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Abstract: Weather radar provides regional rainfall information with a very high spatial and temporal
resolution. Because the radar data suffer from errors from various sources, an accurate quantitative
precipitation estimation (QPE) from a weather radar system is crucial for meteorological forecasts and
hydrological applications. In the South China region, multiple weather radar networks are widely
used, but the accuracy of radar QPE products remains to be analyzed and improved. Based on hourly
radar QPE and rain gauge observation data, this study first analyzed the QPE error in South China
and then applied the Quantile Matching (Q-matching) method to improve the radar QPE accuracy.
The results show that the rainfall intensity of the radar QPE is generally larger than that determined
from rain gauge observations but that it usually underestimates the intensity of the observed heavy
rainfall. After the Q-matching method was applied to correct the QPE, the accuracy improved by a
significant amount and was in good agreement with the rain gauge observations. Specifically, the
Q-matching method was able to reduce the QPE error from 39–44%, demonstrating performance that
is much better than that of the traditional climatological scaling method, which was shown to be able
to reduce the QPE error from 3–15% in South China. Moreover, after the Q-matching correction, the
QPE values were closer to the rainfall values that were observed from the automatic weather stations
in terms of having a smaller mean absolute error and a higher correlation coefficient. Therefore, the
Q-matching method can improve the QPE accuracy as well as estimate the surface precipitation
better. This method provides a promising prospect for radar QPE in the study region.

Keywords: radar quantitative precipitation estimate; South China; quantile matching

1. Introduction

Precipitation is a key variable of weather forecasting and water cycle regulation, and
it has pronounced impacts on both meteorological and hydrological processes. Extreme
precipitation events can cause severe natural disasters, including flash floods, debris flow,
and urban inland inundation [1–4], resulting in great economic losses and casualties to
human society [5]. In recent decades, the Doppler weather radar has become an important
method for precipitation monitoring [6–8] because accurate and timely areal rainfall data
are crucial for hydrometeorological forecasting and early flash-flood warnings. Quan-
titative precipitation estimation (QPE) products can be generated by radar stereoscopic
scanning observation by means of the transformational relationship between radar reflec-
tivity (Z) and the surface rainfall rate (R). The radar QPE products are characterized by
high spatial resolution and temporal continuity [9–12], which are crucial for hydrometeoro-
logical coupled forecasts and have already been wildly applied in many meteorological
departments in China.
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Surface precipitation is a complex weather phenomenon that demonstrates substantial
spatial and temporal fluctuations and that is associated with a high degree of error and
uncertainty. Radar is widely used in real time and has a high spatial resolution and
temporal continuity; however, errors are always present in radar QPE products because it
is an indirect rainfall measurement method. These errors can be caused by many factors,
such as ground clutter, abnormal propagation, blockage by mountains and buildings, non-
meteorological echoes, detection range, distance attenuation, bright band contamination,
instrument calibration errors, changes in raindrop spectrum distribution, the empirical
local Z–R relationship, and random errors [11,13–19]. On the other hand, conventional rain
gauge measurements can provide direct and fairly accurate precipitation measurements at a
single point [20]. Although rainfall observations at automatic weather stations (AWS) have
certain limitations, including sparse station networks, especially in mountainous regions,
and the possibility being unable to capture local small-scale convective storms [21,22], the
rainfall intensity that is gauged at AWS is much more accurate than the rainfall intensity
determined through indirect radar observations.

In the literature, various efforts have been made to improve the accuracy of high-
precision rainfall from both radar and AWS rainfall data. To improve the accuracy of the
radar QPE, instead of using the classic equation of Z = 200R1.6 [23], studies have mainly
focused on reconstructing the local Z–R relationship according to different climate regions,
different seasons, and different rainfall types. This has demonstrated that the accuracy
of radar QPE can be improved to some extent by applying a more appropriate local Z–R
relationship [24–27]. In recent decades, many studies have also focused on merging AWS
and radar rainfall data using various methods [22,28–32]. These methods were used to
reduce precipitation estimation errors and include bias correction [33–35], the Kalman fil-
ter [36–38], optimum interpolation [39,40], the variation method [41–44], kriging, cokriging,
kriging with external drift [45–47], conditional merging [48], frequency matching [49], and
the multi-step combination of different methods based on average weight, the optimal
integration of artificial intelligence, and the statistical weight matrix [50–52]. Recently,
Song et al. [53] proposed a climatological correction algorithm to improve the accuracy of
the rainfall amount estimations from the Beijing Auto NowCasting (BJ-ANC) system [24]
using a long time series of radar QPE and AWS precipitation data for the North China
region. However, whether the scaling method can be adequately applied for other systems
or other regions is still unknown. Therefore, it is necessary to investigate the applicability
and possible limitation of the climatological scaling method for improving QPE accuracy
in the South China region.

Similar to the climatological scaling method, the Quantile Matching (Q-matching)
method [54–56] is also an approach that is generally used in climate change studies. Previ-
ous studies have demonstrated that the Q-matching method can be employed to correct the
outputs of general climate models (GCM) with respect to observations, and it has served as
a statistical downscaling method in other climate sciences [56,57]. The Q-matching method
has been applied outside of China for precipitation correction. For example, previous
studies have found that quantile mapping showed the best performance, especially at high
quantiles, compared to seven other methods that were implemented to reduce the regional
climate model error over the Alpine region [58]. Chen et al. [59] compared six bias correc-
tion methods including two quantile methods that were based on an empirical distribution
and a gamma distribution to conduct bias correction for hydrological modeling over ten
North American river basins. The quantile mapping bias correction method was proposed
to correct radar data that were located at the Hannover airport in Germany [34]. It has also
been applied for satellite precipitation products in the Guiana Shield [35]. Nonetheless, it
is unknown whether the Q-matching method can be used for the application of reducing
QPE errors on an hourly timescale in China, particularly for the South China region.

In this study, we will demonstrate that the climatological scaling method is not subject
to different systems or regions. Furthermore, based on comparison analysis, it is also
indicated that the Q-matching method can also be applied for reducing radar QPE error
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and that it is able to show a much better performance than the climatological scaling
method that is commonly used for the South China region. It should be noted that other
spatially integrative methods are worth comparing, but that is out of the scope of this study.

The remainder of the paper is arranged as follows: Section 2 describes the data and
methods in detail. Results are given in Section 3. In particular, the errors of the original
QPE are calculated in Section 3.1. Additionally, Section 3.2 compares the correction results
between the Q-matching and the climatological scaling correction methods, including
verification by means of large samples and a case study. Finally, the conclusion and
discussion are given in Sections 4 and 5, respectively.

2. Data and Methods

The study area (21.0–26.0◦N, 108–118◦E) in this research is located in the South China
region and includes the Guangdong Province and parts of the Guangxi, Hunan, Jiangxi,
Fujian, and Guizhou Provinces. It covers a drainage area of approximately 6.15 × 105 km2.
There are 6083 automatic meteorological stations in the South China region (Figure 1). This
area is relatively flat and has a station altitude that is generally less than 600 m. However,
the topography is relatively complex and is characterized by mountainous and hilly areas.
Low topography is mostly found along the coastline and in the Pearl River Delta region
(Figure 1), which is one of the most economically developed regions in China. The area
is mainly influenced by East Asian summer monsoons and South China Sea summer
monsoons and receives the bulk of its annual precipitation in the summer season [60–62].

Two precipitation datasets are employed in this study and include rain gauge obser-
vations from AWS and QPE that were obtained from the Severe Weather Auto Nowcasting
(hereinafter referred to as SWAN) System [63]. The range for single radar is 230 km, and
the range gate differs from different radars. There are 17 radars in the study region of South
China (Figure 1). Mixed scans from layers 1–3 were used, and the beam width was not
controlled. The radar data were quality control checked in order to determine the ground
clutter and electromagnetic interference [64]. A 6 min time interval was used for the volume
scans. Observational rainfall measurement from the AWS network were interpolated to
a 1 km × 1 km resolution via an inverse distance-weighted method that corresponded
to that of the spatial resolution of the radar QPE from the SWAN system. The maximum
radius and maximum adjacent station number parameters that were used interpolation
were 100 km and 8 stations, respectively. It is necessary to acknowledge that the inverse
distance squared usually tends to generate precipitation bullseyes, especially when the
interpolation at each grid point is taken for all of the stations. Hence, a limitation of a 100
km radius and a fixed number of the nearest 8 stations were chosen for this study in order
to alleviate this undesirable tendency and to make the interpolation method more similar
to if a human conducted the analysis by hand. For example, only the nearest eight stations
are taken into account when interpolation is conducted through Integrated Nowcasting
when using the Comprehensive Analysis system [65]. It should be noted that the results
in the present study are generally the same as to if other parameters, such as if a 150 km
radius or 10 stations were used (Figures not shown). In addition, the gridded radar QPE
dataset with a 1 km× 1 km resolution is interpolated to station locations through a bilinear
interpolation method, which is used to calculate the QPE error when compared to the AWS
observations. This study collected data for the summers of 2019–2020 (June–July–August)
from both the AWS and QPE datasets, where the time resolution was set to 1 h. It should
be noted that invalid samples were not employed in the present study. An invalid sample
was determined either the AWS or the radar QPE had missing data for a specific hour. In
other words, only valid data samples that were available from both datasets were selected
and calculated. Therefore, 3732 h valid time samples were defined in total. August 2019
had the highest number of valid samples, and July 2020 had the highest number of invalid
samples(Figure 2). For the total 3732 valid sample hours and 6083 station sites (t = 3721,
s = 6083), there were a total of 2,347,413 samples after the data that did not include informa-
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tion regarding rainfall from the AWS observations were removed (i.e., remaining AWSt,s
samples ≥ 0.1 mm/h).

Figure 1. (a) The topography distribution in the study area of South China. (b) Schematic diagram of
station distribution (indicated by dots) and radar locations (denoted by + and circles) in the South
China region. The colors at each dot represent the topography height (unit: meter) at the correspond-
ing station points. The 17 radars include Guangzhou (SA), Heyuan (SA), Meizhou (SA), Shantou
(SA), Shanwei (SA), Shaoguan (SA), Shenzhen (SA), Yangjiang (SA), Zhanjiang (SA), Zhaoqing (SA),
Liuzhou (SB), Nanning (SA), Wuzhou (SB), Fangchenggang (SA), Yulin (SA), Chenzhou (SA), and
Ganzhou (SC).

This study uses two methods to improve the radar QPE in the South China region.
One method is the climatological scaling correction algorithm [53]. It is suggested that
the error of radar QPE can be reduced after applying the climatological correction scaling
algorithm. In particular, the high-resolution rainfall structure can be well-captured, and the
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strength of the QPE rainfall is closer to that of the AWS observations for the North China
region [53].

Figure 2. The number (unit: hours) of valid samples and invalid samples in the summer (June, July,
and August) during 2019–2020. Valid samples are defined as data that are present in both the AWS
and radar QPE data for each hour. Otherwise, the sample was determined to be invalid otherwise
and could not be used in the analysis.

The climatological correction scaling algorithm [53] is introduced simply and appears
as follows: First, the station calibration coefficient Cs was calculated. Second, the c gridded
calibration coefficient Cg(i, j) was calculated. Then, the final climatic scaling factor was
obtained and used to calculate the corrected radar QPE according to Equation (3).

Cs =

T
∑

t=1
Rs,t

T
∑

t=1
Qs,t

(1)

Cg(i, j) =

T
∑

t=1
R(i, j, t)

T
∑

t=1
Q(i, j, t)

(2)

Q∗1(i, j, t) = max[Cs, Cg(i, j)]×Q(i, j, t) (3)

where Rs,t is the AWS rainfall at station s, and t is the time period in hourly intervals,
starting from t = 1, which represents the first hourly rainfall period, and increasing
throughout the entire study period (i.e., t = T = 3732 h for JJA in the 2019–2020 period); Qs,t
is the corresponding QPE value at station s and t; R(i, j, t) and Q(i, j, t) are the interpreted
AWS rainfall and QPE value at a radar cell grid (i, j) and at a specific time t; Q∗1(i, j, t) is the
corrected QPE value Q(i, j, t) and can be obtained by applying the climatological correction
scaling algorithm (1)–(3).

Another method that was employed in this study is the Q-matching method. As
described in several studies, the basic premise of this method is to correct one data source
by considering another data source to be correct by comparing their probability distribution
functions. This process contains two steps: (i) the probability distributions are first fitted to
hourly rainfall from the AWS stations and the corresponding QPE data; (ii) the quantile of
the QPE value is estimated (the data source to be corrected) from its cumulative distribution
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function (CDF) by considering the estimated quantile and using the inverse of the CDF of
the observed station data [34]. If we assume that the AWS network is capable of providing
correct information and if the rainfall distribution as determined from the AWS data is
same as the one obtained from the QPE data, then the correction procedure for the QPE
data based on the Q-matching method can be formulated by

Q∗2(i, j, t) = F−1
AWS,t(Frad,t(Q(i, j, t))) (4)

where Q∗2(i, j, t) is the corrected value of the original QPE Q(i, j, t) at the cell grid (i, j)
and time t, Frad,t is the CDF estimated from the radar data Q(i, j, t) at time t, and F−1

AWS,t

is the inverse CDF FAWS,t from the AWS rain gauge network at time t, which converts
the quantiles that were estimated by Frad,t back to the corrected QPE value Q∗2(i, j, t). The
estimates of FAWS,t, Frad,t and F−1

AWS,t are F̂AWS,t, F̂rad,t and F̂−1
AWS,t , respectively, and were

empirically and modally from the historical AWS observation and QPE data [66].
The QPE accuracy is evaluated using the quantitative statistical parameters of the

mean absolute error (MAE), root-mean-square error (RMSE), and correlation coefficient
(CC). They are given as follows:

MAE =
1
n

n

∑
i=1
|Yi −Oi| (5)

RMSE =

√
1
n

n

∑
i=1

(Yi −Oi)
2 (6)

CC =

n
∑

i=1
(Yi −Y)(Oi −O)√

n
∑

i=1
(Yi −Y)2 ·

n
∑

i=1
(Oi −O)

2
(7)

where n is the sample number, i is a given station, Yi and Y is a generic notation for QPE
and the mean of the original QPE products from the SWAN system or from the QPE after
correction. Oi and O are the observational AWS rainfall and mean.

In addition, the QPE accuracy is also validated based on the Nash–Sutcliffe Efficiency
(NSE) and the Kling–Gupta Efficiency (KGE), both of which are often used as traditional
metrics in hydrology [67,68]. They are calculated through the following equations:

NSE = 1−

n
∑

i=1
(Yi −Oi)

2

n
∑

i=1
(Oi −O)

2
(8)

KGE = 1−
√
(CC− 1)2 + (

σY
σX
− 1)

2
+ (

µY
µX
− 1)

2
(9)

where CC is the linear correlation coefficient in Equation (7). σX and σY are the standard
deviations in the AWS observations and in the QPE estimations, respectively. µX and
µY are the means (i.e., equivalent to O and Y, respectively). NSE = 1 indicates perfect
agreement between the simulations and the observations. NSE < 0 indicates that the model
is a worse predictor than the mean of observations. Similar to the NSE, a KGE = 1 also
indicates perfect correspondence. Higher efficiency values represent observations that are
closer to being able to be reproduced perfectly.

In terms of the categorical metrics, the two skills scores of probability of detection
(POD) and the false alarm ratio (FAR) were also employed. Here, multiple thresholds
corresponding to different precipitation levels were evaluated. To calculate the scores at a
specific threshold P (P = 1 mm/h, 5 mm/h, 10 mm/h, 15 mm/h, and 20 mm/h), the values
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in the QPE estimation and the true AWS vales are first converted to 0/1 by thresholding
them with P, and a(truth = 1, estimation = 1), b(truth = 0, estimation = 1), c(truth = 1,
estimation = 0), and d(truth = 0, estimation = 0) are then calculated. The POD and FAR
scores are calculated as follows:

POD =
a

a + c
(10)

FAR =
b

a + b
(11)

3. Results
3.1. QPE Errors

Figure 3 shows the box plot for the hourly rainfall as determined by the AWS rainy
observations and the corresponding radar estimations. The median value was 0.6 mm/h for
all of the AWS samples, while the median radar QPE value was 0.9 mm/h, indicating that
the rainfall amount that was estimated from the radar QPE was generally larger than that
of the AWS rainfall amount (Figure 3a). For the 75% quartile value, the rainfall amount that
was estimated from the radar QPE was also larger than the AWS rainfall amount. However,
the 25% quartile value of the radar QPE was closer to zero, which is smaller than that of the
AWS rainfall value (Figure 3a). In addition, a phenomenon was observed wherein the radar
was unable to capture any incidence of precipitation at a specific location, even when this
location was found to be rainy through AWS observations. These characteristics tended to
be contributed rainfall samples that were falling at a rate of less than 20 mm/h (Figure 3b).
For heavy rainfall samples with an hourly amount that was larger than 20 mm/h, however,
the characteristics were reversed. It was found that the radar QPE often underestimates
the precipitation amount for heavy rainfall events, with the median value being shown to
be smaller than that of the AWS observations (Figure 3c). It is also true for the 25% and
75% quartile values, which show that the radar QPE often underestimates rainfall amount.

Figure 3. The box plot of the hourly rain for the AWS and radar QPE (unit: mm/h) based on (a) all
samples, (b) samples of rainfall less than 20 mm/h, and (c) samples of rainfall larger than (including
equal to) 20 mm/h. In each box, the top (bottom) of the box indicates the 75% (25%) quartile, and the
middle of the box provides the median value. In (c), the maximum and minimum are shown with
the highest and lowest bar.
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Figure 4 compares the spatial distribution of the total rainfall amount in the summer
by comparing the values from the interpolated AWS observation and the QPE products
that were obtained from the SWAN system. Large differences are shown to occur most
parts of the South China region. On the coast of South China, specifically in the Pearl River
Delta region, the accumulated rainfall values that were determined by means of radar QPE
are larger than the AWS values (Figure 4a,b). However, the QPE values are mainly smaller
than the AWS observations in the interior region of western and northern South China. The
spatial distribution of the QPE and AWS rainfall difference was also calculated. Obvious
overestimation exists in large areas of the coast of South China, and this difference can
reach up to 1500 mm in parts of the Pearl River Delta and Zhanjiang regions (Figure 4c).
The largest underestimation exists in the western central South China region, where the
difference value is about −1000 mm. The remaining regions are generally characterized
with a small difference that is closer to zero (Figure 4c).

Figure 4. Distribution of summer rainfall totals (unit: mm) for the years 2019–2020. (a) Interpo-
lated AWS rainfall totals, (b) radar QPE rainfall totals, (c) and difference between radar QPE and
AWS rainfall.
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The results of the error and correlation coefficient are given in Table 1. The values
demonstrate that the averaged MAE and RMSE of the QPE products that were obtained
from the SWAN system in the South China region is 2.237 mm/h and 4.948 mm/h, respec-
tively. The average CC is 0.629, with a standard deviation of 0.16 among all the station
locations, which mostly ranges from 0.56 to 0.75 between the 25% and 75% quartiles. Gao
et al. [40] showed that the RMSE of the QPE from the Z–R relationship is approximately
4.52–5.98 mm/h based on six individual radars located in Guangzhou, Meizhou, Shaoguan,
Shantou, Yangjiang and Shenzhen.

Table 1. The results of MAE, RMSE error, and CC of hourly radar QPE products compared to AWS
rain observations. The results and improvement percentages are also given after the scaling and
Q-matching methods were implemented, respectively. The units for MAE and RMSE are mm/h.

Original
QPE

QPE after
Scaling

QPE after
Q-Matching

Improvement
by Scaling

Improvement by
Q-Matching

MAE 2.237 1.947 1.257 12.96% 43.81%

RMSE 4.948 4.323 3.011 14.46% 39.15%

CC 0.629 0.650 0.893 3.34% 41.97%

3.2. Comparison of the Climatological Correction Scaling Algorithm and Q-matching Methods

Figure 5 displays the result of the climatic scaling factor field in the South China
region that was obtained based on the climatological scaling correction algorithm that
was described in Section 2. It should be noted that an empirical maximum of the scaling
factor parameter was set as 2.0 in this study in order to avoid excessive correction. This is
because in some mountainous regions where the radar beam is shielded by mountains, the
radar detecting signal may be very weak or even nonexistent, thus leading to very low and
unreasonable precipitation estimations [53,65]. In those regions, the climatological scaling
correction algorithm may yield an arbitrarily high scaling factor and may eventually yield
corrected questionable precipitation values. It should be noted that the obtained results
are generally similar if the maximum scaling factor is set as 2.5 or 3.0 in order to avoid an
undesirable effect. Figure 5 clearly shows that the scaling factors are less than one in almost
all of the regions that comprise the South China coast, indicating that the radar QPE is
usually stronger than the AWS rainfall observations that were determined on a long-term
time scale (Figure 5). In contrast, the scaling factors are greater than one in the majority
of the regions belonging to north-western South China and some parts of north-eastern
South China, demonstrating that radar QPE is often weaker than the rainfall amount that is
determined by AWS (Figure 5). The closer the scaling factor is to one, the more accurate the
radar rainfall estimation is when determined on a long-term time scale. The distribution of
the scaling factor field may be related to the topography of the South China region to some
extent (Figures 1 and 5).

The probability density functions (PDF) of the precipitation difference between the
original QPE and AWS for small-to-moderate hourly rainfall samples of less than 20 mm/h
are shown in Figure 6a. Normal distribution is seen from the difference between QPE and
AWS, demonstrating that the radar estimation error is in a relatively ideal state. It should
be noted that the PDF distribution of all of the hourly rainfall samples, regardless of rainfall
intensity, is generally similar to what is seen in Figure 6a. However, when we focus on
heavy rainfall samples that are larger than or equal to 20 mm/h, then it is obvious that the
PDF distribution is not normally distributed (Figure 6b). The peak occurs at the difference
of about −15 mm/h, demonstrating negative skewness and indicating that the QPE tends
to underestimate large amounts of rainfall, which is in agreement with the results shown
in Figure 3c. This non-Gaussian characteristic can still be seen in the PDF distribution
of the QPE error after correction by the scaling method even though the precipitation
difference distribution becomes more concentrated than that of the original QPE products
(Figure 6d). However, the QPE error is much closer to that of a Gaussian distribution
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after correction by means of the Q-matching method, both for light and heavy rainfall
(Figure 6e,f). In particular, the distorted probability distribution has been significantly
revised for hourly rainfall amounts that are larger than 20 mm/h, with the peak being
located at the difference value, which is close to 0 (Figure 6f). Therefore, the above results
indicate that after applying the Q-matching method, the probability density functions of
the corrected QPE are closer than the AWS observations, while the climatological scaling
method cannot achieve this correction effect.

Figure 5. The results o F field correction calculated by means of the climatological scaling method.

To further compare the rainfall accuracy distribution between the scaling and Q-
matching methods, the spatial fields of the correction coefficients between the QPE after
correction and the AWS observational rainfall are shown in Figure 7. After scaling correc-
tion, a large correction coefficient can be seen in most parts of South China, except for the
northern part of Guangdong province (Figure 7a). The original QPE also demonstrates is
lowest accuracy in this region (figure not shown). The average correction coefficient for
all of the stations increased from 0.63 to 0.650, and the averaged MAE error is shown to
be reduced from 2.24 to 1.95 (Table 1). These indicate that the QPE accuracy is slightly
superior after climatological scaling correction. Furthermore, the correlation coefficients
between QPE and AWS rainfall increase above 0.9 in most parts of South China after
Q-matching correction (Figure 7b). It should be noted that there are 200 stations with a
correlation coefficient less than 0.9, with most ranging from about 0.4 to 0.9. The lowest
correlation coefficients mainly occur in the north-central part of South China (Figure 7b),
and only a few occur along the coastal areas. However, compared to the application of the
scaling method, the Q-matching method performed much better across the entire region
(Figure 7a,b). The average correction coefficient for all of the stations increased from 0.63 to
0.89, and the averaged MAE error reduced from 2.24 to 1.26 (Table 1). In a word, the QPE er-
ror in South China reduced from 3–15% as measured by different statistics after the scaling
method was applied (Table 1). However, the QPE error reduced a significant amount, from
39–44%, after the Q-matching method was applied (Table 1), which performed much better
than the scaling algorithm did. In addition, the categorical metrics of POD and FAR were
also compared. After applying the climatological scaling method, the POD is decreased
compared to the original QPE products, while the FAR is reduced for all thresholds. This
demonstrates that the climatological scaling method results in worse detection probability
(Table 2); although FAR score demonstrates an improvement of 18–20% (Table 3). This
means that the climatological scaling correction tends to generate an excessive transfor-
mation that introduces negative bias. However, an increased POD score and a decreased
FAR score were obtained for the 1 mm/h, 5 mm/h, 10 mm/h, 15 mm/h, and 20 mm/h
thresholds, representing all of the categories, after the Q-matching correction method was
applied, with an improvement percentage of 20–81% and 34–45% being measured by POD
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and FAR, respectively. This indicates that the Q-matching method is able to achieve a better
performance than the scaling method (Tables 2 and 3). Furthermore, the NSE increased
from 0.209 to 0.396 after correction by means of the climatological scaling method, while
increases that were much higher to 0.707 were achieved after correction by means of the
Q-matching method. As for the KGE, it the value decreased from 0.620 to 0.532 after the
climatological scaling correction was applied, indicating bad performance in terms of the
KGE metric. However, the KGE increased to 0.741 after the Q-matching correction was
applied, which is closer to 1. These results demonstrate that the Q-matching algorithm
is better able to improve the radar QPE accuracy over the South China region than the
climatological scaling algorithm.

Figure 6. The probability density function of the precipitation difference between QPE and AWS
for (a,b) original radar QPE product, (c,d) after correction by scaling, (e,f) and after correction by
Q-matching. (a,c,e) are for hourly rainfall samples less than 20 mm/h, and (b,d,f) are for heavy
rainfall that are larger than and equal to 20 mm/h.
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A precipitation case on 20 August 2020, 07am UTC is displayed in Figure 8. In this
case, the strongest precipitation center is located in the southeastern region of South China,
and the maximum rainfall intensity is more than 40 mm/h (Figure 8a). Compared to the
AWS observations, the estimated precipitation center of the radar QPE is slightly weaker
(Figure 8b). The corrected QPE that have been interpolated to the different station locations
are shown in Figure 8c,d after the scaling and Q-matching methods had been applied.
After applying the Q-matching method, the QPE rainfall intensity was closer to that of
the AWS observations (Figure 8a,d), with the exception some sites in the Pearl River Delta
region. In this case, the maximum precipitation center is even weaker after the scaling
correction (Figure 8c), which can mainly be attributed to the fact that the scaling factor is
constantly less than one, as the radar overestimates rainfall in this area from the perspective
of a long-term statistical result (Figure 5). However, for the whole of the South China
region, the scaling method still shows an improvement, with the correlation coefficient
between QPE and AWS rainfall increasing from 0.68 to 0.78 (Figure 9a,c). The scatter plot
that was obtained after the Q-matching correction is much closer to the diagonal line, and
the correlation coefficient between the QPE and AWS rainfall values increased from 0.68 to
0.90 (Figure 9b). The above results demonstrate that the climatological scaling method can
be applied for the South China region, while the Q-matching method performs better than
the scaling algorithm and shows a promising prospect for application in improving the
accuracy of radar QPE.

Figure 7. The spatial distribution of the correlation coefficients between the radar QPE product
and AWS observational station rainfall (a) after correction by scaling and (b) after correction by
Q-matching, respectively.
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Table 2. The results of POD scores for 1 mm/h, 5 mm/h, 10 mm/h, 15 mm/h, and 20 mm/h
thresholds of hourly radar QPE products compared to AWS rain observations. The improvement
percentages are also given after correction methods by means of scaling and Q-matching.

1 mm/h 5 mm/h 10 mm/h 15 mm/h 20 mm/h

original QPE 0.756 0.609 0.523 0.460 0.411

QPE after scaling 0.702 0.512 0.393 0.314 0.257

QPE after Q-matching 0.914 0.840 0.786 0.756 0.741

Improvement by scaling −7.14% −15.93% −24.86% −31.74% −37.47%

Improvement by Q-matching 20.90% 37.93% 50.29% 64.35% 80.29%

Table 3. Same as Table 2 but for the results of the FAR scores.

1 mm/h 5 mm/h 10 mm/h 15 mm/h 20 mm/h

original QPE 0.323 0.438 0.497 0.559 0.612

QPE after scaling 0.262 0.354 0.398 0.448 0.495

QPE after Q-matching 0.188 0.241 0.280 0.337 0.398

Improvement by scaling 18.89% 19.18% 19.92% 19.86% 19.12%

Improvement by Q-matching 41.80% 44.98% 43.66% 39.71% 34.97%

Figure 8. Precipitation case study on 07 UTC 20 August 2020. (a) AWS observational rainfall.
(b) The original radar QPE products. (c) QPE after correction by scaling. (d) QPE after correction by
Q-matching. Unit is mm/h.



Remote Sens. 2021, 13, 4956 14 of 18

Figure 9. Scatter plot of hourly rainfall on 07 UTC 20 August 2020 between AWS and radar QPE
(a) after correction by scaling, (b) after correction by Q-matching, and (c) before correction. The
horizontal axis represents AWS rainfall, and the vertical axis represents radar QPE. The correlation
coefficient is also shown.

4. Conclusions

This study evaluates the errors of 1 radar QPE precipitation products that have been
accumulated hourly from the SWAN system in the South China region and further proposes
a new Q-matching method to improve the radar quantitative precipitation estimations.
The climatological scaling method, which was previously used for the North China region,
is also applied to correct the QPE to examine whether it is appropriate for use in the
South China region. Furthermore, these two methods were compared with each other to
determine the performance of the correction effects. The main conclusions are stated below:

Although the QPE accuracy based on the Z–R relationship ranged from reasonable
levels, there is a lot of room for improvement. The averaged QPE product errors that were
obtained in the South China region were 2.237 mm/h and 4.948 mm/h, as measured by
MAE and RMSE, respectively. In terms of intensity, the rainfall amount that was determined
by radar QPE was generally larger than the AWS rainfall amount. However, for heavy
rainfall samples with hourly amounts that were larger than 20 mm/h, it was found that
the QPE generally underestimates the rainfall amount. In addition, a phenomenon was
observed where in the radar was not able to capture the precipitation at the specific area,
even when the AWS indicated that the area was rainy. From the view of spatial distribution,
the results show that the accumulated QPE are larger than those of the AWS rainfall values
found on the South China coast, especially in the Pearl River Delta region. In contrast, the
accumulated QPE rainfall was generally weaker than the AWS observations in the interior
region of western and northern South China. The region with the poorest QPE accuracy
was found to be located at the northern part of Guangdong province.

The results demonstrate that the climatological scaling and Q-matching methods can
both achieve positive effects in correcting the accuracy of radar rainfall estimations for the
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South China region. As indicated by Song et al. [53], the climatological scaling algorithm is
easy to transplant into different regions or different systems. After scaling correction, the
QPE error in South China was reduced from 3–15%, as measured by different statistics in
terms of MAE, RMSE, and CC. However, after Q-matching correction, the QPE error was
largely reduced from 39–44%, demonstrating a much better performance. As for POD, FAR,
NSE, and KEG metrics, the Q-matching method was also shown to perform better than
the scaling method in the South China region. The QPE is in good agreement with rain
gauge observations after correction by the Q-matching method. The good performance
of the Q-matching method may mainly be because it fully considers the distributions of
two different data sources (AWS and QPE); that is, the Q-matching method assumes that
the rainfall distribution from the AWS network is the same as the one of the QPE data
that were obtained from the weather radar. The QPE accuracy improved dramatically
after Q-matching correction, as demonstrated by the fact that the correlation coefficient
between the radar QPE and AWS rainfall amount significantly increased all over South
China. The probability density function distribution of the hourly QPE is much closer to
the observations, both for light small and heavy rainfall. As a whole, this study indicates
that the Q-matching method can be used to further improve the accuracy of radar QPE
compared to the original QPE products and QPE after scaling correction.

5. Discussion

From the above results, we demonstrated that in South China, the Q-matching method
is better than the climatological scaling method for correcting radar QPE. However, there
are still some issues that remain unresolved. For example, whether the Q-matching method
could be applied to improve the QPE and whether it would perform better than the scaling
method in northern China is still worth further analysis. In addition, whether the Q-
matching method that was proposed in the present study could be applied to other areas
around the world remains to be investigated. In the majority of the South China region,
the correlation coefficient reached values of above 0.6. However, the poorest QPE accuracy
is found to be located in the north-central part of South China and in the northern part of
Guangdong province in particular, where the lowest correlation coefficient was determined
between the QPE and AWS rainfall, showing values that were below 0.3; additionally,
improvement was shown to be limited, regardless of which correction method was applied.
The reasons why the north central South China region shows the poorest accuracy in terms
of both the original QPE products and the corrected QPE than other regions and what may
cause this uncertainty still need to be investigated further. Furthermore, in this study, we
only compared two methods: climatological scaling and the Q-matching; other spatially
integrative methods are also worth further exploration in the near future.
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