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Abstract: Overhead catenary system (OCS) automatic detection is of important significance for
the safe operation and maintenance of electrified railways. The vehicle-borne mobile mapping
system (VMMS) may significantly improve the data acquisition. This paper proposes a VMMS-based
framework to realize the automatic detection and modelling of OCS. The proposed framework
performed semantic segmentation, model reconstruction and geometric parameters detection based
on LiDAR point cloud using VMMS. Firstly, an enhanced VMMS is designed for accurate data
generation. Secondly, an automatic searching method based on a two-level stereo frame is designed to
filter the irrelevant non-OCS point cloud. Then, a deep learning network based on multi-scale feature
fusion and an attention mechanism (MFF_A) is trained for semantic segmentation on a catenary
facility. Finally, the 3D modelling is performed based on the OCS segmentation result, and geometric
parameters are then extracted. The experimental case study was conducted on a 100 km high-speed
railway in Guangxi, China. The experimental results show that the proposed framework has a better
accuracy of 96.37%, outperforming other state-of-art methods for segmentation. Compared with
traditional manual laser measurement, the proposed framework can achieve a trustable accuracy
within 10 mm for OCS geometric parameter detection.

Keywords: vehicle-borne mobile mapping system (VMMS); point cloud segmentation; 3D reconstruction;
overhead catenary system; geometric parameters detection

1. Introduction

The railway has become a significant mode of modern transportation because of its
advantages in terms of its high speed, high safety, good comfort and low-cost perfor-
mance [1]. Currently, the railway has gradually become one of the most important means
of transportation between cities in China. The railway has been rapidly developed and
constructed recently [2]. The electrified railway is the main form of railway in China. By
2020, the total mileage of China’s railway operation exceeded 146,000 km, and contained
106,000 km of electrified railways, with an electrification rate of 72.6 percent. The overhead
catenary system (OCS) is an electromechanical system in the railway that provides electrical
energy to an electric traction unit through a contact wire. Generally, it is composed of a
pole, pole foundation, support device, positioning device, contact suspension and power
supply auxiliary facilities, as shown in Figure 1. As the core of the electrified railway,
OCS plays a vital role in ensuring railway transportation safety, improving transportation
efficiency and reducing the energy consumption of transportation [3]. However, because of
the effects of bad weather, such as wind, rain, snow, sandstorm and others, it is inevitable
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that OCS will experience issues, such as structural loosening, aging and changes from its
original geometric position. Moreover, due to the abnormal relationship between the pan-
tograph and the contact wire, long-term vibration, the overload capacity and the corrosion
of catenary equipment, the OCS will experience deformations, and the whole system will
be broken. When the OCS fails, the entire railway line operation will be affected because of
the absence of no backup facilities. Thus, in order to avoid OCS breakdown, it is necessary
to carry out regular timely monitoring on the status of the OCS. However, the rapid growth
of the railway construction brings tremendous challenges for this task.

Figure 1. Structure of OCS.

Catenary geometric parameters, such as the height and stagger of the contact wire,
are important data for evaluating the catenary status [4]. To balance the wear of the carbon
sliding plate of the pantograph on the electric locomotive, the overhead contact wire needs
to be reasonably arranged according to the “zigzag” shape, and its offset from the central
line of the pantograph at the positioning point is called the stagger value. Due to the
limitation of the length of the carbon sliding plate of the pantograph, the stagger value
of the contact wire needs to be limited to a certain range. When the stagger value is too
large, in the case of severe weather, such as strong wind, the contact line will easily exceed
the limit, resulting in pantograph and catenary accidents, such as pantograph scraping or
pantograph drilling. Meanwhile, when the stagger value is too small, the contact wire acts
too intensively in the area of the carbon sliding plate of the pantograph, which will cause
the service life of the carbon sliding plate to decrease [5]. The height of the contact wire
refers to the vertical distance between the bottom of the contact wire and the connecting line
on the rail surface. The height of the contact wire is an important index for evaluating the
working state of the catenary. If the height of the contact wire is too high, the pantograph
may go offline and produce an electric arc, resulting in the wear of the contact wire and
the pantograph. If the height of the contact wire is too small, it is prone to bow drilling
accidents, which affects the safety of passengers and goods.

To achieve the above objectives, this paper therefore further explores the deep learning
semantic segmentation and detection of OCS facilities from VMMS LiDAR point cloud by
deep learning. The main objectives are as follows: (1) to propose an automatic efficient
extraction method for catenary facility samples in 3D scenes and to effectively remove
background interference points; (2) to propose a semantic segmentation network based on
the multi-scale feature fusion attention mechanism (MFF_A) to classify OCS facilities; and
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(3) to reconstruct the 3D model of catenary facilities and to test the geometric parameters
of OCS with ground truth generated by traditional equipment.

The reminder of this paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the detailed methodology and data generation process. In Section 4,
the experiment results and the performance evaluation are presented, analyzed and then
discussed. Finally, Section 4 concludes the paper, along with a few suggestions for future
research topics.

2. Related Works

The current OCS detection method can be divided into contact and non-contact types.
Contact detection dynamically measures the geometric parameters of OCS by installing
various proximity sensors on the pantograph slide plate. However, this kind of method
increases the weight of skateboards, which affects the normal function of pantographs.
This kind of method also has serious electromagnetic interference, a low reliability, incon-
venient maintenance and other defects. Non-contact detection usually achieves OCS defect
detection [6,7] and geometric parameters measurement [8,9] through a high-speed camera
and laser phase rangefinder or line-array camera, etc. Generally, non-contact methods
are mainly based on 2D image detection [10,11] or 2D/3D light detection and ranging (Li-
DAR) [8,12]. However, 2D image detection adopts optical measurement technology based
on line structured light or binocular linear array active vision measurement technology
to measure OCS geometric parameters [13,14]. This method is susceptible to the weather,
light and other factors, causing the results to often have problems, such as an unstable
detection quality, serious difficulty in the target recognition and low accuracy. The 2D
LiDAR detection identifies and segments point clouds on the 2D scan lines to measure the
geometric parameters of OCS [8,12]. This method is restricted by the single measuring
angle range with a relatively slow detection speed. Therefore, current non-contact detec-
tion methods cannot meet the requirements of the rapid identification, classification and
precision measurement of OCS in complex scenes. The 3D LiDAR detection normally uses
a vehicle-borne mobile mapping system (VMMS) to collect high-density laser point clouds
along the line by carrying the measurement system on the rail flatbed vehicle. Compared
with other detection methods, VMMS data are richer in dimension information, with a
faster measurement speed and a wider scanning range. The key point of VMMS-based
OCS detection lies in the specific component semantic segmentation of the point cloud. At
present, 3D point-cloud-based segmentation methods can be divided into two categories:
statistical analysis and deep learning methods.

2.1. Statistics-Based Method

The principle of the statistics-based method is to achieve the fitting and analysis of
specific targets or planes based on the differences in the distance, shape, echo intensity and
other characteristics between different parts of point cloud data. Machine learning algo-
rithms, such as random sample consensus (RANSAC) clustering or region growth [15,16],
are widely used. Zhou et al. [17] proposed a region-RANSAC and Euclidean clustering
to extract multiple linear regions of the catenary support system after setting the extrac-
tion range of point cloud data. Pastucha [15] used RANSAC to detect and classify the
cantilevers, support structures and catenary wires, and then improved the classification
result with a modified DBSCAN clustering algorithm. Zou et al. [16] used a K-means clus-
tering fused region-grow fitting algorithm to extract the rail track and recognize the track
branches apart. Lamas et al. [18] proposed a heuristic-based workflow for the semantic
segmentation of complex railway environments. A 90 km-long railway dataset was used
to verify the method’s effectiveness. Jung et al. [19] proposed a multi-range conditional
random field and support vector machine to classify railway scenes, which can consider
vertical and horizontal object relations in a railway scene. However, locally extracted line
segments showed their limitations in representing objects with their full scales, which led to
misclassification errors. The above methods have clear principles and simple methods, and
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can solve the problem of detecting and extracting OCS in specific railway scenes. However,
most methods still need a priori knowledge, requiring considerable manual intervention
in the implementation process, such as setting parameters [20], which makes it difficult
to both achieve automatic extraction and promote practical application. Thus, achieving
automatic extraction with a strong robustness is necessary.

2.2. Deep-Learning-Based Method

Compared with the statistical analysis method, the deep learning (DL) semantic
segmentation method has better application prospects [21]. It no longer relies on the
manual extraction of target features, but extracts multi-dimensional features through
an automatic convolution operation. The activation function is used for the semantic
segmentation of high-dimensional features, improving the segmentation accuracy. Several
methods were conducted for catenary facility segmentation based on deep learning. Point
cloud segmentation methods based on deep learning can be divided into projection-based
and point-based [22]. The projection-based method is to project points in a 3D scene onto
the 2D plane or manifold surface to process 2D information by a convolutional neural
network (CNN), detecting the railway catenary component [10]. The application of this
type of method is often limited because complex feature images need to be generated
before training samples. Moreover, these methods are often computationally redundant
because close points of the same features are calculated and processed multiple times in
the network. Compared with the projection method, the point-based method does not
need to generate complex feature images. It can directly take the point cloud as the input
of the network model to classify and segment the point cloud. The PointNet [23] network
is a deep learning point cloud classification and segmentation network that can operate
point cloud data directly. PointNet++ [24] is a hierarchical feature learning framework that
improves the PointNet to overcome the deficiency of the PointNet network in extracting
local features. PointCNN [25], PointWeb [26], KPConv [27], PointConv [28] and other
networks are proposed to be applied to point-based semantic segmentation. Chen et al. [12]
proposed a method that combined PointNet with long short-term memory to recognize the
multiple OCS component by the point cloud collected by mobile 2D LiDAR. Lin et al. [8]
designed a classification OCS point cloud method that identified the context of each single
frame point cloud by an improved PointNet and combined single frame data based on
classification results. This algorithm was better in terms of its mean accuracy compared
with the PointNet. However, most of the current methods have disadvantages in many
different aspects: (1) It relies on manual sample extraction in the early stage and lacks the
automatic searching and extraction of catenary facilities from the entire scene of the point
cloud. Although segmentation recognition on every frame of the 2D LiDAR point cloud can
be achieved [8,12], the automatic search of 3D LiDAR catenary facilities is still unrealized;
(2) Many neural networks tend to map features to high-dimensional space to obtain more
and richer high-dimensional features. However, they cannot effectively distinguish the
feature weight matrix according to the importance of features. This shortcoming results in
a large amount of important feature information that cannot be effectively transmitted, and
is thus abandoned. The recent introduction of the attention mechanism in a few network
models [29] proved that the segmentation accuracy could be improved slightly, but that
the calculation unfortunately increases sharply. Moreover, there is no effective attention
mechanism to improve the weight coefficient of important features; (3) The thinning
structure plays an increasingly important role in image deep semantic segmentation. At
present, the thinning structure is, with regret, rarely applied to the point-cloud-based
network for segmentation and re-refinement; (4) The method for fusing the multi-scale
features of both the shallow feature and deep feature map are still lacking.

3. Material and Methodology

Considering the advantage of deep learning in OCS segmentation, this paper tried
to improve the current DL network by addressing the shortcomings summarized in
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Section 2.2. The proposed framework in this work mainly consists of four steps (Figure 2).
First, the method can effectively deal with the automatic extraction of OCS facility samples
in 3D scenes and can remove background interference points. An automatic fast search
and extraction based on the original point cloud scenario can be realized. Second, the
extraction of the catenary facilities sample classification can be achieved through the means
of a manual label. Third, the semantic segmentation of catenary facilities based on deep
learning is implemented. Finally, the 3D model of catenary facilities is reconstructed, and
the application of catenary geometric parameters detection is carried out.

Figure 2. Technical scheme diagram of this paper.

3.1. Study Area and VMMS Data Generation

In this study, part of the Guiyang–Guangzhou railway was selected to conduct experi-
ments to verify the method effectiveness. This line is an interregional high-speed railway
that connects Guiyang and Guangzhou in China, with a total of 857.00 km. A sub-line of
100.66 km from HeZhou station to HuaiJi Station was selected for VMMS LiDAR survey
and scanning. The survey was conducted on the left and right lines of the railway, as
shown in Figure 3.

Figure 3. Study area.

A VMMS was applied and improved in this study to collect data along the railway
quickly and effectively.

For LiDAR scanning, an Optech Lynx HS 600 VMMS (Figure 4) with a minimum
measurement distance of 1.5 m is used. The inclined installation of two laser scanning
heads of Lynx HS 600 can effectively reduce the scanning blind area along the railway. The
actual practice shows that it is a better and more convenient way of installing the onboard
radar system to the rear of the flat car utilizing a customized rigid elevated frame. The
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heightening frame can increase the distance from the scanner center to the bottom rail,
and the top of the support is equipped with a fast fixing device for convenient installation.
The lifting bracket and vehicle can be fixed by a binding belt. This enhanced system can
be quickly installed in two hours. The actual acquisition scanner parameter settings are
from many preliminary field tests: the laser scanner frequency is 600 kHz and the scanning
frequency of a single laser head is 400 lines/s. This setting can maintain a balance between
the density and accuracy of the collected point cloud.

Figure 4. Modified VMMS acquisition equipment. (a) Fix the elevated support on the flat plate with binding tape; (b) the
onboard mobile measurement system is installed in the flat car department.

For accurate position information, Applanix POSLV620 GNSS and the integrated
high-precision fiber optic gyroscope were used. The roll and pitch accuracy of this device
is 0.005 degrees and the heading accuracy is 0.015 degrees when the satellite signal is good.
The gyroscope can maintain its nominal accuracy within 60 s when the satellite signal loses
lock. During scanning, a total of 7 GNSS reference stations were set up at an interval of
approximately 15 km along the line. The sampling frequency of the reference station was
uniformly set to 1 Hz, and GNSS signals were received continuously throughout the entire
process. When VMMS enters the railway tunnel, the position and orientation system (POS)
could not accept satellite signals. After driving in the tunnel for more than 60 s, it was
necessary to stop and stand at the entrance and exit of the tunnel, respectively, in order to
improve the position and orientation accuracy of the POS. Due to the fact that POS will
always drift when parking and standing, an odometer (DMI)-assisted POS needs to be
installed on the train wheels for zero speed correction. A metal protective cover of DMI on
the axle was installed to protect it from the outside train transmission shaft and to achieve
accurate synchronisation between the DMI and the train wheel rotation (Figure 5).

Figure 5. DMI setup: (a) origin train wheel; (b) front view after removal; (c) side view after removal.
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Finally, considering the normal operation of the railway, the maintenance time from
23:00 to 03:00 on two days (no other trains running on the railway line) is selected for
scanning, with a total duration of eight hours. During the scanning, the average vehicle
moving speed is approximately 60 km/h. As a result of the large number of long tunnels
or tunnel groups in this section, it is necessary to stop before entering the tunnel for the
positioning and attitude measurement system to stand for 5–10 min each time. During the
parking waiting period, the scanner stops data acquisition, the positioning and attitude
measurement system still works normally and the original generated point cloud data are
approximately 180 GB (as shown in Figure 6).

Figure 6. Generated point cloud (part). (a) Laser point cloud within the station; (b) laser point cloud
in subgrade range; (c) laser point cloud over the bridge; (d) laser point cloud in tunnel range.

3.2. Double Selection Stereo Frame of OCS

In the obtained point cloud data, the subgrade section accounts for 21.03%, the tunnel
section accounts for 38.30%, the bridge section accounts for 40.67% and the point cloud
of OCS facilities accounts for no more than 1% of the entire point cloud scene. If the
deep learning network is used directly for semantic segmentation of the original point
cloud data when the category samples are extremely unbalanced, it may lead to the
poor generalization ability of the network and easy overfitting, finally leading to the
misclassification and omission of OCS components. Therefore, the OCS facilities need
to be extracted from the original scene in advance to eliminate the interference of other
types of point cloud objects on the identification of OCS facilities. This paper presents an
automatic search and extraction method of scene double selection stereo frame catenary
based on POS data (Figure 7) to reduce the computation of point cloud in translation and
rotation and to assist in clipping POS trajectory points in a certain range. First, the search
range is determined by roughly selecting the 3D box, and the track lines and points within
the range are obtained according to this box. Then, the stereo frame is selected to track,
cut and extract along the track direction. The method includes four steps (Algorithm 1):
double selection stereo frame attitude and positioning, determination of double selection
stereo frame offset vector, automatic adjustment of selected frame attitude assisted by POS
trajectory data and clipping and extraction of OCS facilities.
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Algorithm 1. Automatic extraction algorithm of OCS facilities

Input: Rail region point cloud: C = {Ck}, k = 1, 2, 3, . . . , M
POS Trajectory lines L = {li}, I = 1, 2, 3, . . . , N
An initial coarse selection of stereo frame BBox← {min_point, max_point}

(1) Traverse the points in the POS track line, obtain three adjacent track points and calculate the
direction vector Vdif between the two points;

(2) Calculate an initial fine selection of stereo frame CBox← RMatrix×minBox + T;
(3) Cut and extract the point cloud in the selected stereo frame area and extract the track point

cloud CD1;
(4) Obtain the next track point and recalculate the new coarse selection stereo box and selected

stereo box;
(5) Calculate PoleDis, which is the distance between adjacent columns, as the cutting

interval distance;
(6) Recalculate the rotation matrix RMatrix and translation T at the next track point, and

realize the advance along the track of rough selection solid frame and selected solid frame
according to this information;

(7) When the forward distance of the selected stereo frame is equal to the distance between
adjacent columns, carry out the cutting and extraction operations;

(8) Repeat steps 2 to 7 until the point cloud C in the track area is empty.

Output: Segmented and extracted rail region point cloud data CD = {CDj}, j = 1, 2, 3, . . . , H

Figure 7. Schematic diagram of rough selection stereo frame and selection stereo frame.

• Coarse selection of stereo frame posture and positioning

Coarse selection of stereo frame is performed by a bounding box BBox in a 3D scene,
and a subset of 3D point cloud meeting the conditions is selected from the scene with this
frame as the constraint range, which satisfies the following equation:

BBox = {min_point, max_point}, (1)

where min_point and max_point denote the minimum and maximum points of coordinate
values within the range of the rough-selected stereo frame, respectively.
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In general, determining min_point and max_point should consider that the area of
the rough-selected stereo frame can contain the area of the track line points and all of the
facilities of the catenary. The frame center point should be placed in the middle of the
pair of adjacent poles in the XOY projection plane to reduce the selection error caused by
translation on the track line. The initial center point will be set artificially from the point
cloud. In the process of cutting and extraction, the rough-selected stereo frame moves
along the direction of the track line, and the height of BBox is constant. Moving distance is
determined according to the distance between the adjacent poles.

• Fine selection of stereo frame posture and positioning

The fine stereo frame is cut along the track direction, and the catenary facility point
cloud is extracted by clipping box CBox from the track data with the frame along the track,
which satisfies the following equation:

CBox = RMatrix×minBox + T, RMatrix =

 x1, y1, z1
x2, y2, z2
x3, y3, z3

, T =
{

trx, try, trz
}

, (2)

where minBox is the minimum stereo frame for cutting a pair of OCS facilities, RMatrix
is the rotation matrix and T is the offset vector. The frame is transformed along the track
by rotating and translating the minBox. The fine stereo frame should be of an appropriate
length, width and height, and the minimum cutting stereo frame should be contained
completely in the coarse selection box BBox. The long side of the finely selected stereo
frame should be parallel to the track, and the width should be vertical to the track.

• Determination of distance offset of dual selection stereo frame

The offset vector of the center point of the double selection stereo frame along the
rail line should consider terrain fluctuation and obstacle blocking. The offset vector T in
Equation (2) of the adjacent stereo frame includes the offset direction and offset distance.

The offset distance along the railway line in the scene needs to be adjusted according
to the distance between adjacent poles, which can be achieved as follows: the center
position of each column from the scene {Centerpoint1, ..., Centerpointi, ..., Centerpointn} is
extracted and then projected onto the XOY plane, and then the distance from the center of
the adjacent column PoleDis[i] is calculated to obtain the offset distance information of the
dual selection stereo frame:

PoleDis[i]= Dis(Centerpoint[i+1]− centerpoint[i]), i = 1, . . . , N − 1, (3)

where Dis(·) is a function of finding the Euclidean distance of the XOY plane between
two points. Centerpoint[i] refers to the coordinate information of the center point of the
column i.

When the coarse selection stereo frame (Figure 7) is moving from the ith frame (red
box) to the i+1th frame (blue box), the offset direction Vdi f can be determined by calculating
the vector difference formed by the POS data:

Vdi f = Vi+1 −Vi, (4)

where Vi is the direction vector of the POS track in the ith frame and Vi+1 is the direction
vector of the POS track in the i + 1th frame.

• Track data-assisted posture auto-adjustment for selected stereo frame

When the double-selected stereo offset vector is determined, the selected stereo box
needs to be shifted to the next area to be clipped. First, the double-selected stereo box
is shifted according to the offset vector. Then, the current double-selected stereo box is
updated. The center of the currently selected stereo box is re-calculated to become the new
center of rotation.
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The carefully selected stereo frame posture should change with the fluctuation of
the railway track and the change in the curve in order to be more helpful in clipping and
extracting the contact network facilities that could meet the accuracy requirements. The
complete transformation information, including the center of rotation, translation and
rotation at i + 1 of the selected stereo frame, can be obtained.

• Clipping and extraction of contact network facilities

The selected stereo box of the OCS facility can be generated by clipping the original
point cloud using the clipping box (CBox). The clipped data will be stored separately for
training and prediction based on the deep learning network model.

3.3. Deep Learning Based Semantic Segmentation

After the automatic search and extraction of OCS facilities, they are segmented into
eight categories through deep learning, including oblique cantilever, straight cantilever,
elastic catenary wire, catenary wire, dropper, contact wire, steady arm, registration arm, etc.
Manual labels of the point cloud data are generated to train the model. Deep learning net-
work architecture needs to be redesigned considering the relative imbalance of point cloud
density and percentage among different categorizations. Spatial and channel attention
mechanisms are introduced in the construction of a deep learning network. A semantic
segmentation model based on multi-scale feature fusion and attention mechanism (MFF_A)
is proposed to classify contact network facilities. First, a feature extraction method based
on efficient channel attention (ECA) and convolutional block attention module (CBAM)
is proposed to enhance the important features in point clouds from channels and spatial
domains. Then, a residual refinement structure based on OCS preliminary results is in-
troduced, which refines OCS results through feature extraction and fusion of multi-scale
sensing fields. The architecture of the re-designed network is shown in Figure 8.

Figure 8. Architecture of proposed MFF_A network.

The proposed MFF_A in this paper takes PointNet as the backborn structure, while
removing the T-shaped input feature transformation from the original structure. Instead,
the network adopts a multilayer perception (MLP) module (two or more convolution layers
form weight sharing) to extract point cloud features, and adopts the ECA channel attention
mechanism to realize the channel enhancement of extracted features. The shallow features
processed in ECA are enhanced by CBAM, and the multi-layer shallow features and deep
features are fused. The preliminary results are then entered into the refine structure to
generate the final refined results.
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3.3.1. ECA

Previous studies have shown that embedding the attention module into CNN can
result in significant performance improvement (e.g., SENet [30], CBAM [31], ECANet [32],
EPSANet [33]). In the traditional PointNet network structure, shared weight MLP is used
to extract the point cloud features, and different numbers of convolution kernels are com-
bined to achieve dimensionality enhancement or reduction in the extracted features. The
convolution kernel size is (1,1). The introduction of ECA improves the ability of important
feature extraction in global feature extraction (Figure 9). The original ECA module is
improved to combine global average pooling (GAP) and global max pooling (GMP).

K = ψ(C) =

∣∣∣∣∣ logC
2

γ
+

b
γ

∣∣∣∣∣
odd

, (5)

where |t|odd take the nearest odd number to t. In this paper, γ and b are set to 2 and 1,
respectively. The ψ function causes the larger channel to have long-distance interaction,
and vice versa.

Figure 9. Schematic diagram of ECA.

The multi-dimensional feature map obtained after the MLP feature extraction of
shared weight is taken as the input of the ECA module, and the consistency between
the input and output feature dimensions can effectively prevent the reduction in the
feature dimensions. In addition, a grouping convolution strategy is applied to capture
cross-channel interactions. Given a fully connected layer, grouping convolution divides it
into multiple groups and performs linear transformation independently for each group.
Therefore, the weight calculation is as follows:

Wi = σ(∑k
j=1 α

j
iy

j
i), yj

i ∈ Ωk
i , (6)

where σ represents the activation function and Ωk
i represents a set of adjacent channels.

In Equation (6), cross-channel local interactions are captured. Such local scale constraints
effectively avoid cross-channel interactions, thereby improving the efficiency of the network
model. In this way, each channel attention module affects the K*C parameters. All channels
share the same learning parameters to reduce the model complexity further and to improve
efficiency. The final structure of the ECA module is as depicted in Figure 9.

3.3.2. CBAM

In encoder–decoder network architecture, although a normal network jumping con-
nection can improve the fusion of shallow features and deep features, it cannot effectively
reduce the degradation of neural networks. CBAM could solve the problem [31]. Due to
the fact that the MLP operation in this study extracts features by mixing cross-channel
and spatial information, a CBAM-based jump connection can be adopted to strengthen
important features. Figure 10 shows the structure of the CBAM. The input features pass
through the channel and spatial attention mechanism so that each branch can learn “what”
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and “where” on the channel and spatial axis, respectively, which strengthens effective
transmission.

Figure 10. Structure of CBAM. (a) Convolutional block attention module; (b) Channel attention
module; (c) Spatial attention module.

(1) Channel attention submodule in CBAM

The implementation of the channel attention structure in CBAM is as follows. First,
the average and maximum pooling operations are used to aggregate the spatial information
of feature mapping for input feature F, and two spatial context descriptors, average pool
feature Fc

avg and maximum pool feature Fc
max, are generated. The two descriptors were then

fed into a shared MLP structure to generate a channel attention feature map Mc ∈ RC×1×1.
The hidden activation size is set to RC/r×1×1, where r is the reduction ratio, to reduce
the number of parameters. After the shared network is applied to each descriptor, the
output feature vectors are combined by element accumulation. The calculation of channel
attention is shown in Equation (7):

Mc(F) = σ(W1(W0(Fc
avg)) + W1(W0(Fc

max))), (7)

where σ represents the activation function and W0 and W1 refer to the weight of MLP,
which satisfies the condition W0 ∈ RC/r×C and W1 ∈ RC×C/r. W0 and W1, the input
feature and subsequent ReLU activation function, share the weight.

(2) Spatial attention submodule in CBAM

The GAP and GMP are adopted to pool channel reinforcement feature F′, and the two
are connected to generate an effective feature descriptor for spatial information. On the
connected feature descriptors, convolution layer is used to generate spatial attention feature
maps Ms(F) ∈ RH×W and encode them to emphasize or suppress features. Two types of
feature graphs are generated by aggregating the channel information of feature graphs
through two pooling operations: Fs

avg ∈ R1×H×W and Fs1×H×W
max . The channel attention

mechanism is adopted for each average and maximum pooling feature, which are then
connected and convolved through a standard convolution layer to generate 2D spatial
attention feature maps.

Ms(F) = σ
(

f 7×7([Fs
avg; Fs

max])
)

, (8)
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where σ represents the activation function and f 7×7 represents a 7 × 7 convolution.

3.3.3. Refine Structure

Context is very important in complex scene analysis. Many prediction networks may
ignore small and medium-scale targets in complex scenes if the contexts are not considered.
Meanwhile, large-scale targets may exceed the receptive field of network feature extraction,
which results in discontinuous segmentation. The pyramid pooling module (PPM) structure
can effectively obtain the cloud feature information of contact points with different scales,
which is conducive to the identification of small target objects [34,35]. Thus, PPM is
introduced into this study. Figure 11 shows the detailed PPM structure in proposed MFF_A
network, which consists of four pooling processes with different kernel sizes of (256, 1),
(512, 1), (1024, 1) and (2048, 1). This makes the PPM able to generate multi-scale features
of OCS. First, the PPM obtains the feature map through the convolution operation and
obtains the feature map of different scales through the global maximum pooling operation.
Then, the characteristic tensors of the different scales are convoluted to reduce the channel.
Finally, the transposed convolution operation is carried out to facilitate the superposition
and fusion of these feature tensors in the later stage. In addition, refinement process is also
used, which puts the initial segmentation result back into the PPM. This PPM refinement
can obtain the feature information of OCS facilities based on context with the spatial
relationship, and can achieve a fine classification of OCS segments.

Figure 11. Refine structure.

3.3.4. Channel Feature Enhancement

The feature enhancement strategy adopted in the proposed MFF_A starts from two
aspects. On the one hand, the feature channel is transformed from the original 64 to
16 through the convolution layer, and the ECA module is introduced to strengthen the
learning of channel features and to improve the expression ability of the feature channel
in important features. Then, the feature enhancement results are superimposed with the
feature extraction results of each scale in PPM. Finally, the features of these four scales are
superimposed and fused through and connected to realize the enhancement and fusion of
multi-scale features. On the other hand, the average pooled feature tensor of the feature
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tensor (24, 4096, 1, 64) is obtained through the GAP module, which is then superimposed
with the multi-scale feature fusion tensor obtained in the previous step to achieve the goal
of feature enhancement. This channel feature enhancement module adds only a small
number of parameters to obtain obvious performance gain.

3.4. 3D Model Reconstruction and Parameter Detection of OCS

The 3D model of various components of OCS is reconstructed after the deep-learning-
based semantic segmentation from the point cloud. We use piecewise straight line fitting for
contact wire and dropper; cylindrical fitting for the oblique cantilever, straight cantilever
and registration arm; and cube fitting for the steady arm.

As an important component of the catenary structure, the steady arm and the contact
wire interact directly with the pantograph to complete the current collection of the train. The
slope of the steady arm is essential to the pantograph contact performance and operation
safety [36]. In the process of rapid train operation, the vibration-induced effects caused
by pantograph coupling will usually loosen the bolt and nut structure of the positioner,
resulting in an abnormal slope value of the steady arm. The abnormal slope value will
accelerate the wear of the pantograph and hit the steady arm, which will affect the current
collection quality of the pantograph. Therefore, the normalized detection of steady arm
slope has significance in ensuring the safe operation of the train.

Catenary geometric parameters, such as contact wire height, stagger value and steady
arm slope angle, are measured based on the 3D modelling results. The contact wire height
measurement uses the elevation difference between the reconstructed suspension point
and the track centerline. Stagger value in a straight-line section is measured as the distance
from the vertical projection of the contact wire to the centerline of the track line, and the
reconstructed contact line model parameters are defined by Equation (9).

a = m + h× H
L

, (9)

where a denotes the stagger value of the catenary, m denotes the horizontal distance
between the contact wire of locating point and line center, h denotes the superelevation of
the outer rail, H denotes the height of the contact line and L denotes gauge.

The steady arm slope can be calculated through iterative closest point (ICP) registra-
tion between the steady arm model and steady arm point cloud by Equation (10).

cos θ =
−−−→ps pe ×

−−−→
ps pe

′∣∣∣∣−−−→ps pe

∣∣∣∣× ∣∣∣∣−−−→ps pe ′
∣∣∣∣ , (10)

where ps is the spatial coordinate values of the beginning point, pe is the endpoint and pe
′

is the pe projected onto the XOY plane.

4. Results and Analysis
4.1. Search Result

Experimental data are used to conduct the automatic search and extraction test of
OCS facilities based on a three-dimensional box. First, the first coarse selection stereoscopic
box and the accurately selected stereo box need to be set manually. In the algorithm, we
need the POS trajectory point in the experimental data area to be required as an auxiliary.
This paper takes the upper left corner of the panoramic point cloud as the starting point
to determine the position of the coarse selection stereoscopic box. The accurately selected
stereo box is within the coarse selection stereoscopic box, and its length, width and height
parameters are 49, 11, 3 m, respectively. The whole point cloud is divided into 156 segments,
and the processing efficiency is approximately two million pts/s. The ground points, track
points, facade baffles and poles have been excluded from the accurately selected stereo box
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of search and extraction (Figures 12–14), and the data obtained by cutting can meet the
requirements of the OCS component segmentation.

Figure 12. Fully automatic search and extraction result map of OCS facilities based on the stereoscopic box (red represents
the OCS result point cloud, yellow is the outer boundary stereoscopic box of segmented result point cloud and grey is
background point).

Figure 13. Display diagram of extracted result point cloud and background point cloud (red is a catenary result point cloud
and grey is background point).
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Figure 14. Detailed drawing of single-arm condition extraction result: (a) side view of single arm; (b) vertical view of single
arm; (c) side view of double arm; (d) vertical view of double arm.

4.2. MFF_A Segmentation
4.2.1. Segmentation Results

The proposed deep learning network model is verified to realize the semantic seg-
mentation of catenary facilities. This paper selects the representative typical point cloud
segmentation algorithm (PointNet/PointNet++) and feature extraction unit segmentation
model (FEU_SM) in the literature [8], in which, the number of adjacent points in the point
neighbourhood is set to 16. The segmentation results are shown in Figure 15.

For the straight cantilever and oblique cantilevers, PointNet is the worst, and this
algorithm has many misclassifications. As shown in the purple rectangle in Figure 15a,
straight and oblique cantilevers are classified incorrectly as wires because of the global
features reflected by the whole point cloud sample, and, thus, the local feature information
is not extracted. Therefore, when the types of OCS facilities are relatively similar, PointNet
may fail to effectively identify the corresponding types of OCS facilities, resulting in
misclassification. However, PointNet++ (MSG) and FEU_SM can effectively obtain local
features and can integrate them with global features to improve its feature expression
ability. The proposed algorithm uses multi-scale feature extraction and fusion modules to
focus effectively on the feature information of different details. Compared with the four
algorithms, the algorithm in this paper is the best in terms of the straight cantilever and
oblique cantilever segmentation.

For the elastic catenary wire, FEU_SM and this paper has a better segmentation
accuracy than PointNet and PointNet++ (MSG). The worst performance was PointNet++
(MSG), wherein a large number of elastic catenary wire point clouds were misclassified
into wire types. The algorithm in this paper segmented the elastic sling in better detail
than FEU_SM. A small number of point clouds in the elastic catenary wire area, as shown
in the purple rectangle box in Figure 15c, were mistakenly divided into wires, which was
significantly improved in Figure 15d.

For the tubes and positioners, both PointNet++ (MSG) and the algorithm presented
in this paper performed well. No misclassification of a large number of the steady arm
into the registration arm and contact wires was observed. The identification accuracy of
the steady arm is higher than that of the registration arm, but the algorithm in this paper
misclassifies a small part of the point cloud, where the registration arm contact wire is
wrongly classified into the registration arm.

For the dropper, FEU_SM has advantages over other algorithms, and has fewer
misclassifications because the feature extraction unit can effectively extract the distance in-
formation of adjacent point clouds and can adopt a MLP structure for the feature extraction
of higher dimensions.
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Figure 15. Cont.
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Figure 15. Segmentation results comparison with others: (a) PointNet; (b) PointNet++; (c) FEU_SM; (d) proposed MFF_A.

4.2.2. Quantitative Evaluation of the Segmentation Results

A comparison of the precision (P) and intersection-over-union (IoU) between the differ-
ent algorithms is conducted to assess the segmentation accuracy quantitatively (Table 1).

Table 1. Comparison with other algorithms (%). Bold indicate the best performance in the comparision.

OCS Type Classification
Proposed MFF_A FEU_SM PointNet++ (MSG) PointNet

P IoU P IoU P IoU P IoU

Steady arm 96.34 86.21 95.69 87.60 90.38 85.31 92.46 81.65
Straight cantilever 93.64 88.63 90.65 87.46 91.86 85.76 86.49 78.91
Oblique cantilever 92.95 89.40 91.21 84.65 91.46 86.94 87.61 76.59
Registration arm 94.51 92.65 95.39 93.08 95.60 91.74 93.12 88.32

Elastic catenary wire 98.61 96.48 99.42 99.03 98.06 97.59 98.64 98.16
Dropper 95.65 92.32 96.44 91.36 95.25 93.17 90.78 75.49

Contact wire 99.87 99.69 99.39 99.14 99.68 98.33 99.28 98.75
Catenary wire 99.39 99.29 99.35 99.26 98.23 98.01 97.04 96.49

Average 96.37 93.08 95.94 92.70 95.07 92.11 93.18 86.80

Compared with the other similar algorithms, the proposed MFF_A has the best
performance in terms of P and IoU, with the highest precision and IoU of 96.37% and
93.08%, respectively. Among the four algorithms, the P and IoU decrease from MFF_A,
FEU_SM, PointNet++ (MSG) and PointNet. The performance of the PointNet is the worst
because PointNet uses mainly MLP to extract global features of OCS facilities and lacks
local feature extraction. Then, multi-scale grouping (MSG) improves this problem and
locally samples and groups the point cloud. It introduces systematic down sampling
and an encoder–decoder structure, and uses a jump connection to fuse shallow features
with deep features to obtain good semantic segmentation results. In FEU_SM, the context
feature of each single frame point cloud is extracted mainly through the improved point
net, and the adjacent point distance analysis of single-frame data is combined with the
feature extraction unit to realize the semantic segmentation of OCS. In this algorithm, the
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spatial and channel attention mechanism is introduced and combined with the fusion of
multi-level shallow features and deep features. Then, the residual of the initial score result
is used to refine the structure and to extract multi-scale feature information more effectively.
Therefore, this algorithm is in the lead among the average values of P and IoU.

For most OCS facility point cloud types, the P and IoU of this algorithm are better than
other algorithms; in particular, the registration arm, straight cantilever, oblique cantilever,
contact wire and catenary wire are in the lead in terms of accuracy. Meanwhile, the straight
cantilever, oblique cantilever and contact wire are in the lead in terms of the intersection
and combination ratio.

Overall, the P and IoU of the straight cantilever and oblique cantilever are at least 1.8%
and 1.2% higher than other algorithms. Therefore, this algorithm has better practicability.

4.2.3. Parameter Complexity

Multiply–accumulate operations (MACs) were used to evaluate the parameter com-
plexity of the proposed algorithm. Figure 16 shows the proposed MFF_A; that is, the
segmentation algorithm MACs and the total number of parameters are at the minimum
because the proposed network uses fewer full connection operations and the MLP structure
of a smaller convolution kernel, which is the lightweight attention mechanism ECA intro-
duced in this paper without increasing the number of parameters. The MFF_A network not
only has a better performance in terms of accuracy but also has fewer network parameters
with regard to efficiency. The results of initial segmentation are further segmented by
a refinement structure to obtain higher precision results and reduce the complexity of
the model.

Figure 16. Comparison of MACs and parameter number.

4.3. Geometric Evaluation of Reconstruction Results

In this paper, the DJJ-8 laser catenary detector was used to manually measure the
catenary set parameters in a certain section of the experimental area and to evaluate the
reliability and correctness of the method described in this chapter for the detection of
catenary geometric parameters. It can measure more than ten geometric parameters of
the catenary, such as the contact wire height, stagger value, steady arm slope and so on.
The measurement data of DJJ-8 are selected as a reference, which can be regarded as the
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ground truth. We assess if our approach detection results meet the accuracy requirements.
The comparison results are shown in Figure 17.

Figure 17. Comparison of the results of different measurement methods: (a) steady arm slope; (b) the height of contact wire;
(c) the stagger of contact wire, which is designed as a left–right symmetrical structure; (d) the difference in steady arm slope;
(e) the difference in contact wire height; (f) the difference in contact wire stagger.

The results of the comparative analysis of the detection results of the two measurement
methods show that the difference in the detection values of the steady arm slope is within
a 0.5 degrees difference. As for the stagger of the contact wire, the maximum difference is 7
mm and the average value is 3 mm. In terms of the height of the contact wire, the maximum
difference is 8 mm and the average value is 3 mm. Provisional technical conditions for
catenary suspension condition detection and the monitoring device (TJ/GD006-2014) [37]
specifies the range and accuracy of catenary suspension condition detection and static
geometric parameters. The accuracy of the contact wire height is required to be 5 mm, the
stagger is required to be 20 mm and the steady arm slope is required to be 0.5 degrees.
Hence, the detection accuracy of the proposed framework in this paper for the geometric
parameter detection is equivalent to that of the conventional special measuring instrument,
with much convenience and automation.

5. Conclusions and Future Works

An automatic search and extraction method based on stereo frame OCS facilities
is proposed considering the lack of point cloud search and extraction ability of OCS
facilities in previous studies. The method achieves an automatic search and extraction of
catenary facility point cloud information from the original 3D point cloud scene through
the steps of positioning the dual selection stereo frame, a determination of the offset
vector of the dual selection stereo frame and the automatic attitude adjustment of the
selected stereo frame assisted by POS data along the rail. An attentional mechanism
feature extraction method based on ECA and CBAM was proposed to enhance the feature
extraction capability, promote the multi-level shallow feature and deep feature fusion,
refine the structure by the residual of the initial segmentation results and address the
problems in the semantic segmentation of the contact point cloud explored in previous
studies. A semantic segmentation model based on MFF_A is then proposed to realize
catenary facility classification. The three-dimensional models of the contact wire and the
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dropper are reconstructed through piecewise linear fitting. The 3D model of the steady
arm is reconstructed by cube fitting. A geometric parameter detection method based on the
catenary model is proposed. Experimental results show that the proposed automatic search
and extraction method has the advantages of fast speed and a high extraction accuracy,
and is suitable for terrain relief and curves. The proposed catenary semantic segmentation
method based on deep learning has a better accuracy and computational efficiency than
other similar algorithms. The method of catenary 3D reconstruction by fitting straight lines
and cubes is effective, and the measurement accuracy of the catenary geometric parameters
meets the measurement requirements. In this paper, catenary facilities search, extraction
and segmentation, model reconstruction, geometric parameters detection and other fields
have broad application prospects.

In the future, in order to improve the relative accuracy of OCS detection, we will use
other brands of laser scanners. We will collect more experimental data to improve the
accuracy of point cloud semantic segmentation, such as stations and different railway lines.
In order to reduce the equipment cost and improve the application, we will develop a
light VMMS.
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