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Abstract: Recently, deep learning-based methods, especially utilizing fully convolutional neural
networks, have shown extraordinary performance in salient object detection. Despite its success, the
clean boundary detection of the saliency objects is still a challenging task. Most of the contemporary
methods focus on exclusive edge detection modules in order to avoid noisy boundaries. In this
work, we propose leveraging on the extraction of finer semantic features from multiple encoding
layers and attentively re-utilize it in the generation of the final segmentation result. The proposed
Revise-Net model is divided into three parts: (a) the prediction module, (b) a residual enhancement
module, and (c) reverse attention modules. Firstly, we generate the coarse saliency map through
the prediction modules, which are fine-tuned in the enhancement module. Finally, multiple reverse
attention modules at varying scales are cascaded between the two networks to guide the prediction
module by employing the intermediate segmentation maps generated at each downsampling level
of the REM. Our method efficiently classifies the boundary pixels using a combination of binary
cross-entropy, similarity index, and intersection over union losses at the pixel, patch, and map
levels, thereby effectively segmenting the saliency objects in an image. In comparison with several
state-of-the-art frameworks, our proposed Revise-Net model outperforms them with a significant
margin on three publicly available datasets, DUTS-TE, ECSSD, and HKU-IS, both on regional and
boundary estimation measures.

Keywords: Revise-Net; salient object detection; deep learning; reverse attention; natural scene
datasets; image segmentation

1. Introduction

The word “salient” describes a property of an object or a region that attracts the human
observer’s attention, for example, the object in a scene that humans would naturally focus
on. Humans quickly allocate attention to important regions in visual scenes. The visual
system in humans comprises an optimal attentive mechanism capable of identifying the
most relevant information from images. Understanding and modeling this visual atten-
tion or visual saliency is a fundamental research problem in psychology, neurobiology,
cognitive science, and computer vision. There are generally two computational models
used for identifying the visual saliency, namely fixation prediction (FP) and salient object
detection (SOD). FP originated from cognitive and psychology communities [1–3] and
targets predicting where people look in images.
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The history of SOD is relatively short and can be traced back to [4,5]. The rise of SOD
has been driven by a wide range of object-level computer vision applications. Instead of FP
models only predicting sparse eye fixation locations, SOD models aim to detect the whole
entities of the visually attractive objects with precise boundaries. The past decade has seen
a lot of improvements in object detection, especially in SOD [6]. Hence, it is an important
computer vision task aimed at precise detection and segmentation of visually distinctive
image regions, widely used in many fields, such as image understanding [7], visual track-
ing [8], and semantic segmentation [9,10]. Our work concentrates on the SOD aiming to
efficiently segment pixels of salient objects in the provided input images. The proposed
method finds its immediate applications in image segmentation [11,12] and manipula-
tion [13]. The usage can be further extended to user interface optimization [14] as well
as visual tracking [8]. Earlier SOD models used multi-layer perceptron (MLP) to predict
saliency score; however, in the recent days, fully convolution neural networks [15–17]
have been leveraged for the SOD task. Several models are designed to use deep feature
extractors by using the existing networks such as ResNet, DenseNet, and AlexNet. These
networks mainly extract features that are representative of semantic meaning and ignore
the global contrast information.

Even though these methods produce significantly higher results when compared to
traditional approaches, they fail to capture the finer structures present in representations,
resulting in noisy boundaries in saliency maps. Further, these frameworks do not address
the irregularity in the predicted regional probabilities affecting the overall performance of
the network. In order to produce finer segmentation maps, it is necessary to utilize both
global contextual features over which the saliency is defined, as well as the finer structural
information present in the image data [18]. Furthermore, most of these pipelines employ
cross-entropy loss for the network training, which usually provides low confidence in
distinguishing the boundary pixels, resulting in fuzzy edges.

To overcome the above-stated problems, we propose a new model called Revise-Net,
which produces precise segmentation maps with superior object boundaries for SOD.
In order to extract low-level finer information, we utilize a prediction module resembling a
U-Net [19]-like encoder–decoder architecture. In order to avoid an exploding gradient, we
employ residual blocks with skip connections in various phases throughout the network.
In addition, a residual enhancement module (REM) is cascaded to the primary network
for refining the output of the prediction module (PM), thereby producing an accurate
saliency map with clear edges. Finally, we leverage the reverse attention module (RAM)
as a bridging link within the two modules in order to attentively guide the prediction
module using the intermediate segmentation maps of the REM, thus boosting the overall
segmentation performance. In order to obtain sharper boundaries, we use a combination
of binary cross-entropy (BCE) loss with structural similarity index measure (SSIM) and
intersection over union (IoU) loss. Rather than simply utilizing several boundary detection
losses such as NLDF+ [20], C2S [21], etc., we incorporate the precise prediction of boundary
in the combination of losses itself in an attempt to reduce any errors occurring due to cross
propagation of information learned in the edge with other regions in the image. The major
contributions of the proposed work include:

1. We propose a novel encoder-decoder based architecture, called Revise-Net, that
contains a principal PM for generating the initial coarse segmentation maps. These
maps are then passed through the REM for utilisation of the high-level finer features,
which increase the overall quality of the final segmentation output.

2. The intermediate segmented maps generated in each decoding layer of the REM are
utilized to attentively guide the PM via RAMs on multiple scales cascaded between
the two networks.

3. The proposed method further employs a combination of losses by fusing BCE, SSIM,
and IoU for the supervision of the training process as well as for accurately predicting
the segmentation map at patch, pixel, and map levels.
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4. The proposed Revise-Net model is thoroughly evaluated on three publicly available
natural scene datasets: DUTS (DUTS-TR for train and DUTS-TE for test) [22], HKU-
IS [23], and Extended Complex Scene Saliency Dataset (ECSSD) [24] for boundary-
aware segmentation. The proposed framework, when compared with 10 state-of-the-
art methods, outperforms those methods by a significant margin.

The source code is also made available at: https://github.com/yashkarbhari/Revise-
Net, accessed on 30 November 2021.

2. Related Work

The task of SOD is driven by and applied to a wide range of object detection applica-
tions in various areas. From traditional methods [25–27] to deep recurrent and attention
methods [28–30], different deep learning approaches have been proposed to date. Recently,
deep learning-based SOD algorithms have readily shown superior performances over
traditional solutions and have continued to improve the state-of-the-art results. Encoder–
decoder-based approaches have been used recently to predict the saliency map of the image.
In particular, UNet [19] and its variants, such as in [31], have shown impressive results
in semantic segmentation tasks as well as in producing saliency maps. The method [32]
proposed by Qin et al. is a two-level nested U-structure built using novel residual U-blocks
(RSU) that is designed for SOD without using any pre-trained backbones from image clas-
sification. A lot of other approaches have developed stacking nested U-Nets on top of each
other, but they are very computationally expensive to handle, and the complexity grows sig-
nificantly. In [32], each stage is filled by a well-configured RSU, which extracts intra-stage
multi-scale features without degrading the feature maps, which makes the U2Net approach
less computationally expensive. The authors of the U2Net approach have observed marked
improvements in mean absolute error (MAE), weighted F-measure, and computational
cost. The work by Han et al. [33] proposed a constraint-based U-Net structure that can fuse
the features of different layers to reduce the loss of information. An edge convolutional
constraint has been added to a modified U-Net to predict the saliency map of the image.
The model is effective in SOD tasks and is also competitive when compared with other
state-of-the-art models. Yu et al. [34] proposed an encoder–decoder-based aggregation
module to learn different features from salient regions with each upsampling layer receiv-
ing the features of the corresponding downsampling layer with the final encoder to capture
the detrimental global context in predicting salient regions. This further highlights the
need for complementary global with the local CNN features to improve the performance of
the architectures. Zhang et al. [35] produced a noise-aware architecture for a clear saliency
predictor generating noisy labels by unsupervised handcrafted method.

A significant number of methods in the recent literature employ some variety of feature
fusion in their methods. These features may be produced due to the maps of different
resolutions, which leads to multi-scale and multi-level feature fusion. The Deepside
architecture proposed by Fu et al. [36] uses a VGG 16 architecture as a primary backbone
of their proposed model. Deepsides have been drawn from the intermediate hidden layers
of the VGG architecture at different resolutions, and the proposed loss function has been
applied by processing the outputs of each side non-linearly through a set of convolutional
layers. The output has been fused by using a concatenation layer, since the rich hierarchical
side features improve the saliency homogeneity of the model. The authors claim that
the backbone plays a significant role in the performance of the model, and the model
may perform better with a ResNet- or an InceptionNet-based backbone. Feature fusion
is also achieved by combining features from RGB images and depth images. This has
been demonstrated in the method proposed by Wang et al. [37]. This method makes
use of RGB images along with the aligned depth images in order to train two U-Net
based architectures, each of whose outputs have been fused into a unimodal saliency
prediction stream in order to obtain the final saliency map. The use of feature fusion
modules shows that it is often necessary to fuse maps different features activated in order
to obtain high-quality saliency maps. Wang et al. [37] also propose the use of three losses
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in order to train each sub-network and the saliency prediction stream, namely the saliency
loss, the switch loss, and the edge-preserving loss. The edge-preserving loss, in particular,
helps to correct the blurry images and improves the spatial coherence of the final saliency
maps generated. Depth maps and feature fusion has also been utilized by Liu et al. [38]
in a recurrent convolutional neural network (RCNN) framework. This method achieves
multi-scale maps of the shallow layers that preserve the image features more, and the
deeper layers produce maps with more global semantic information. Authors in [39]
proposed a network that effectively integrates low-level and high-level semantic features
with global contextual features that undergo head attention to avoid feature redundancy.
The final features undergo self-refinement utilizing simple convolutional layers. However,
the squeeze operation involved might result in loss of feature information and hence
affect the final reconstruction of features. Wei et al. [40] propose a fusion scheme of high
land low features, which preserves rich details and background noise that have essential
boundary information, thus producing accurate saliency maps. Kousik et al. [41] designed
a method by combining the idea of convolutional neural networks and recurrent neural
networks (RNN) for video saliency detection. They created a convolutional recurrent
neural network (CRNN), and the experiments reveal that the CRNN model achieves
improved performance compared to other state-of-the-art saliency models. The authors
of [42] proposed a deeply-supervised nonlinear aggregation (DNA) for better leveraging
the complementary information of various side outputs. Results show that a modified
U-Net architecture with DNA performs favorably against state-of-the-art methods on
various datasets.

Several modifications have been made in architectures to improve feature flow and
extraction, achieving accurate saliency maps. Mohammadi et al. [43] propose a feature
guide network that can suppress the non-salient regions that are difficult to differentiate
and thus creates more distinct background and foreground. Dilated convolutions of atrous
spatial pyramidal pooling layers achieve a multi-scale feature extraction that aids the
generation of more detailed saliency maps. In the work performed by Zhang et al. [44],
the authors have tried to leverage image captioning, and it is utilized in SOD problems.
Their proposed architecture uses local and global visual contexts along with an image
captioning module in order to achieve accurate salient objects. These methods, in most of
the cases, despite their efficiency, tend to be incredibly complex and difficult to implement
practically and therefore lose their utility in practical fields. Kong et al. [45] propose a
novel spatial context-aware network (SCA-Net) for SOD in images, as SCA-Net more
effectively aggregates multi-level deep features. Additionally, a long-path context module
(LPCM) is employed to grant better discrimination ability to feature maps that incorporate
coarse global information. Results show that SCA-Net achieves favorable performances
against very recent state-of-the-art algorithms. The authors of [46] propose a simple gated
network (GateNet); the authors designed a novel gated dual branch structure to build the
cooperation among different levels of features and improve the discriminability of the
whole network. The results of five challenging datasets demonstrate that the proposed
model performs favorably against most state-of-the-art methods under different evaluation
metrics.

3. Proposed Work

This section demonstrates the overall architecture of the proposed model, which is
shown in Figure 1. A common conceptualisation of the image-based SOD problem is
as follows: given an input image I ∈ RW×H×3 of size W × H, an SOD model f maps
the input image I to a continuous saliency map S = f (I) ∈ [0, 1]W×H . For learning-
based SOD, the model f is taught through a set of training samples. Given a set of
static images I = {In ∈ RW×H×3}n and corresponding binary SOD ground-truth masks
G = {Gn ∈ {0, 1}W×H}n, the goal of learning is to find f ∈ F that minimizes the prediction
error, i.e., Σnl(Sn, Gn), where l is a certain distance measure, Sn = f (In), and F is the set of
potential mapping functions.
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The proposed SOD framework consists mainly of three modules. The prediction
module (PM) takes the RGB (red-blue-green channels) image as an input to generate the
coarse segmentation map. This is, in turn, fed to the residual enhancement module (REM),
which fine-tunes the generated coarse representations to refine saliency maps by learning
the residual semantic features between the coarse map and the ground-truth. Furthermore,
reverse attention modules (RAMs) are finally introduced in the skip connections between
the two cascaded encoder–decoder networks in order to attentively learn the high-level
semantic features from the parallel branches.

Figure 1. Overall framework for the proposed Revise-Net model consisting of two cascaded encoder–decoder modules.
The first module is a U-Net-like architecture with residual blocks in the encoding and decoding layers. The second module
is the REM to fine-tune the output predicted map. Finally, the RAM modules are cascaded between the two networks for
revising the final saliency map.

3.1. Prediction Module

Following the works of [19,47], we form the PM of our architecture, which captures
both global contextual information and lower-level semantics effectively to improve the
overall feature representation at each stage of the network. To address the problem of
over-fitting in the network, each decoding layer is supervised with the corresponding
ground truth of the input scene image [48]. The encoding half of the network consists
of an input layer and 6 phases. The input layer is a convolutional layer with a filter size
of 3× 3 and a stride size of 1× 1. Each phase comprises a basic residual block, the first
four of which are adopted from the ResNet-34 [49]. Unlike in ResNet34, the input layer is
not followed by a max-pooling operation, implying that the image maintains its spatial
resolution for the second phase, enabling the network to obtain feature maps of higher
resolution in the initial phases for feature extraction. However, such an arrangement results
in decreasing the overall receptive region. Thus, to widen the overall receptive fields in
the proposed framework, two additional phases are included after the first four phases,
consisting of three basic residual blocks with 512 channels, followed by a non-overlapping
2× 2 max-pooling operation.

In order to capture the global information, a bridge stage is added while transitioning
from the encoding path to the decoding path. It comprises three convolutional layers with
a kernel size of 3× 3 and a dilation rate of 2, which is followed by batch normalization
and rectified linear unit (ReLU) activation. The decoding layers are symmetrical to the
encoding layers, where each stage receives an input of the concatenated feature maps of
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the previously upsampled output and the output from its corresponding encoding layer.
In order to obtain a saliency map from each decoding layer, the output of the bridge and
downsampling layers are passed through 3× 3 convolutional layers, followed by bi-linear
upsampling and sigmoid activation.

3.2. Residual Enhancement Module

Often, the predicted segmentation maps either have noisy and blurry boundaries or
include irregularly predicted regional probabilities. Therefore, it is essential to fine-tune
these coarsely obtained segmented maps in order to obtain an enhanced output feature
map. Several context extraction modules such as the refinement module in [50] often
leverage only local contextual information, which fails to capture the global dependencies
owing to smaller receptive fields. To capture the multi-scale context, the work reported
in [51] proposes a three-scaled pyramidal pooling module. However, the module, being
shallow, fails to capture the essential high-level semantic information. In order to utilize
the high-level context information, we introduce the REM being cascaded to the prediction
network. We also employ the residual encoding–decoding architecture, which is similar to
but much simpler than the employed PM. The REM module consists of an input layer and
the encoding and decoding layers with an intermediate bridge with a total of four phases.
Each phase consists of a single convolutional layer of kernel size 3× 3 having 64 channels
followed by batch normalization and ReLU. The bridge stage has a similar structure to that
of the PM. The downsampling operations consist of non-overlapping max pooling, and the
upsampling operations employ bi-linear interpolation. The final segmentation map thus
obtained through the REM module is the saliency output of the network.

3.3. Reverse Attention

The proposed architecture finally employs four RAMs attached in a cascaded fashion
in order to produce finer and more precise segmentation outcomes. The overall workflow
of RAM is shown in Figure 2. This arrangement replicates the way human experts produce
segmentation maps from natural scene images by producing a rough segmentation map
and, subsequently, a finer segmentation map. The lower modules produce a coarser
saliency map with higher semantic confidence but low resolution, whereas the higher RA
module adaptively localizes the aberration areas from two parallel high-level feature maps
and thus helps in producing finer segmentation maps. A sequential capitalization of the
complementary regions is achieved by the removal of the existing aberration locations.

The network as explained is, in general, composed of two parts: the PM, which
generates a coarse saliency map by supervision at every layer of the decoder, followed by
a REM that has an architecture similar to that of the PM but with fewer layers. In theory,
the REM generates a finer saliency map from the coarse maps generated by the PM,
the intermediate maps. These fine maps are produced by the decoder of the REM following
a residual feature extraction in the encoder section of the REM. We aim to capitalize this
property of the final decoding structure and feed the finer saliency maps back to the
skip-connections in the PM structure. This helps the model to produce finer and more
nuanced saliency maps, closer to the ground-truth. In order to achieve this, we propose
the use of RAM in the skip connection of the PM architecture that efficiently handles the
proposed back-feeding operation and attentively guides the model into producing finer
saliency maps.

Essentially, the RA modules take three input maps—the primary skip connection
map, the back-fed map from the REM decoder after upsampling, and another map from a
higher level in the PM encoder, downsampled to feed to the RA module. The high-level
map fed from the PM encoder is supervised in order to produce guidance for the RAM
that allows it to help generate finer saliency maps. In principle, the back-fed map is very
finely formed, whereas the map fed from the higher layer in the PM is coarsely composed.
Therefore, the RA module combines the high semantic confidence of the coarse saliency
maps, and the finer intermediate saliency maps help the model to learn the locations of
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the aberrations that produce coarseness and inaccuracies in the saliency maps. In the RA
module, the high-level saliency map of the skip connection Si and the primary saliency
map Fi−1 are concatenated as shown in Equation (1). The output feature map Ri is then
obtained by taking the element-wise product (�) of the fused saliency map with the RA
parameter Ai, as shown in Equation (1):

Ri = concat(Fi−1, Si)� Ai, (1)

where concat(Fi−1, Si) represents the concatenation operation followed by three 2D con-
volution operations. The parameter Ai forms the key aspect of the RA module and is
mathematically computed as follows as in Equation (2):

Ai = E(	(σ(P(Si+1))), (2)

where P represents an upsampling operation, σ represents the Sigmoid activation function,
and 	 is an inversion operation that inverts the input map. Here, E is used to denote the
expansion of a single feature channel to a number of repeated matrices, which involves
reversing each channel of the input matrix in Equation (1). The Si+1 is a binary coarse
segmentation map generated from each upsampling layer using the sigmoid activation.
The choice of activation can be attributed to the fact that the pixels’ values of Si+1 need to
be scaled down to a range of 0 to 1. Unlike the sigmoid activation, several widely used
activation functions such as tanh and ReLU output values ranging from −1 to 1 and 0 to
infinity, respectively. Furthermore, the sigmoid activation is widely used for obtaining the
segmentation maps, which is a pixel-wise classification statement with two classes (hence
binary), i.e., the background and foreground.

Figure 2. Workflow of the REM taking three inputs: (i) the intermediate enhanced map form the decoding layers of the REM
Si+1, (ii) encoded feature map of the first convolution Fi, and (iii) input feature map from the from skip connections Fi−1.
The feature maps, Fi and Fi−1 from the skip connections of PM are concatenated together to undergo a series of convolutions.
The output thus obtained is multiplied with the additive inverse of Si+1. The final reverse attention map Ri is generated on
balancing the number of channels by 1× 1 convolution.
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3.4. Loss Function

To improve the confidence score in differentiating the boundary pixels and enforce
structural similarity in the final segmentation output and the ground-truth, we utilise a
combination of the BCE loss and SSIM loss. Additionally, we incorporate the IoU loss in
order to improve the extent of overlap between the segmentation map and ground truth.
The BCE loss is a widely used classification loss for two classes, namely the background
and the foreground. It can be mathematically expressed as Equation (3).

LBCE(GT, SM) = − ∑
(x,y)

[GT(x, y) · log (SM(x, y)) + (1− GT(x, y)) · log (1− SM(x, y))] (3)

where GT(x, y) ∈ (0, 1) represents the ground-truth label of the pixel (x, y), and SM(x, y)
is the corresponding prediction for that pixel.

The IoU adapted as a training loss [52,53] can be represented as in Equation (4).

LIoU = 1− ∑H
r=1 ∑W

c=1 SM(x, y)GT(x, y)

∑H
r=1 ∑W

c=1[SM(x, y) + GT(x, y)− SM(x, y)GT(x, y)]
(4)

For x and y, which are the two pixel values corresponding to patches of size N × N
that cropped from SM and GT, the SSIM loss [54] can be formulated as in Equation (5).

LSSIM = 1−
(2µxµy + λ1)(2σxyλ2)

(µ2
x + µ2

y + λ1)(σ2
x + σ2

y + λ1)
(5)

Here, µx and µy represent the mean, σx and σy denote the standard deviation of the
respective pixels under consideration, x and y, and σxy is their co-variance. λ1 and λ2 are
two non-zero values to avoid division by zero.

The local neighbourhood of each pixel is taken into account when the SSIM loss is
applied on a patch-level. This loss has been specifically designed to focus the optimisation
on the boundary regions, because the loss assigns higher weight towards the boundaries.
This effectively increases the probabilities on the boundary, even if the activation around
the boundary and the foreground is nearly the same. Therefore, as a result, the loss along
the boundary is the greatest during the beginning phase of the training and as the training
progresses, the background loss dominates over the foreground loss. This is generally
towards the end of the training process when the background pixels drop very close to the
ground truths.

When SSIM loss is combined with BCE loss, the dominant background loss ensures
that the gradients do not become too diminished to drive the training of the model, when
the BCE loss is too low to generate strong gradients. A cleaner set of background maps
is generated, since the background loss pushes the total loss towards a more optimal
minimum. IoU loss is also combined as a map-level loss in order to ensure high confidence
of the pixel classification, and this further pushes the model to make better predictions. IoU
loss, in theory, gives a measure of the overlap between the prediction and the ground-truth
foregrounds, and the better the prediction, the greater the overlap and the lower the loss.
Therefore, by a combination of the three losses, we utilise the respective advantages of
all the three losses, and the shortcomings of each loss have been effectively nullified by
the merits of the others. As such, the BCE loss maintains a smooth gradient flow for all
pixels for a pixel-level classification, the IoU loss puts more emphasis on the foreground
and hence leads to the foreground being predicted better and with higher confidence,
and the SSIM loss ensures that the structural integrity of the original image is maintained
by enhancing the loss around the boundary regions of the saliency maps.

4. Experimental Results

In this section, we report our experimental results on RGB SOD datasets. The proposed
architecture is trained and evaluated on three standard benchmark natural scene datasets
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namely, DUTS [55,56], HKU-IS [23], and ECSSD [24]. The network is trained on DUTS
for 200k iterations and 150k iterations on HKU-IS and ECSSD setting the batch size to 8.
The architecture requires around 48 h to complete the training process being implemented
on the PyTorch 1.9.0 framework using a Tesla-P100 GPU. The general description of the
datasets used is given below.

• DUTS dataset [22]: This is a collection of 15,572 images intended for saliency detection.
The dataset is split into the training set, DUTS-TR having 10,553 images taken from the
ImageNet DET training/val sets and the test set, and DUTS-TE having 5019 images
taken from the ImageNet DET test set as well as the SUN dataset. The ground-truths
have been accurately generated by 50 human subjects. The dataset is the largest of the
three datasets used in the study and has very challenging scenarios, which explain
why the performance of the proposed model is the lowest when compared to the other
datasets used to evaluate the model.

• HKU-IS dataset [23]: The HKU-IS dataset consists of 4447 images for saliency detection.
The training dataset consists of 3557 images, while the test set consists of 890 images.
This dataset consists of images with low contrast or multiple objects, which makes the
saliency detection task on the dataset somewhat challenging.

• ECSSD dataset [24]: The extended complex scene saliency dataset (ECSSD) consists of
1000 images with their respective ground-truths, split into 900 train images and 100 test
images. The images of the dataset consist of mostly complex scenes, whose textures
and structures resemble those of real-world images. The ground-truth saliency maps
of the dataset were prepared by five human experts.

4.1. Evaluation Metrics

Four widely used evaluation metrics have been considered to evaluate the overall
performance of the proposed Revise-Net that have been listed as follows:

1. MAE: The MAE estimates the approximation degree between the saliency map ~S and
the binary ground-truth ~G, both normalized in the range [0, 1]. As mentioned in [6],
other measures do not take into consideration the true negative saliency assignments.
However, the evaluation on non-salient regions can be unfair, especially for the
methods that successfully detect non-salient regions but do not detect salient regions
due to overlap-based evaluation. The MAE score is defined as:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|~S(x, y)− ~G(x, y)| (6)

2. F-measure wFβ: wFβ is an overall evaluation standard computed by a weighted
combination of precision and recall. The wFβ measure offers a unified solution for the
evaluation of binary and non-binary maps. We use a weighted harmonic mean beta,
and β2 is set to 0.3, as suggested by [25,57]. wFβ is defined as:

wFβ =
(1 + β2)Precisionw·Recallw

β2·Precisionw + Recallw (7)

3. S-measure Sα: The authors in [58] proposed a novel and easy-to-calculate measure
known as structural similarity measure Sα or S to evaluate the non-binary foreground
maps. The S-measure combines the region-aware (Sr) and object-aware (So) structural
similarity as their final structure metric:

S = α ∗ So + (1− α) ∗ Sr, (8)

where α ∈ [0, 1]. We have experimentally set α = 0.5 in our implementation.
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4.2. Quantitative Results

The model performs efficiently, producing MAE scores of 0.033, 0.029, and 0.036 and
mean F-measures of 0.900, 0.937, and 0.947 on the DUTS-TE [22], HKU-IS [23], and EC-
SSD [24] datasets, respectively. This shows that our proposed model produces very high-
quality saliency maps, and that the performance is extendable over multiple datasets,
which proves of the robustness of the model as well as its capacity to generalize the data
provided. An evaluation of the S-scores also shows that the model achieves high metrics of
0.907, 0.889, and 0.874 on the said datasets, respectively, which further confirms the merits
of the proposed model. A comparison of the proposed model with state-of-the-art models
in the contemporary literature has been provided in Table 1. Figure 3 displays the plots of
the precision-recall curves of our model on three SOD datasets. As observed from Figure 3,
the proposed framework provides a very high precision to recall ratio, suggesting a high
trade-off rate between the true positives and predicted positives. Here, the positives refer
to the salient class that is the foreground. Furthermore, we plot the F-measure for varying
thresholds. It is noted that the values of the F-measure remain fairly constant for varying
confidence thresholds highlighting the accuracy of the model to correctly classify pixels to
their respective classes. Moreover, our model produces significantly higher improvements
in case of DUTS-TE [22] dataset, which includes fairly complex images with hard-to-find
objects and optical illusions.

Figure 3. Precision-recall curves generated by the proposed Revise-Net model on DUTS-TE, HKU-IS, and ECSSD datasets.

4.3. Comparison with State-of-the-Art

We have compared our model’s performance with 10 state-of-the-art networks pre-
viously used for SOD on three benchmark datasets: DUTS-TE [22], HKU-IS [59], and EC-
SSD [60], which are as follows: AFNet [61], CapSal [44], CPD-R [62], DSS [63], MLMS [64],
MSWS [65], PoolNet [66], U2-Net [32], and EG-Net [17]. In order to preserve the integrity
of the evaluation and to obtain a fair comparison with existing SOD approaches, we have
utilized the saliency maps of different methods, which are either published by the au-
thors or achieved by running the publicly available codes on the datasets being evaluated
maintaining the method-specific training environment.

4.3.1. Comparison over DUTS-TE Dataset

The proposed model, upon evaluation of the DUTS-TE dataset [22], performs quite
well, providing superior results to several state-of-the-art methods, as observed in Table 1.
Our model produces a mean F score of 0.900, a mean average error of 0.033, and an S-
measure of 0.880. An inspection of the Table 1 also makes it apparent that the proposed
model generates better results than the state-of-the-art methods. Our model has a signifi-
cantly higher F score than both CapSal [44] and MLMS [64] models and produces better
results than the PoolNet model [66] by 0.8% on the F-measure metric. We have calculated
both the wFβ score and maxFβ score on DUTS-TE dataset, which are found to be 0.906 and
0.934, respectively. We have also provided the Sα score of 0.907. The comparison of the
results of this dataset shows the efficacy of the REM, which is introduced in our model,
over standard feature fusion or aggregation modules, as proposed in PoolNet model [66].
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Table 1. Comparison of the proposed Revise-Net with state-of-the-art baselines on DUTS-TE, HKU-IS and ECSSD datasets.

Model
DUTS-TE HKU-IS ECSSD

F MAE S F MAE S F MAE S

AFNet [61] 0.862 0.046 0.866 0.923 0.036 0.905 0.935 0.042 0.914

CapSal [44] 0.789 0.044 - 0.878 0.039 - - - -

CPD-R [62] 0.865 0.043 - 0.925 0.034 - 0.939 0.037 -

DSS [63] - - - 0.920 0.035 - 0.928 0.048 -

MLMS [64] 0.802 0.045 0.856 0.893 0.034 0.901 0.914 0.038 0.911

MSWS [65] - - - - - - 0.878 0.096 -

PoolNet [66] 0.892 0.036 - 0.935 0.030 - 0.945 0.038 -

U2-Net [32] - - - - - - 0.943 0.041 -

EGNet [17] 0.893 0.039 0.875 0.929 0.034 0.910 0.943 0.041 0.918

PAGE Net [67] 0.817 0.047 - 0.920 0.030 - 0.926 0.035 -

Revise-Net 0.900 0.033 0.880 0.937 0.029 0.898 0.947 0.036 0.919

4.3.2. Comparison over HKU-IS Dataset

Upon evaluation on the HKU-IS dataset, our proposed Revise-Net model produces
a high mean F score of 0.937, a mean average error of 0.029, and an S-measure of 0.898.
The wFβ and Eξ scores are calculated as 0.871, 0.942, respectively. These values are very
high as compared to state-of-the-art methods, which is confirmed by Table 1. Here, it is
to be noted that the architecture proposed in PAGE Net [67] consists of an arrangement
for edge detection that improves the results for the SOD task. On the other hand, the
EGNet model [17] proposes an additional supervision for detection of the edge features.
Although we have made no arrangement to make the model learn the edge features,
the use of SSIM loss incorporated in our overall objective function suffices for this task.
Therefore, our choice of the loss function can be considered an optimal one. As a result,
the proposed architecture produces better results than state-of-the-art methods such as
DSS [63], AFNet [61], and PoolNet [66], among others.

4.3.3. Comparison over ECSSD Dataset

A similar evaluation procedure on the ECSSD dataset generates a mean F score of
0.947, a mean average error of 0.036, and S-measure of 0.919. The wFβ and Eξ scores are
computed as 0.855, 0.929, respectively, as shown in Table 1, which clearly confirms the
effectiveness in SOD of the proposed model. These values show that the model performs
better than methods such as PoolNet [66], MLMS [64], and CPD-R [62]. This signifies that
the proposed method qualifies as a state-of-the-art system for the generation of saliency
maps. In spite of the fact that the proposed method produced better results than most of
the state-of-the-art methods in the literature, it outperforms the standard baselines by a
narrow margin when compared to DUTS or HKU-IS datasets.This can be attributed to the
dataset being small as well as the number of outlier data points in the train and test sets is
much lesser as compared to the HKU-IS and the DUTS datasets, and hence the observation.
The ECSSD consists of 1000 images only, so we have separated the dataset into a train–test
set, with a training set consisting of 900 images and a test set consisting of 100 images.
The MAE, wFβ, maxFβ, Eξ , and Sα on the ECSSD are 0.042, 0.855, 0.904, 0.929, and 0.874,
respectively. Both the MAE score as well as the precision–recall curves show that our model
is more robust with different and broader salient objects and has better generalizability.

4.4. Empirical Studies

To observe and provide a justification of the module adopted in our proposed frame-
work, the ablation study is performed on the ECSSD dataset that is discussed here. The in-
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vestigation centres on justifying the effectiveness of the REM and the RAM taken singularly
with the base PM. We further ablate the loss function incorporated in our proposed network.
The experimental results are tabulated in Table 2.

Table 2. Ablation studies conducted by taking various combination of modules and losses to investigate the utility of each
component of the proposed Revise-Net model.

Ablation Arrangement F-Measure MAE

Architecture
(Using BCE Loss)

U-Net 0.896 0.066

En-De 0.929 0.047

En-De + Sup 0.934 0.040

En-RA-De + Sup 0.938 0.039

En-De + Sup + REM 0.937 0.042

En-RA-De + Sup + REM (Proposed) 0.940 0.041

Objective function

SSIM Loss 0.924 0.042

IOU Loss 0.933 0.039

BCE + SSIM Loss 0.940 0.040

BCE + IOU Loss 0.940 0.038

BCE + SSIM + IOU Loss (Proposed) 0.947 0.036

4.4.1. Effectiveness of the REM

U-Net is one of the most preferred choices in an encoder–decoder system for solving
image segmentation problems. In our studies, it is observed that the U-Net, as a standalone
network, along with the BCE loss, significantly underperforms, especially considering that
the MAE metric has a value of 0.066. This is shown in Table 2. This can be explained by the
fact that, despite having extraordinary representational power, U-Net fails to re-utilise the
high-level semantic information captured by simple upsampling. The encoder–decoder
system with residual blocks considerably improves the F-measure to a value of 0.929.
Furthermore, supervising each coarse segmentation map at the decoding levels produces
an F-measure of 0.934. Finally, the addition of the REM improves the F-measure to a value
of 0.937 and gives a MAE metric of 0.042. The REM utilises the finely extracted features
and refines the irregularly predicted probabilities of the final segmentation output, thereby
increasing the overall quality as well as clarity of boundaries.

4.4.2. Effectiveness of the Reverse Attention Module

Maintaining a similar experimental environment to the training procedure, we explore
the utility of the RA in our proposed architecture. It is observed that the RAM incorporated
with our prediction backbone achieves an F-measure of 0.938 and an MAE of 0.039. Addi-
tionally, a combination of the PM, RAM, and REM, along with BCE loss for supervision,
attains an F-measure and MAE of 0.940 and 0.041, respectively. The intermediate saliency
maps of the REM decoding layers are fed to the RA modules present in the skip connections
of the prediction network. This is undertaken to attentively use the finer outlines and
saliency regions, as well as to guide the feature extraction via the encoder on multiple
scales, hence refining the overall feature representation.

4.4.3. Effectiveness of the Combination of Losses

The bottom half of Table 2 shows the performance of the proposed model when the
components of the proposed objective function are used separately and partially. The SSIM,
when utilized as a standalone supervision loss, produces an MAE of 0.042, whereas the
IoU loss achieves an MAE score of 0.039. Individually, the IOU loss performs better than
the SSIM loss, as seen from the comparison. This is to be expected, as SSIM loss is only
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a patch-level loss, whereas the IOU loss is a map-level loss, thus helping to discriminate
the foreground better than SSIM loss. When combined with the BCE loss, the IOU loss
produces a better MAE (of 0.038) than a MAE score (of 0.040) in case of SSIM loss. However,
the SSIM loss shows its efficacy when used in combination with the BCE loss and the
IOU loss, thus achieving an MAE of 0.036. Furthermore, the proposed objective function
produces significantly better results than the ablated versions of the objective function.

5. Discussion

The proposed SOD model, Revise-Net, consists of a prediction module, a residual
enhancement module, and four reverse attention modules. The PM generates a coarse
segmentation map, which is then passed through REM for further fine-tuning. The inter-
mediate upsampling maps of the REM are passed to the RA module to guide the PM, thus
improving the final saliency output map. The performance of the architecture is recorded
on publicly available SOD datasets consisting of several complex features. The key idea
in capturing complex and fine details from the image involves extracting both local and
global contextual information, realizing a pixel’s relation with its surroundings.

Revise-Net consistently produces superior results when compared with several state-
of-the-art baselines, as explained in Section 4.3. The network outperforms [44,61] by a
significant margin of 0.013 and 0.011 over the MAE metric on DUTS-TE, consisting of
comparatively complex features in the images. Similar trends can be observed for HKU-IS
and ECSSD datasets. This can be attributed to the fact that the Revise-Net utilizes two
networks sequentially. The REM is much shallower than the PM in order to maintain
the computational trade-off. The deep features extracted by the PM are learned by REM
for the precise reconstruction of features. Furthermore, the layer-wise supervision of the
PM decoder functions as a strong regularization for accurately classifying the learned
features. However, several redundant features present in the representation affect the
overall performance of the framework. In order to mitigate this problem, the RA modules
are cascaded between two sub-networks to attentively increase the weights of more dis-
criminative features by the effective guidance of the final saliency map, thus preventing
the redundant features from being assigned equal weights.

It can be seen in row 2 and row 3 of Figure 4 that the EGNet model [17], performing
closest to our results, fails to capture the sharp boundary lines, thus producing a noisy
segmentation output. This can be explained by the fact that the authors in [17] incorporate
a one-to-one edge guidance model to capture that boundary details by utilizing a standard
objective function to supervise the network as a whole. In our method, we employ a
combination of loss functions for boundary detection, which penalizes the network for dis-
crepancies after every epoch. The results obtained in row 4 of Figure 4 further demonstrate
the ability of the network to distinguish many finer semantic details of the salient object.
From column 3 and column 4, the efficacy of RA can also be explained. The RAM uses final
as well as intermediate saliency maps supervised by the ground-truth to detect the salient
class object in the input image avoiding misclassification. Despite the positive outcomes,
our framework also misclassifies certain object classes, as seen in Figure 5. It is evident
from Figure 5 that the images producing irregular segmentation maps are relatively more
complex, having similar non-saliency classes in them. Row 1 and 2 suggest that increasing
the number of iterations for these kinds of images may improve the final output. Similarly,
in row 3 of Figure 5, our proposed SOD network confuses the dominant class and the class
of interest in the image.
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Figure 4. Visual comparison of segmentation results obtained by the proposed Revise-Net model with several state-of-the-
art baselines.

Figure 5. Illustration of misclassification of the salient class in an image by the proposed Revise-Net.
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6. Conclusions and Future Works

In this paper, we propose a simple but effective architecture called Revise-Net for solv-
ing the SOD problem. The proposed segmentation pipeline is a predict–enhance–revise
framework that consists of three primary components: a prediction module to generate
the coarse saliency maps, an enhancement module to fine-tune the coarse map, and multi-
scaled reverse attention modules to revise the prediction network attentively via the
intermediate saliency maps of enhancement modules. We further propose utilizing a
combination of three losses, namely BCE, SSIM, and IoU, to improve the classification of
boundary pixels. The Revise-Net model is capable of capturing large-scale information as
well as finer structures present in the salient regions, generating high-quality segmenta-
tion maps with cleaner boundaries. Comprehensive experimental analysis and ablation
studies demonstrate the superiority of our architecture over several state-of-the-art frame-
works. The proposed network when evaluating DUTS, HKU-IS, and ECSSD achieves
MAE scores of 0.033, 0.029, and 0.036 and mean F-measures of 0.900, 0.937, and 0.947,
respectively, further asserting its efficiency, outperforming the contemporary baselines in
the existing literature.

To mitigate the problem of misclassification, in the proposed Revise-Net, for images
with similar non-saliency classes, we plan on incorporating the self-attention mechanism
in the overall scheme to further capture the global contextual information effectively for
our future works. Additionally, the comparatively narrow performance margin in case of
smaller datasets (e.g., ECSSD) demands scope of improvement in the network leveraging on
transfer learning. Moreover, taking the success of our current architecture into account, we
also intend to extend the proposed model to incorporate the concept of domain adaptation
for further increasing its generalizability and robustness over varied datasets.
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