVI time
series of location b.

3.3. Landsat NDVI Trends and a Comparison with AVHRR

There were two concurrent periods between the Landsat and AVHRR data (1984–2015
and 2000–2015). From the view of the continental scale, the NDVI trends based on Landsat
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data were roughly similar to those derived from the GIMMS AVHRR NDVI3.1g dataset
(Figures 4 and 8) if the lack of Landsat observations before 2000 over the middle and eastern
parts of the Russian tundra was ignored. Compared with AVHRR, the finer resolution Land-
sat observations acquired the greenness trend more precisely (Figure 9). Both the Landsat
and AVHRR results showed an obvious greening trend over the southern Yamal Peninsula,
the middle of the Gydan Peninsula and most parts of the CT (Figure 9a,c,e). The NDVI
values of the Landsat time series for the selected locations were partially lower, as displayed
in Figure 9. Although the Landsat 5 observations in the 1990s were occasionally sparse,
as shown in the time series for the Gydan Peninsula site (Figure 9b), the overall browning
trends were robust and coincident with the results from the AVHRR-based analysis.

There were also inconsistent geographic patterns of the NDVI trend between the two
data sources for the Russian tundra. For the areas of the western EET and MST, the AVHRR
analysis indicated extensive browning whereas in the Landsat analysis, many of these
areas did not show any statistically significant trends (Figures 4 and 8). Details can be seen
in the 20 km × 20 km example in Figure 9c.

Both the AVHRR and Landsat NDVI trends indicated an overall greening of the
Russian tundra. Landsat NDVI increased over 30.7% of the land area and decreased over
0.5% of the land area from 1984 to 2018 although it was stable across 68.8% of the land area.
Similarly, greening occurred over 11.6% of the land area and browning over 0.5% of the
land area from 2000 to 2018. Therefore, over the two periods of 1984–2000 and 2000–2018,
greening was 56.7 times and 22.9 times more common than browning, respectively. AVHRR
NDVI increased over 54.2% of the land area and decreased over 33.6% of the land area
from 1984 to 2015 although it was stable over 12.1% of the land area. Additionally, greening
occurred across 49.9% of the land area and browning across 39.9% of the land area from
2000 to 2015. Greening was thus 1.6 and 1.25 times more common than browning during
the above two periods, respectively.
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Figure 9. Each row shows a 20 km × 20 km site. From left to right: a 30 m Landsat false color image in an earlier year, a
30 m Landsat false color image in a recent year, a 30 m Landsat-based trend image, an AVHRR-based trend image, a Landsat
NDVI time series (1984–2015) and an AVHRR NDVI time series (1984–2015) at the labeled pixel marked in Figures 4 and 8,
respectively. (a) Greening shrub tundra, centered at 67.544◦N, 63.744◦E, in the northeastern Komi Republic. (b) Browning
trend due to natural resource development, centered at 70.417◦N, 68.265◦E, in the northern Yamal Peninsula. (c) Slightly
greening graminoid tundra, centered at 72.582◦N, 70.050◦E, in the northern Yamal Peninsula. (d) Stable tussock sedge
tundra, centered at 70.482◦N, 145.857◦E, in the northern Sakha Republic. (e) Greening tussock sedge tundra, centered at
69.141◦N, 171.830◦E, in northern Chukotka. The color code of the trend values is the same as in Figures 4 and 8, respectively.

4. Discussion
4.1. Greenness Trend Analysis between the Landsat and Other Coarser Datasets

We provide here a pixel-by-pixel assessment of the greenness trend across the entire
Russian tundra using fine resolution Landsat NDVI when Landsat datasets were available
over 1984–2018. During 2000–2018, more than 100 valid observations for each pixel were
used for the trend analysis except for a few areas with data gaps (2%). Greenness trends
based on the Landsat data indicated that 30.7% and 0.5% of the Russian tundra experienced
greening and browning, respectively, at a significance level of p < 0.05 when the water
bodies were masked in the first step. The most significant greening occurred in the Yamal-
Gydan tundra, Bering tundra and Chukchi Peninsula tundra (CT), which aligned with
prior studies that analyzed coarse resolution datasets [44,45]. Greening trend values of
NDVI/year aligned with others achieved elsewhere in the arctic regions [10,29,35,41,46].

The finer resolution Landsat observations have advantages for the evaluation of
vegetation dynamics in heterogeneous tundra landscapes. Plant communities are highly
reliant on micro- and macro-topographies in tundra areas and they are often interspersed
with surface water, snow and bare land [2]. The places of greening and browning occurrence
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are relatively close and lead to divergent changes in coarse resolution images. In this
case, small-scale browning/greening can be concealed by widespread unchanged areas
or greening/browning when observed with coarse resolution sensors (Figure 9a,b). In a
few cases, a mainly unchanged pixel could be detected as greening/browning at a coarse
resolution if there was enough of a change in magnitude (Figure 9d). These examples
show that the spatial scale of the Landsat data was much closer to the facts of ecological
processes than AVHRR and could capture detailed changing patterns in the heterogeneous
tundra areas.

Concerning browning, the AVHRR-based results had more browning areas than the
Landsat-based results. According to our analysis, the coastal northwestern Yamal Peninsula
and the northern MST tended to demonstrate browning more heavily according to the
Landsat-based results. One possible explanation could be that GIMMS is more vulnerable
to spectral mixing adjacent effects. This limitation is likely to happen in areas with a high
cloud frequency, which frequently occurs also in coastal Alaska [47]. Additionally, as over a
quarter of the lakes on Earth are located in northern high latitudes [48,49], it was important
to mask the surface water layers before the vegetation trend analysis due to this adjacent
effect. The surface water mask layer used in this study was based on the Landsat dataset
from 2018 [50]. Although water area dynamics or lake shoreline changes can reflect, to an
extent, the vegetation conditions, we did not pay attention to these small parts compared
with the large area of tundra vegetation. With regard to the browning trends retrieved
by AVHRR in the western EET, we knew that this was the greenest tundra in all of the
Russian tundra [51] and that the vegetation cover was mainly erect dwarf shrubs or low
shrubs [30]. From the field scale, the EET had a greening trend validated by an increasing
shrub expansion [3]. Field experiments have shown that shrub canopies insulate tundra
soils from the warmer air in summer, making soil temperatures 2 ◦C cooler than adjacent
shrub-free areas [4,31,52,53]. Although cooler conditions could suppress the tundra plant
growth and contribute to tundra browning [2], the overall greenness trend was unchanged
from the space observations based on MODIS NDVI (250 m) [54], which was consistent
with the result we attained using the Landsat NDVI time series during 2000–2018.

4.2. Comparison of the Identified Trends in Russia with Other Arctic Regions

Over the entire Russian tundra, NDVI had a mean decadal increase of 0.003 and
0.0035 NDVI units/year during 1984–2018 and 2000–2018, respectively. A similar greenness
trend of 0.003 NDVI units/year was achieved for Alaska and Canada during 1984–2012 [10];
a 0.031 decadal NDVI increase was observed for the Arctic Mackenzie Delta during
1985–2018 [41], a 0.035 decadal NDVI increase was achieved for the Lena Delta during
1999–2014 [29] and a 0.031 decadal NDVI increase was observed for the Pechora catchment
during 1985–2019 [46]. According to a recent tundra greenness report based on AVHRR
NDVI datasets [45], the Chukotka Peninsula—one subregion of our study area in far eastern
Russia—was reported to be one of the most significant greening tundra areas. This was in
line with our analysis based on Landsat NDVI.

4.3. Limitations of Our Method on Greenness Trends over the Russian Arctic

Admittedly, a few slightly changed pixels could not be detected by our method in
parts of the study area (e.g., southern Yamal tundra). A relatively stable condition with
greening patches was achieved from 2000 to 2018 over the southern Yamal tundra in
our study. However, as noted by Veselkin et al. [7], the average NDVI in the growing
season over this area decreased by 0.036 ± 0.006 units/decade according to field data and
the VEGA Science system [55] because of an increased number of domesticated reindeer.
Several other studies have also indicated this zoogenic driver of a browning trend over
this area [56,57]. Our underestimation of this browning trend may come from the global
regression method (TSR) because several intra-annual NDVI differences were omitted. In
future studies, the piecewise regression will be used and the breakpoints in the time series
data will be detected with a time series analysis method, i.e., Breaks For Additive Seasonal
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and Trend (BFAST) [58–60], CCDC [61] or LandTrendr [62], which have been implemented
into Google Earth Engine’s platform [63–65]. Widespread active layer detachments and
retrogressive thaw slumps exist in the low arctic tundra zone of Yamal, West Siberia [35].
Vegetation cannot be fully regenerated after a landslide for ~30 years. It may take several
more decades for regeneration to the original levels of composition, cover and productivity.
This regeneration analysis also calls for more detailed time series analysis algorithms.

The total greenness trend over the entire Russian tundra was not validated by limited
field measurements due to a lack of accessibility of the study area. However, we reported a
56.7:1 ratio of greening to browning from 1984 to 2018 and 22.9:1 from 2000 to 2018 based
on the Landsat NDVI time series. In comparison with AVHRR, those ratios were partially
consistent with the ratios shown in Berner et al. [2], who analyzed 50,000 sampling sites
over the entire Arctic. Additionally, there have been a number of regional studies in the
Russian tundra that have indicated a greening trend due to warming soil temperatures
and shrub expansion, which were confirmed by very high resolution remotely sensed
data [9] and dendrochronology data [3,16]. Although overall trend contradictions between
the Landsat-based and AVHRR-based data exist in a few geographic regions owing to
spatial scale issues [27,66], our Landsat-based results during 2000–2018 had a very similar
pattern to a publication from Russian researchers who used MODIS NDVI (250 m) during
2000–2016 [54].In order to help us improve our understanding of vegetation greening
in circumpolar areas of different vegetation types and geographic gradients, there is a
high demand for higher spatial resolution observations in future research [66] as well as
collecting field measurement data over focal scales and even the tundra biome scale [67–69].

5. Conclusions

In short, we provided continuous 30 m resolution greenness trend maps during
the past three decades over the entire Russian tundra, which helped us to understand
the response of arctic vegetation to climate change and anthropogenic disturbance. In
contrast to coarse resolution trend maps (i.e., AVHRR), the pixel-by-pixel Landsat-based
trend maps may contribute to a more detailed change driver attribution in the context of
climate warming and oil gas exploitation activities in northern Siberia. With increasing
computational capabilities and the launch of a variety of non-commercial satellites such as
Sentinel-2 and Sentinel-1, we can enable a comparison of different sites over similar tundra
landscapes and envision a circumpolar scale monitoring of rapidly changing permafrost
regions with finer remotely sensed data. As prognostic research has indicated that there
will be a gradual decrease in the temperature constrained over northern high latitudes in
the 21st century [70], the comprehensive study of vegetation trends and the impact of other
drivers on vegetation changes has become increasingly important. The datasets generated
in this study are available on request from the corresponding author.
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