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Abstract: Glacial lake extraction is essential for studying the response of glacial lakes to climate
change and assessing the risks of glacial lake outburst floods. Most methods for glacial lake extraction
are based on either optical images or synthetic aperture radar (SAR) images. Although deep learning
methods can extract features of optical and SAR images well, efficiently fusing two modality features
for glacial lake extraction with high accuracy is challenging. In this study, to make full use of the
spectral characteristics of optical images and the geometric characteristics of SAR images, we propose
an atrous convolution fusion network (ACFNet) to extract glacial lakes based on Landsat 8 optical
images and Sentinel-1 SAR images. ACFNet adequately fuses high-level features of optical and SAR
data in different receptive fields using atrous convolution. Compared with four fusion models in
which data fusion occurs at the input, encoder, decoder, and output stages, two classical semantic
segmentation models (SegNet and DeepLabV3+), and a recently proposed model based on U-Net,
our model achieves the best results with an intersection-over-union of 0.8278. The experiments show
that fully extracting the characteristics of optical and SAR data and appropriately fusing them are
vital steps in a network’s performance of glacial lake extraction.

Keywords: glacial lake extraction; deep learning; multisource data fusion

1. Introduction

With global warming, glaciers have experienced extensive negative mass changes
and greatly contributed to sea level rise [1]. Glacial lakes slightly alleviate sea level
rise [2] by storing a small percentage of glacier meltwater. However, this small fraction
of glacier meltwater has rapidly increased the size and number of glacial lakes over the
last few decades [2–4]. As a glacial lake expands in area and depth, additional pressure
is added to the moraine dam, increasing the probability of a glacial lake outburst flood
(GLOF) [5]. Moreover, under a warming climate and deglaciation background, GLOF risks
will increase in the future [6]. GLOFs could inundate buildings, bridges, and hydropower
systems in their flow paths [7], as well as destroy communities downstream [8]. For
disaster preparedness, many studies on assessing GLOF hazards and risks have been
published [6,7,9–11]. In addition, some scholars found that glaciers terminating into
lakes have more negative mass balances than glaciers terminating on land [12,13] due
to mechanical calving and thermal melting [14]. To better understand glacier dynamic
evolution, glacial lakes connected with glaciers should be studied. An inventory of glacial
lakes is a prerequisite for most studies related to glacial lakes.

Glacial lakes are mostly located in alpine areas, which makes field surveying difficult.
With the development of remote sensing technology and the growing number of Earth ob-
servation satellites, scholars can more easily obtain outlines and areas of glacial lakes. Often,

Remote Sens. 2021, 13, 5091. https://doi.org/10.3390/rs13245091 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9621-4879
https://doi.org/10.3390/rs13245091
https://doi.org/10.3390/rs13245091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13245091
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13245091?type=check_update&version=1


Remote Sens. 2021, 13, 5091 2 of 18

glacial lakes are mapped from remote sensing images by manual vectorization [10,15–20]
using a geographic information system (GIS) software. Although manual vectorization
is the most accurate method for generating glacial lake boundaries, it is labor intensive,
especially for large study areas. Thus, some researchers use threshold methods based on
the normalized difference water index (NDWI) [21], band ratio [22,23], mountain shadow
mask [24,25], slope maps [11,26–29], and brightness temperature [30] to rapidly extract
glacial lakes from optical multiband images. The success of using NDWI or the band
ratio on lake extraction is based on the spectral characteristics of the water. Specifically,
water has low reflectance in the near-infrared band and high reflectance in the green band.
Mountain shadow masks and slope maps derived from a digital elevation model (DEM)
are widely used to differentiate glacial lakes from mountain shadows; glacial lakes and
mountain shadows have similar spectral characteristics, but glacial lakes have a gentler
slope. The brightness temperature derived from the thermal band in a Landsat 8 scene
could help distinguish water surfaces from glacier zones covered by wet snow. In addition,
for the adaptive segmentation of each lake, a global-local iterative scheme [31,32] and
active contour models [33,34] are used in mapping glacial lakes. In the methods above,
thresholds of NDWI, band ratio, and slopes are set empirically, which adds uncertainty
to glacial lake mapping. Thus, some scholars utilize machine learning methods, such
as support vector machine (SVM) and random forest (RF), to carry out glacial lake pixel
classification [35,36]. However, the features input into SVM or RF classifiers, such as NDWI,
are still manually designed.

Over the last few years, deep learning (DL) methods have been widely used in the
remote sensing field [37–40], big earth data analysis [41], and real-life applications in other
fields [42,43]. There is no need to design input features artificially in a DL model due to its
powerful ability in representation learning. However, to the best of our knowledge, there
are few studies on DL applications for glacial lake extraction. Qayyum et al. applied a
U-Net model to glacial lake extraction on very high resolution PlanetScope imagery and
obtained better results than those acquired with SVM and RF classifiers [44]. Chen applied
U-Net on supra-glacial lake extraction using high-resolution GaoFen-3 SAR images [45].
This study did not improve the network specially and just used SAR images. Wu et al.
proposed a model based on U-Net for glacial lake extraction using a combination of Landsat
8 optical images and Sentinel 1 SAR images [46]. Their research showed that the addition
of SAR features helps to identify glacial lakes. However, the authors simply concatenated
two groups of shallow features, each filtered from optical or SAR images by a convolution
layer, as an input of U-Net; moreover, their study area was limited to southeastern Tibet.
The appropriate and efficient fusion of two modality features for mapping glacial lakes with
high precision is challenging. In this study, to effectively use the spectral characteristics
of optical images and the geometric characteristics of SAR images to accurately extract
glacial lakes, we propose an atrous convolution fusion network (ACFNet) that sufficiently
fuses the features of optical and SAR data using atrous convolutions. Furthermore, we
compare the performance of ACFNet to the following: four fusion models in which data
fusion occurs at input, encoder, decoder, and output; Wu’s model [46]; and two typical
methods in semantic segmentation (SS), field SegNet [47] and DeepLabV3+ [48]. These
models were all trained and evaluated based on glacial lake data distributed throughout
the Himalaya (Figure 1). The main contributions of this study are as follows:

(1) We proposed a deep learning fusion model for glacial lake mapping from Landsat
8 optical images and Sentinel-1 SAR images.

(2) We explored the applicability of the proposed model and several typical fusion
models in extracting glacial lakes.

(3) We explored the influence of imaging time intervals between optical images and
SAR images on glacial lake extraction under different fusion models.
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Figure 1. Distribution of glacial lakes in the Himalaya. The bottom row shows three local regions. 
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2. Study Area and Dataset
2.1. Study Area

The Himalaya is an arc region (Figure 1) in the southwestern Tibetan Plateau and
the source of the Indus, Ganges, and Brahmaputra Rivers. Compared to its north–south
span of 150–400 km, Himalaya has a longer east–west span over 2000 km [49]. Glaciers
cover an area of ~22,800 km2 [50]. Over the last few decades, glaciers in the Himalaya
have experienced moderate mass loss and intra-region variability [51] that is caused by
morphological variables [12], the existence of glacial lakes at the glacier terminal [13],
and heterogeneous regional climates [50]. The climate in the Himalaya is dominated by a
monsoon system, including the Indian and the East Asian monsoons and the westerlies [52].
In southeastern Himalaya, most precipitation is associated with the summer monsoon.
In northwestern Himalaya, the westerlies provide most of the winter precipitation [52].
Thus, in the eastern and central parts of Himalaya, most of the glaciers undergo summer
accumulation. In the northwestern part of Himalaya, winter glacial accumulation is more
important [50]. In addition, precipitation decreases sharply from south to north over the
entire Himalaya because the mountains form a moisture barrier [50]. Since the 1990s,
as glaciers shrink, glacial lakes have commonly increased in the Himalaya [53]. The
expansion rates of glacial lakes are highest in the south-central Himalaya and lowest in
western Himalaya [53]. An inventory of Himalayan glacial lakes from 2015 shows that most
are located between the altitudes of 4000 m and 5700 m [53]. According to the statistics of a
2018 inventory of glacial lakes [3], approximately 85.3% of Himalayan glacial lakes have
areas less than 0.1 km2. The complex freezing conditions of the vast Himalaya, as well as
rugged terrains, the diversity of glacial lakes’ size, color, and turbidity, make automatic
glacial lake mapping difficult. Hence, selecting the Himalaya as the study area is helpful to
evaluate the methods’ availability and robustness in glacial lake extraction.
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2.2. Optical Dataset

Landsat series satellite images have been widely used to investigate the evolution
of glacial lakes. The first Landsat satellite was launched in 1972; since then, the Landsat
mission has launched multiple satellites for continuous observation. Thus, Landsat imagery
has the longest continuous temporal archive of Earth’s surfaces, making it popular for land
cover change research. Landsat imagery also provides a good compromise between spatial
resolution and swath width, and it is free to access; thus, it can facilitate studies at a large
scale [54]. The Landsat 8 satellite equipped with an improved Operational Land Imager
(OLI) provides better image quality than past Landsat satellites. Besides, there are some
published glacial lake inventories derived from Landsat 8 imagery [3,4], which can help us
to delineate glacial lakes. Hence, we used Landsat 8 imagery to create our optical dataset.
To avoid the adverse effects of clouds and seasonal snowfall, we carefully selected Landsat
8 Level 1 Terrain-corrected (L1T) images, which were downloaded from the United States
Geological Survey (https://www.usgs.gov/. Last accessed 16 May 2021). The imaging
times ranged from September to November (autumn). In this period, the evaporation
of water from glaciers is much smaller than that in summer, minimizing clouds and fog
in images. Glacial lakes also reach their maximum area after glacier ablation, helping to
identify small glacial lakes. To obtain stable and valid image values, we applied radiometric
calibration to raw digital numbers (DNs) using ENVI 5.3 software, converting the data to
top-of-atmosphere (TOA) reflectance.

With the assistance of a high-mountain Asia (HMA) glacial lake inventory [4], an
expert manually delineated the boundaries of glacial lakes in ArcGIS 10.6 software. Thus,
the outlined glacial lake contours are high quality and consistent. A total of 11,127 glacial
lakes located throughout the Himalaya were mapped (Figure 1). The vector file of the
glacial lake boundaries was further converted into a raster mask file with a 30 m spatial
resolution. Limited by the graphics process unit (GPU) memory, it is not feasible to feed
a large image with thousands of columns and rows into a network. When dealing with
such a large image, decomposing it into sub-images is a commonly used pretreatment [55].
Thus, each Landsat 8 image and its corresponding mask file were clipped to patches using
a 256 × 256 sliding window with a stride of 128, making the number of patches as large as
possible while adjacent patches have some independence. To focus the network on glacial
lakes, the patches without glacial lakes were removed. Finally, we generated a dataset with
9261 256 × 256 patches at a 30 m spatial resolution. The 9261 patches were randomly split
into 4626 patches for training, 1848 for validation, and 2787 for testing. Considering that
most convolutional neural networks (CNNs) are designed and applied to natural images
that contain only the three bands of red, green, and blue (RGB), only RGB bands were
reserved in our optical dataset.

2.3. SAR Dataset

The Sentinel-1 mission comprises two satellites that carry C-band synthetic aperture
radar (SAR) instruments, providing a revisit time of six days. The main operational mode
of Sentinel-1 is interferometric wide swath (IW), which has a swath of 400 km. C-band SAR
signals can penetrate clouds and fog, allowing Sentinel-1 to effectively capture the Earth’s
surface under any weather situations. Even better, Sentinel-1′s data is freely available,
making it advantageous for applications in land cover monitoring, emergency response,
and other science studies. SAR data also reflect the geometric structure of ground objects.
Generally, a water surface has a low backscatter coefficient in SAR images due to the signals’
specular reflection. The short revisit period of Sentinel-1 satellites helps us to find the
SAR images with imaging times nearest to those of Landsat 8 optical images. Therefore,
Sentinel-1 SAR images are utilized as auxiliary data for Landsat 8 optical images to extract
glacial lakes.

The Google Earth Engine (GEE) platform provides level-1 Sentinel-1 data, which
have been processed to backscatter coefficient through radiometric calibration and terrain
correction. To homogenize the dataset used in this study, only the images acquired in the

https://www.usgs.gov/
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IW mode were used. The polarization band was also restricted to VV, in which the SAR
signal is transmitted and received vertically. Our preparation of optical-SAR patch pairs
refers to another study [56]. For each Landsat 8 optical patch prepared, the corresponding
Sentinel-1 SAR patch was obtained from GEE. Figure 2a shows the process in detail. First,
an optical patch’s boundary vector file with geographic coordinates and its imaging time
were uploaded to GEE. Second, Sentinel-1 scenes that contained the uploaded boundary
were filtered out through GEE. Third, the unique Sentinel-1 scene that has the imaging
time nearest to that of the optical patch was selected. Finally, the selected Sentinel-1 scene
was clipped to the optical patch’s boundary and resampled to 30 m to be consistent with
the optical patch. Considering that deep CNNs could learn the contextual information and
high-level semantic information, no fuzzy preprocessing such as [57] was adopted to deal
with the possible noises in SAR images. Figure 2b shows three example RGB images and
their corresponding VV images. The final result is three sets of data. We used RGB and VV
data to denote Landsat 8 optical RGB data and Sentinel-1 SAR VV data, respectively. Then,
the RGB and VV data were concatenated to form 4-band RGB+VV data.
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3. Methodology

Convolutional neural networks have achieved great success in image classification [58,59].
To transfer this success to SS tasks, Long et al. [60] designed a fully convolutional network
(FCN) by replacing fully connected layers with convolution layers. Since then, many
popular networks emerged in the SS field, such as U-Net [61], SegNet [47], PSP-Net [62],
and the DeepLab series of models [48,63–65]. U-Net gradually integrates images’ shallow
appearance features and high-level semantic features in its decoding process, which is
conducive to extracting small objects. Given that most of glacial lakes in our study area
are small and the pixel size of data used is 30 m, U-Net is more suitable for glacial lake
extraction and is utilized as a component in ACFNet.

3.1. U-Net Structure

U-Net provides a concise symmetrical encoder–decoder structure. The encoder part
consists of a series of convolution filters and max pooling operations. Symmetrically, a
series of upsampling operations and convolution layers comprise the decoder part. In
U-Net, high-level semantic features post-upsampling are concatenated with corresponding
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shallow-appearance features, and then they are merged via subsequent convolution layers.
Thus, the detailed spatial information lost in the encoder part due to max pooling will
gradually be recovered during the decoding process. Adequate integration of high-level
semantic features and shallow-appearance features in U-Net facilitates the boundary
extraction of targets and recognition of small objects. Figure 3 shows the U-Net architecture
with ResNet as the backbone/encoder.
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3.2. ResNet Backbone

To address the degradation problem when training deep networks, Kaiming et al.
proposed a deep residual learning network [58]. Specifically, for a feature x, let the expected
learned output via several stacked nonlinear layers be H(x). The residual network forces
the stacked nonlinear layers to learn F(x) = H(x) − x by adding an identity mapping of x
onto F(x). When x is H(x), the stacked nonlinear layers only need to learn a zero mapping
F(x) = 0. If x is close to H(x), then it is also easier to learn a residual correction of x than to
learn a new mapping from scratch. Residual learning provides easy optimization of deep
residual networks [58]. Thus, we used ResNet as the backbone/encoder of our model in
this study.

The architecture of U-Net with ResNet as the backbone is shown in Figure 3. An
input image is filtered by Conv, Res1, Res2, Res3, and Res4, generating feature maps with
sizes of 1/2, 1/4, 1/8, 1/16, and 1/32, the size of the input image. Conv represents the
first convolution layer of ResNet. Res1, Res2, Res3, and Res4 represent the first, second,
third, and fourth residual Conv block in ResNet, respectively. The high-level feature
maps are gradually upsampled by 2× and merged with corresponding shallow feature
maps in Decoder blocks. One decoder block contains two convolution blocks, which each
consist of a 3 × 3 convolution layer, a batch normalization layer and a ReLU activation
function. The feature map generated by the last Decoder block is passed through a 3 × 3
convolution layer, a 2× upsampling layer, and a sigmoid activation function to create the
final prediction map.

3.3. ACFNet Architecture

The architecture of the proposed ACFNet is shown in Figure 4. RGB and VV features
are extracted by independent ResNet encoders. The first decoder block of each branch
generates a group of features with a spatial size of 1/16, the size of the input image. The
two groups of features are adequately fused through an atrous convolution block (ACB), as
proposed. In this block, features of two modes are concatenated and filtered by three 3 × 3
atrous convolutions with dilated rates of 1, 2, and 3. Note that the 3 × 3 atrous convolution
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with a dilated rate of 1 is the standard 3 × 3 convolution. Atrous convolution allows for
the fusion of two modes of features under a large receptive field while keeping the filter’s
parameters constant. The three groups of features filtered under the different receptive
fields are integrated by a 1 × 1 convolution. Note that the 1 × 1 convolution layer and
3 × 3 convolution layer in ACB are both followed by a batch normalization layer and a
ReLU activation function. The integrated features flow parallelly into subsequent RGB
and VV decoder branches to perform the second decoding separately. Features generated
by the second decoder block of the RGB and VV branches are fused by an element-wise
summation. The fused features continue to flow parallelly into subsequent RGB and VV
decoder branches, and they pass through the last two Decoder blocks separately. The last
Decoder block of each branch generates a group of features with more of this branch’s
modality characteristics. To take full advantage of these two groups of semantic features for
a highly accurate prediction, further integration is performed by an ACB again. Using the
U-Net with ResNet as the backbone mentioned in Section 3.2, the last integrated semantic
features are passed through a 3 × 3 convolution layer, a 2× upsampling layer, and a
sigmoid activation function to generate the final prediction map.
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sion, intermediate features are not fused. In this study, for a fair comparison of these four 
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Figure 4. The architecture of ACFNet. ‘S’ represents an element-wise summation and ‘C’ represents
a concatenation.

3.4. Fusion Methods in the Encoder–Decoder Structure

In the encoder–decoder semantic segmentation structure, the fusion of two modality
data could occur at the input, encoder, decoder, or output, resulting in four fusion methods:
(1) input fusion, in which two modality data are concatenated as the input data of a
SS network [66]; (2) encoder fusion (Figure 5a), in which the extracted features of one
modality data are always fused into corresponding extracted features of another modality
data in the encoding process [67]; (3) decoder fusion (Figure 5b), in which the extracted
features of two modality data in the encoding process are fused before they merge with
high-level upsampled features in the decoding process [68–70]; and (4) output fusion, in
which predictions made by two independent SS networks are fused by an element-wise
summation to produce the final prediction. Regardless of the input fusion or output fusion,
intermediate features are not fused. In this study, for a fair comparison of these four fusion
methods in fusing RGB and VV data for glacial lake extraction, we adopted U-Net and
ResNet as the structure and backbone/feature extractor, respectively, for the four fusion
methods. The features are both fused via an element-wise summation in the encoder
fusion and decoder fusion as shown in Figure 5. Comparing these four typical fusion
models is helpful to explore the influence of the position where data fusion occurs on the
networks’ performances.
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4. Experiment and Results
4.1. Implementation Details

The implementation of our method is based on the PyTorch library. We used stochastic
gradient descent (SGD) [71] to optimize the networks. The weight decay and momentum
were set to 0.0001 and 0.9, respectively. We set the initial learning rate to 0.01. After
20 epochs, the learning rate decayed to 0.001 by multiplying by a factor of 0.1. The learning
rate setting was found after a systematic search. The batch size was set to 16 due to the
limited GPU memory, as in [62]. We trained all of the models for 50 epochs, which are
enough for the models to converge.

4.2. Loss Function and Evaluation Metrics

In remote sensing images of the Himalayan regions, glacial lakes occupy a very small
area compared with glaciers, vegetation, and bare land; thus, there is a large classification
imbalance. In this situation, the widely used cross-entropy function for SS will bias network
predictions towards background objects. To mitigate this issue, dice loss [72] was selected
as our loss function to optimize the networks. The true positive (TP), false positive (FP), and
false negative (FN) can be obtained by calculating the difference between the predictions
and ground truth. According to the definition of dice coefficient in [73], the dice loss can be
expressed as:

dice loss = 1− 2TP
2TP + FP + FN

(1)

Considering the large classification imbalance, we used precision, recall, F1, and
intersection-over-union (IOU) [74] to evaluate the predictions of the networks on the test
set. Precision is defined as:

precision =
TP

TP + FP
(2)

Precision, also known as user accuracy, reflects how many positive samples are
correctly classified in the predictions. Recall is defined as:

recall =
TP

TP + FN
(3)
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Recall, also known as producer accuracy, reflects how many positive samples in the
ground truth are correctly predicted. F1 is defined as:

F1 =
2× precsion× recall

precision + recall
(4)

The F1 score, a compromise between precision and recall, comprehensively reflects the
prediction accuracy of a model. Note that the F1 score is actually the dice coefficient [73].
IOU can be expressed as:

IOU =
TP

TP + FP + FN
(5)

For binary classification, predictions and ground truth both belong to the set (0, 1).
IOU is the ratio of the intersection of the two binary masks to the union of the two binary
masks. A higher IOU correlates to a higher model prediction accuracy.

4.3. Results

Ref. [58] provided ResNets with various depths, which include 18-layer, 34-layer,
50-layer, 101-layer, and 152-layer ResNets. We trained and evaluated U-Nets with ResNets
of different depths as the backbone. Given the limited GPU memory and time-consuming
task of training very deep networks, 101-layer and 152-layer ResNets were not adopted
in this study. The evaluation results of these U-Nets are detailed in Table 1. In addition
to the four fusion methods and ACFNet mentioned in Section 3, we also trained and
evaluated Wu’s model [46] and two other classical semantic segmentation models (SegNet
and DeepLabV3+). Similar to ACFNet, Wu’s model was proposed to extract glacial lakes
based on optical and SAR images. SegNet and DeepLabV3+ are advanced and popular in
the semantic segmentation field. For a comparison with ACFNet, input fusion, Wu’s model,
SegNet, and DeepLabV3+ all utilize 50-layer ResNet as the backbone. The evaluation results
of input fusion, encoder fusion, decoder fusion, output fusion, SegNet, DeepLabV3+, Wu’s
model, and ACFNet are detailed in Table 2.

Table 1. The performance of U-Nets with ResNets of various depths as the backbone for the test set.

Input U-Net Backbone Precision Recall F1 IOU

RGB
18-layer ResNet 0.9269 0.8139 0.8667 0.7649
34-layer ResNet 0.9141 0.8174 0.863 0.7591
50-layer ResNet 0.9144 0.8326 0.8715 0.7724

VV
18-layer ResNet 0.81 0.6824 0.7407 0.5883
34-layer ResNet 0.7927 0.6813 0.7328 0.5783
50-layer ResNet 0.7582 0.6986 0.7272 0.5714

Table 2. The evaluation results of various methods for the test set.

Input Model Precision Recall F1 IOU

RGB, VV

Wu’s Model 0.886 0.8745 0.8802 0.7861
ACFNet 0.9198 0.8921 0.9057 0.8278

Output Fusion 0.9283 0.8602 0.893 0.8067
Decoder Fusion 0.9215 0.8737 0.897 0.8132
Encoder Fusion 0.8946 0.8764 0.8854 0.7944

RGB+VV
Input Fusion 0.8476 0.8798 0.8634 0.7596

SegNet 0.8625 0.816 0.8386 0.7221
DeepLabV3+ 0.8557 0.8441 0.8498 0.7389

5. Discussion
5.1. Backbone Depth for RGB and VV Data

For the RGB data, as seen from Figure 6a, U-Nets with different depths present similar
training curves. In the validation stage (Figure 6b), the U-Net with a 50-layer ResNet as the
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backbone produces a lower loss than the U-Nets with 18-layer and 34-layer ResNets as the
backbone after 21 epochs.
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For the test set, the U-Net with a 50-layer ResNet as the backbone achieved the highest
IOU of 0.7724, as shown in Table 1. For the VV data, as seen in Figure 6c, the U-Net with
an 18-layer ResNet as the backbone converged significantly faster than the U-Nets with
34-layer and 50-layer ResNets as the backbone, and it achieved the lowest training loss. In
the validation (Figure 6d), the loss curves of the U-Nets with 18-layer and 34-layer ResNets
as the backbone were more stable than the U-Net with a 50-layer ResNet as the backbone
after 21 epochs. As shown in Table 1, the U-Net with an 18-layer ResNet as the backbone
achieved the highest IOU of 0.5883 with the test set. Therefore, we chose 50-layer and
18-layer ResNets as the backbone/encoders of the RGB and VV branches, respectively, for
ACFNet, encoder fusion, decoder fusion, and output fusion.

5.2. Effects of Fusion Methods

In this section, we discuss the effects of input fusion, encoder fusion, decoder fusion,
output fusion, and ACFNet on fusing RGB and VV data for glacial lake extraction. Input
fusion simply expands a RGB image’s channel with the addition of a SAR image’s VV band.
RGB data reflect an object’s spectral information, while VV data reflect the geometrical
structure of an object and its surroundings. Directly concatenating RGB and VV data as
input is not appropriate because they are in two separate modalities but will go through
the same network overall. Among the four fusion methods and our model, input fusion
presented the highest loss during the training process and validation (Figure 7). As
expected, input fusion also achieved a poor IOU of 0.7596 with the test set (Table 2). In
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addition, the imaging time of the VV images was close to that of the RGB images, but not
the same, which signifies a difference in the texture of glacial lakes may exist between
the two types of images. Therefore, the extracted objects’ texture features from RGB+VV
images will be a mixture of an object’s texture features from RGB and VV images, bringing
uncertainties to the network’s predictions.
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Encoder fusion gradually incorporates the extracted VV features into the feature
extraction branch of the RGB data via a summation method. In this process, VV and RGB
features are fused at locations with different network depths. Due to the relatively sufficient
feature fusion, encoder fusion achieved an IOU of 0.7944 with the test set (Table 2), which
is 3.48% higher than that of input fusion. However, gradually integrating VV features with
RGB features in the encoding process may have disturbed the feature extraction of the
RGB data, because the features fed to the RGB branch’s encoding layers are a mixture of
two modality features.

In decoder fusion, the feature extraction branches for the RGB and VV data at the
encoder stage are independent, guaranteeing that the extracted features have their own
modality characteristics. Note that decoder fusion has exactly the same number of pa-
rameters as encoder fusion. The only difference between decoder fusion and encoder
fusion is that the extracted features are fused at different stages. However, decoder fusion
converged faster than encoder fusion in the training process and presented lower loss
during validation (Figure 7). With the test set, decoder fusion achieved an IOU of 0.8132
(Table 2), which is 1.88% higher than that of encoder fusion. This finding suggests that
extracting RGB and VV features independently is better than incorporating VV features
into RGB features during the encoding process.

Output fusion simply adds the prediction of the RGB branch to the prediction of the
VV branch as the final prediction. No features of the RGB and VV data are fused in the
encoding or decoding stage. Thus, there is no disturbance between the RGB and VV data in
the encoding or decoding processes, facilitating the training of the network. Output fusion
converged fastest in the training process and achieved the lowest training loss (Figure 7a).
However, due to the poor predictive ability of the VV branch, output fusion performed
worse than ACFNet in validation (Figure 7b). With the test set, output fusion achieved
an IOU of 0.8067 (Table 2), which is 4.71% and 1.23% higher than that of input fusion
and encoder fusion, respectively. This finding suggests that the sufficient extraction of
characteristics of each modal data is vital for the full use of multimodal data. It is worth
noting that output fusion achieved the highest precision of 0.9283 with the test set (Table 2).
If the RGB branch and VV branch both believe a pixel is a glacial lake pixel, then this
pixel has a high probability of being a glacial lake pixel. Because the prediction generated
by output fusion can be regarded as the sum of probabilities given by RGB branch and
VV branch.
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Unlike the shallow features fused in encoder fusion and decoder fusion, the features
generated by the first and the second decoder blocks in ACFNet are at deep positions in
the network. Thus, these features have a higher level of semantic information than the
shallow features with the same spatial size. Fusing two modality features with high-level
semantics could mitigate the negative influence caused by the different imaging times
of optical and SAR images. ACFNet is improved based on output fusion. In output
fusion, the two predictions of the RGB branch and VV branch are simply fused by an
element-wise summation. There are no neurons to learn the relationship between these
two predictions. In ACFNet, two groups of features generated by the last decoder block of
the RGB branch and VV branch are fused through the atrous convolution block. In this
block, many neurons learn a nonlinear map to convert these two groups of features to a
new group of features for a prediction with high accuracy. Because of the two additional
atrous convolution blocks, ACFNet is not easy to train compared with output fusion and
achieves higher training loss than output fusion (Figure 7a). However, ACFNet achieved
the lowest loss in validation (Figure 7b) and the highest IOU of 0.8278 with the test set
(Table 2), which is 2.11% higher than that of output fusion. This indicates that our network
architecture and atrous convolution block are effective for fusing RGB and VV data for
glacial lake extraction.

5.3. Comparisons with Other Models

As shown in Table 2, Wu’s model achieves a higher IOU than input fusion, with a
margin of 2.65%; this indicates that concatenating the shallow features of the RGB and
VV images as an input is better than directly concatenating the RGB and VV images as an
input. Because Wu’s model cannot effectively extract and blend features of the RGB and
VV data, its IOU was lower than that of ACFNet, with a large margin of 4.17%. Although
SegNet utilizes max pooling indices stored in the encoding process to recover details
in the decoding process, it achieved the worst IOU of 0.7221 with the test set (Table 2),
which is 3.75% lower than that of input fusion. This result indicates that shallow features
could provide more information than max pooling indices for recovering object details.
DeepLabV3+ achieved an IOU of 0.7389, which is 2.07% lower than that of input fusion,
because 4X upsampling at the end of the network caused the prediction loss of many
boundary details of glacial lakes. Like input fusion, SegNet and DeepLabV3+ simply
concatenate the RGB and VV images as input without specifically extracting and blending
two modality features. Thus, their performances with the test set were far inferior to
ACFNet (Table 2). Figure 8 shows the glacial lake extraction effects of input fusion, encoder
fusion, decoder fusion, output fusion, ACFNet, Wu’s model, SegNet, and DeepLabV3+.

5.4. Impacts of Imaging Time Intervals between SAR and Optical Images

In our dataset, the imaging time of each SAR patch was as close to the corresponding
optical patch as possible. The distribution of the imaging time intervals between the SAR
patches and optical patches is shown in Figure 9a. Approximately 95.56% of the imaging
time intervals were within six days. Thus, the edge details of the glacial lakes in the SAR
images are very similar to those in the optical images. Given that our optical images were
mainly acquired during autumn when seasonal snowfall is sparse, the glacial lakes in the
SAR images exhibit a flat interior and a low backscatter coefficient, as shown in the “good”
VV column of Figure 2b. Short imaging time intervals between the SAR and optical images
are vital to the success of multisource data fusion. To further understand the impacts of
the imaging time intervals between the SAR and optical images for glacial lake extraction,
we generated a set of SAR patches that were acquired half a year earlier than the optical
patches. We call this set of SAR images the “bad” VV images. The distribution of the
imaging time intervals between the “bad” VV patches and optical patches is shown in
Figure 9b. Approximately 95.37% of the imaging time intervals were between −188 and
−178 days. Thus, the “bad” VV images were mainly acquired between March and May.
During this period, many glacial lakes have frozen surfaces or are partially covered by
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seasonal snowfall, resulting in a heterogeneous interior structure and a relatively high
backscatter coefficient in the SAR images, as shown in the “bad” VV column of Figure 2b.
This makes it difficult to distinguish glacial lakes from background objects in the “bad”
VV images.
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We trained and evaluated the models mentioned previously with the dataset compris-
ing the RGB data and “bad” VV data. The evaluation results with the test set are detailed
in Table 3. Compared with the evaluation results (Table 2) with the test set comprising
the RGB data and “good” VV data, the accuracies of all of the models decreased. This is
because the “bad” VV data cannot provide obvious features of glacial lakes due to the snow
and ice covers. Wu’s model achieved the smallest IOU decrease of 0.54%. We attribute this
result to the simple and inadequate fusion of the RGB features and VV features, which
indicates that the model just needs to learn few parameters to ignore the “bad” VV features.
When simply concatenating the RGB and VV images as input, input fusion produced a
small IOU decrease of 0.63%. Similarly, DeepLabV3+ produced a small IOU decrease of
1.16%. The largest IOU decrease of 5.59% was achieved by SegNet. Although the RGB and
VV images were simply concatenated as input in SegNet, “bad” VV data produced incor-
rect max pooling indices that influenced the network’s decoding process and predictions.
Output fusion also produced a large IOU decrease of 4.22% due to the poor predictions of
the “bad” VV data. Encoder fusion, decoder fusion, and ACFNet achieved relatively large
IOU decreases. We attribute this result to the sufficient feature fusion amplifying the effect
of “bad” VV data. Even so, ACFNet achieved the highest IOU of 0.7814 among the eight
methods (Table 3).

Table 3. The evaluation results of different methods with the test set comprising RGB data and “bad”
VV data.

Input Model Precision Recall F1 IOU IOU Decrease (%)

RGB, VV

Wu’s Model 0.9083 0.8474 0.8768 0.7807 0.54
ACFNet 0.9061 0.8502 0.8772 0.7814 4.64

Output Fusion 0.921 0.8181 0.8665 0.7645 4.22
Decoder Fusion 0.9106 0.8436 0.8758 0.7791 3.41
Encoder Fusion 0.8869 0.8516 0.8689 0.7682 2.62

RGB+VV
Input Fusion 0.876 0.8432 0.8593 0.7533 0.63

SegNet 0.8405 0.7626 0.7996 0.6662 5.59
DeepLabV3+ 0.8855 0.8028 0.8421 0.7273 1.16

6. Conclusions

We proposed a feature fusion network (ACFNet) to extract glacial lakes using Landsat
8 optical RGB images and Sentinel-1 SAR VV images. In this proposed model, the features
of optical images and SAR images were independently extracted by two CNN branches in
the encoder stage. Two modality high-level semantic features generated by decoder blocks
were adequately fused under different receptive fields by atrous convolution blocks. Input
fusion, encoder fusion, decoder fusion, output fusion, SegNet, DeepLabV3+, and Wu’s
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model were compared with our model. Due to the sufficient feature extraction of single-
modal data (optical/SAR) and the adequate fusion of optical and SAR features, our model
achieved the best glacial lake extraction with an F1 score of 0.9057. Although the selected
SAR patches had imaging times closest to those of the optical patches, the boundary details
of the glacial lakes in these two types of images were slightly different. Fusing more
advanced features that have a larger receptive field and more abstract semantics rather
than shallow features will help to mitigate the influence of this discrepancy; this point also
explains why our model works effectively. However, SAR images acquired in a different
season than the optical images greatly affected those networks that adequately fuse optical
and SAR features. This is because there are a lot of neurons needed to be suppressed
to neglect the “bad” SAR features. Our method could be used to monitor the long-term
changes of glacial lakes, providing a base for assessing risks of GLOFs and forecasting
GLOFs. However, subject to the ubiquitous cloud and snow in the Himalaya and the revisit
periods of the satellites, there would be many monitoring gaps. Note that SAR images are
utilized as auxiliary data for optical data to extract glacial lakes in our method. If the glacial
lakes are covered by cloud, our method would give uncertain predictions. Besides, the data
used in this study were limited to optical RGB and SAR VV images. Given the complex
environments in glaciated alpine regions, in future work, we will integrate additional
data into the model, such as surface temperatures and DEM, to map glacial lakes with
high accuracy.
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