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Abstract: Plant breeding experiments typically contain a large number of plots, and obtaining pheno-
typic data is an integral part of most studies. Image-based plot-level measurements may not always
produce adequate precision and will require sub-plot measurements. To perform image analysis
on individual sub-plots, they must be segmented from plots, other sub-plots, and surrounding
soil or vegetation. This study aims to introduce a semi-automatic workflow to segment irregularly
aligned plots and sub-plots in breeding populations. Imagery from a replicated lentil diversity panel
phenotyping experiment with 324 populations was used for this study. Image-based techniques using
a convolution filter on an excess green index (ExG) were used to enhance and highlight plot rows
and, thus, locate the plot center. Multi-threshold and watershed segmentation were then combined
to separate plants, ground, and sub-plot within plots. Algorithms of local maxima and pixel resizing
with surface tension parameters were used to detect the centers of sub-plots. A total of 3489 reference
data points was collected on 30 random plots for accuracy assessment. It was found that all plots
and sub-plots were successfully extracted with an overall plot extraction accuracy of 92%. Our
methodology addressed some common issues related to plot segmentation, such as plot alignment
and overlapping canopies in the field experiments. The ability to segment and extract phenometric
information at the sub-plot level provides opportunities to improve the precision of image-based
phenotypic measurements at field-scale.

Keywords: plant phenotyping; plant breeding; unpiloted aerial vehicles; vegetation index; water-
shed segmentation

1. Introduction

Breeding programs screen thousands of progeny from parental crosses to select the
desired phenotypic traits in new crop varieties. Phenometric information collected manu-
ally during the growing season is costly, labor-intensive, and subject to observer bias and
error. Image-based plant phenotyping using unpiloted aerial vehicles (UAVs) offers a new
opportunity for monitoring and extracting plant phenotypic information over time [1,2].

Image-based plant phenotyping requires that images be segmented into plots and
sub-plots to analyze individual genotypes within a given experiment. Early generation
breeding plots are often small and variable in size and location because of seed availability
and seeder design limitations. Under field conditions, irregular patterns of plant growth
caused by certain crops, genotype, and environment variation make the plot segmentation
more challenging. Furthermore, sub-plot segmentation may be needed when higher
phenotypic precision is required to avoid weed growth interference within the plots.
Boundary extraction is an initial step to separate sub-plots within a plot. The plot extraction
techniques include manual digitizing, field map-based, machine learning, and image-
based. Among those, plot extraction using manual head-up digitizing [3,4] and field
map-based techniques are common [5,6]. Although these approaches are accurate, manual
adjustments are required, which is laborious. In the field map-based approach, plots are
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located based on a fixed distance between plots or ranges [6]. This is not always the case for
large breeding experiments, where plot locations might be altered by seeding equipment
and image distortions in the mosaicking process [7]. Region-based convolutional neural
network (CNN) detection algorithm or simple CNN [8] shows high potential for large
and closely packed trees, such as citrus or palm trees [9,10]. However, this method does
not perform well on small plants with low ground cover and minimum distance between
them [11]. Image-based methods relying on object-based or pixel-based classification [12,13]
use vegetation indices or image pattern enhancements and require post-processing (after
classification) to refine detected objects [8,14]. Although this method requires a low number
of samples to conduct classification, post-processing is required to refine the result [6] and
has high potential for delineation of irregularly spaced plots in a field [15]. Gaussian blob
detection and random walker image segmentation have been proposed to segment lentil
plots within a python-based workflow. This automatic process allows one to locate lentil
blobs or plots automatically, but it is limited in merging plots which have grown together,
and sub-plot separation [16].

This paper aimed to introduce a semi-automatic workflow to segment irregularly
spaced plots and sub-plots in breeding populations. A lentil (Lens culinaris L.) plant
breeding experiment was used to develop and demonstrate the applicability of this method
to automatically segment irregularly spaced plots and sub-plots of a small crop.

2. Material and Methods
2.1. Field Study

The imagery for the study was obtained from a lentil diversity panel phenotyping
experiment conducted at the Sutherland location of Kernen Crop Research Farm, Saskatoon,
SK in 2018. A total of 324 lentil genotypes were distributed in a randomized lattice square
(18 × 18) design with three replications. Each replicate was separated by a row of pea plots.
The trial was seeded on 9 May 2018, with individual genotypes planted in 1 × 1 m plots
following a seed rate of 60 seeds/plot and with a row spacing of 30 cm, resulting in three
crop rows per plot. Each of the three rows constituting a plot was considered a sub-plot.
The plots were sown using a tractor and seeder equipped with a GPS-guided auto-steering
mechanism to align the crop rows. The inter-plot distance in the direction of seeder travel
was inconsistent as the operator manually tripped the seeder to approximate the desired
inter-plot distance of approximately 50 cm.

2.2. Image Acquisition and Processing

The imagery was captured on 3 July 2018 using a DJI M600 hexacopter UAV (SZ DJI
Technology Co., Ltd, Shenzhen, China) mounted with a 100MP IXU 1000 Phase One camera
(Phase One, Denmark). The UAV was programmed to fly at 30 AGL with a nadir view
following an 80% frontal and 80% side image overlap for image acquisition. The imagery
was processed using Agisoft Metashape, version 1.6.3 (Agisoft LLC., St. Petersburg, Russia)
for orthomosaic generation (Figure 1).

2.3. Plot and Sub-Plot Extraction

The eCognition software (Trimble GeoSpatial, Munich Germany) was used for data
processing. The overall workflow to pursue research objectives is presented in Figure 2.
The RGB image (*.tif) and a field boundary map (*.shp) were used as input layers. Data
processing was compiled in two modules: (1) plot detection and (2) sub-plot detection.
Output maps include plot and sub-plot boundaries with attribute data.
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Figure 1. (A) The lentil breeding trial within field boundary (red) in RGB color. (B) Subset of the 
orthomosaic showing sample crop row, plot, and sub-plot. (C) Excess green vegetation index (ExG) 
map of the subset. 
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Figure 2. The overall workflow for plot and sub-plot extraction from UAV color (RGB) imagery. ExG:
Excess Green Index; ExG_mask: ExG > 0; ExG_conv: ExG enhanced using convolution filter; RGB:
image in red, green, and blue composite.
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2.4. Vegetation Index Calculation

As lentils have low ground cover in early growth stages, the band math involves
vegetation index calculation and image filter highlighting lentil plots. In this study, Excess
Green Index (ExG) was calculated following equation [17]:

ExG = 2 × Rg − Rr − Rb (1)

where Rg, Rr, and Rb are the reflectance values of green, red, and blue image bands, respectively.
RGB imagery (Figure 3A) is used to generate the ExG map (Figure 3B). Convolution

filter (Gaussian) in window sizes range from 5 × 5 to 50 × 50 with the accumulative step
of 5 × 5 pixels was conducted in a loop on ExG map. The output of the ExG convolution
filter map (hereafter ExG_convo) is a raster layer map, as in Figure 3C. A greenness area
mask (ExG_mask) was also created using a multi-thresholding algorithm on ExG, with a
threshold value greater than 0 (ExG > 0). Map rotation was conducted (−1.45◦) to align the
crop rows horizontally and to facilitate the next steps.

2.5. Plot Detection

Four major steps were used to extract lentil plot boundary: (1) row detection, (2) plot
enhancement, (3) plot segmentation, and (4) plot resizing.

In row detection, the ExG_convo image was used as an input. The major purpose
of this step was to separate plots that have canopy overlapping from plots from one row
to plots in the adjacent row. Chessboard segmentation and multiple object difference
conditions-based fusion algorithm (Y center parameter = 0) were used to form horizontal
row features. A local maxima algorithm with a searching range of 25 pixels was applied to
locate row centers (Figure 3D). The algorithm located the object with the highest ExG_convo
mean value within a certain searching distance. Once row centers were detected, pixel
resizing (buffering) was used to form row boundaries to separate all lentil rows. The output
was saved in a binary raster layer (row_mask; row = 1, row gab = 0, Figure 3E).

To enhance the lentil plot, band math of ExG_convo x row_mask was computed to
mask out the gaps between rows. In the resultant map, all plots were highlighted on
the ExG convolution map while all gaps between rows were defined (ExG_enhanced,
Figure 3F). A watershed segmentation algorithm was then executed on ExG_enhanced
(Figure 3G) with an object size parameter of 800 pixels. Watershed segmentation allows one
to separate objects that are close together or where their edges touch. Pixel-based object
resizing was applied with the following parameters.

The outcome of this process is depicted in Figure 3H. Centers of the object were then
extracted and buffered into rectangular shapes, forming plot boundaries (Figure 3I).

In each plot, three sub-plots were aligned in rows (Figure 3A). The main purpose of
this step was to separate the three rows in each plot. From the plot boundary map, a middle
line was created from the plot center derived from the previous section (Figure 4A). Pixel
resizing to the top and bottom was executed separately to form a unique region (Figure
4B). Multi-threshold and watershed segmentation algorithms were again used to classify
the region’s objects into canopy and ground. In the canopy class, objects in top or bottom
classes shared borders with the middle line and were re-classified into the middle class.
Thus, the object relationship was considered to classify objects (Figure 4C). This process
was applied to all plots. Pixel resizing was also used to refine the object, and the final
sub-plot boundary is depicted in Figure 4D.
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2.6. Accuracy Assessment

The plot and sub-plot extractions evaluation included quantifying the number of plots
that were detected correctly and point-based accuracy assessment at the sub-plot level.
At the sub-plot level, the confusion matrix was constructed to assess the accuracy of the
classification result. There were 35 random plots selected for sub-plot accuracy assessment
(AC) purposes. In the plots chosen, sub-plots were digitized and assigned manually to
top, middle, and bottom classes. Additionally, 100 random points were generated within
each plot. Information on classification and ground-truth was then collected on 3500 data
points for the whole study area. A confusion matrix was constructed and calculated using
a tool in ArcGIS Pro 2.4. The accuracy assessment indices include overall accuracy (OA),
producer accuracy (PA), user accuracy (UA), and Kappa coefficient (K) [18].

3. Results and Discussion
3.1. Plot Boundary Map

A precise plot boundary map for all the plots (972) was generated, given the distance
between plots and the ground cover inconsistencies. The precision of the plot boundary
map generated was examined based on visual assessment. The plot boundary map of
the entire field experiment is presented in Figure 5A, with a magnified sub-set (red box)
showing irregularities in plot alignment and the output plot boundary map in detail.

As the input image was acquired during the mid-growing season, the ground cover
percentage of most plots was at its peak. This facilitated the plot location through water-
shed segmentation. The segmentation algorithm presented here may need to be improved
further to consider other issues relating to ground cover, especially for sub-plot segmenta-
tion. Images from the different growing stages are required to enhance the capability of the
workflow, especially for sub-plot canopy overlap. In later stages of crop growth, where
canopy overlapping is high, plot/sub-plot segmentation is particularly challenging [16].
However, as demonstrated in the sub-plot extraction, we believe our methodology can
solve this issue.

Row detection using the local maxima algorithm (before plot detection) was critical
to separate merging plots between rows. All lentil plots were highlighted by using a
convolution filter in a loop (~10×, kernel sizes of 5 × 5 to 50 × 50) on a vegetation index
(ExG), which facilitated the watershed segmentation process. Additionally, the pixel
resizing algorithm with surface tension parameters (Table 1) allows us to detect the plot
center precisely, and it was particularly useful in assigning the middle sub-plot (row).

Table 1. Pixel resizing parameters for lentil plot locating.

Mode Pixel Constraint Surface Tension Parameter

Shrink ExG_enhanced < 0

Reference object

Operation <=

Value 0.55

Box size X and Y 11

Min. object size 2000
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3.2. Sub-Plot Boundary Map

All the sub-plots (2916) were successfully extracted using a watershed segmentation
algorithm and feature relation on each plot. The output map is presented in Figure 5B, with
a magnified subset (red box) showing individual rows separated by color. It is important
to note that rows within the plot were separated even in high plant covers where rows are
merging, and individual rows were indistinct. The watershed segmentation algorithm was
key to allowing this row separation. Within a sub-plot, the lentil blob can be approximately
separated, as illustrated in Figure 5C, and the sub-plots were named using relative position
inside plots, which are top, middle, and bottom. This information can be linked to field
data, and information from plots, such as plot ID, can be transferred into a sub-plot as well.

3.3. Accuracy Assessment

Overall, the accuracy of the proposed methodology for plot and sub-plot extraction is
high. The user and producer accuracies were greater than 85% across all sub-plot classes
(Table 2). The corrected classified percentage was 92%, and the kappa coefficient (ranges
from 0 to 1), measuring the agreement between the classified image and the reference
image, is 0.85. The accuracy assessment suggests a strong agreement between the sub-plots
generated by the workflow (classification) and the sub-plot digitized manually (ground
truth data).
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Table 2. Point-based accuracy assessment of sub-plot classification (three classes) error matrix using ground truth data
(N = 3489) across lentil trials. Kappa value: 0.85; overall accuracy: 92%.

Reference Data

Classes Top Middle Bottom Ground Total User’s
Accuracy

Classification

Top 345 0 0 46 391 0.88

Middle 0 350 0 62 412 0.85

Bottom 7 0 354 43 404 0.88

Ground 45 29 53 2155 2282 0.94

Total 397 379 407 2306 3489

Producer’s
Accuracy 0.87 0.92 0.87 0.93

4. Conclusions

The workflow produced precise boundary maps for plots and sub-plots of the lentil
breeding populations. Our methodology addressed some common issues such as plot
alignment and overlapping canopies in the field experiments. In breeding studies, sub-plot
measurements are important to attain greater precision in phenotypic data that can be
linked back to genomic information. In continuation of this study, we extracted sub-plot
level lentil flower number, plant height, and canopy volume over a growing season with
greater precision than the plot-level measurements (data not shown).

The current workflow is considered semi-automatic as parameters such as map rota-
tion, pixel resizing, or searching distance in the local maxima algorithm may need to be
updated when the field conditions change. The ability to extract phenometric informa-
tion at the sub-plot level provides opportunities to improve the precision of image-based
phenotypic measurements at field-scale.
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