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Abstract: In response to Hurricane Florence of 2018, NASA JPL collected quad-pol L-band SAR data
with the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument, observing
record-setting river stages across North and South Carolina. Fully-polarized SAR images allow for
mapping of inundation extent at a high spatial resolution with a unique advantage over optical imag-
ing, stemming from the sensor’s ability to penetrate cloud cover and dense vegetation. This study
used random forest classification to generate maps of inundation from L-band UAVSAR imagery
processed using the Freeman–Durden decomposition method. An average overall classification accu-
racy of 87% is achieved with this methodology, with areas of both under- and overprediction for the
focus classes of open water and inundated forest. Fuzzy logic operations using hydrologic variables
are used to reduce the number of small noise-like features and false detections in areas unlikely to
retain water. Following postclassification refinement, estimated flood extents were combined to an
event maximum for societal impact assessments. Results from the Hurricane Florence case study are
discussed in addition to the limitations of available validation data for accuracy assessments.

Keywords: synthetic aperture radar (SAR); inundation; random forest; machine learning; Hurricane
Florence; Freeman–Durden decomposition

1. Introduction

Flooding is a common occurrence across the United States and the world. In coastal
areas, tropical cyclones can cause or exacerbate existing flooding issues through storm
surge or excessive rainfall. NOAA’s National Center for Environmental Information (NCEI)
reports that tropical cyclones and inland flooding were the second and third most frequent
out of 290 billion-dollar disasters in the United States from 1980 to 2020. Tropical cyclones
have caused the most damage (USD 1034 billion), have the highest average event cost
(USD 19.9 billion), and are responsible for the highest number of deaths out of all disaster
types (6593) [1]. Creating flood maps is an essential part of understanding the magnitude
of a particular event and estimating impacts of a future occurrence. A broad audience,
including government agencies and contractors, insurance agents, land developers, and
community planners, views flood maps an estimated 30 million times each year for land
management as well as mitigation, risk assessment, and disaster response purposes [2].
The accuracy of flood maps is crucial for these applications, where mistakes can be costly
to the government, private businesses, and individuals in affected areas. Maps of water
extent can be produced using a combination of visible and near-infrared imagery. These
passive types of remote sensing depend on the reflection of solar radiation from the Earth’s
surface and are therefore limited to daytime availability. The low reflectance of water
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in these bands makes it possible to map the extent of open-water bodies, but not water
under vegetation [3]. Additional issues arise from clouds and their shadows which block
the view of the surface, and immediate response to hurricane impacts using visible and
near-infrared data is made difficult due to the extensive amount of coincident cloud cover
blocking the view of floodwaters on the ground. The active transmission of energy from
SAR instruments allows for image detection through clouds and data collection during day
and night [4,5]. L-band SAR has an advantage over other bands in inundation detection due
to its relatively longer (15–30 cm) wavelength, capable of penetrating further into the forest
canopy and providing a view of flooding beneath [6–8]. An analysis of multifrequency
SAR data performed by Ramsey et al. (2013) found that mapped wetland inundation via
L-band ALOS PALSAR data offered higher correspondence to local inundation patterns
than C-band ENVISAT ASAR imagery [9]. Currently, there are no active satellite missions
that provide regular, openly available L-band SAR observations. NASA’s Jet Propulsion
Laboratory (JPL) gathers L-band SAR data via their Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) instrument during field campaigns and specific event responses.
The Gulfstream-III jet-mounted UAVSAR serves as a platform for data collection similar to
the upcoming NASA–Indian Space Research Organization (ISRO) SAR mission known as
NISAR, which will provide open access to L- and S-band imagery. Knowledge gained from
UAVSAR data helps to inform the use of comparable L-band data from NISAR and other
future SAR satellites. Before SAR data can be used for decision support, a deterministic
approach is needed to identify inundated pixels. Supervised image classification schemes
such as support vector machine (SVM) and classification and regression trees (CARTs)
are widely used in remote sensing because of their ability to learn the characteristics of
target classes from training samples and apply them to unclassified data [10]. The random
forest (RF) classifier relies on an ensemble of CARTs to predict and vote on the most likely
class [11]. It is computationally efficient and offers faster processing times than other
machine learning techniques [12,13]. A comparison of land cover classification results from
SVM and RF on polarimetric images from RADARSAT-2 (C-band) and AIRSAR (L-band)
by Uhlmann and Kiranyaz (2014) concluded that RF provided the most stable results and
highest accuracy throughout all classified images [14].

Given the advantages of L-band SAR in inundation detection and the proven skill
of RF in SAR-based inundation mapping, an RF-based classification of UAVSAR data
could potentially be useful in emergency response efforts. This study uses UAVSAR data
processed using the Freeman–Durden polarimetric decomposition method in combination
with ancillary datasets to determine how accurately areas of inundation can be identified
using RF classification. An accuracy assessment is performed, following good practice
methods for land cover classification outlined in Olofsson et al. (2014) [15]. Following
postclassification cleanup, all available water extent determinations are combined to rep-
resent an event maximum. This event extent is then combined with datasets describing
the distribution of the human population (LandScan 2018; [16]), buildings inferred from
Microsoft Building Footprints [17], and roads (USGS National Transportation Dataset; [18])
throughout the domain of study to evaluate impacts in flooded areas.

2. Study Area and Materials
2.1. Study Area and Event Background

This project is focused on southeastern North Carolina shortly after Hurricane Florence
impacted the region in September of 2018. Florence was the sixth named storm and the
first major hurricane of the 2018 hurricane season, reaching a peak strength of ∼67 m s−1

(150 mph) on 11 September, a strong Category 4, according to the Saffir–Simpson scale, as
it crossed the Atlantic. The storm made landfall near Wrightsville Beach, North Carolina,
on 14 September as a ∼40 m s−1 (90 mph) Category 1 hurricane [19]. Once over land,
the forward motion of the storm slowed to 0.89–1.34 m s−1 (2–3 mph), allowing for the
accumulation of up to 91.44 cm (36 in.) of rain over four days for areas in southeastern North
Carolina. United States Geological Survey (USGS) streamflow data indicate that 45 gauges
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in North Carolina recorded peaks within their top five streamflows, while 18 gauges set
new streamflow records [20]. This massive influx of water extensively inundated the region.
Nearly 97 km (60 mi) of Interstate 95, a major north–south thoroughfare, was closed due to
flooding by 19 September and remained impassable through 23 September, over a week
after the landfall of Florence [21]. In response to the extreme rainfall and subsequent
flooding, NASA flew UAVSAR along several major river basins in the Carolinas to collect
imagery for L-band SAR-based impact estimation and analysis. This study focused on
four flight tracks along the Lumber and Cape Fear River basins in southeastern North
Carolina. Data within the incidence angle range of 30–50° is available for a total area of
approximately 208,500 km2 (80,500 mi2), portions of eleven counties. This region of North
Carolina’s inner coastal plain is predominantly flat and gently declines in elevation toward
the Atlantic Ocean, ranging from over 150 m in the eastern Appalachian foothills to near
or below mean sea level along the coast. Inspection of National Land Cover Database
(NLCD) 2016 data (Figure 1) indicates that the three most common land cover types are
woody wetlands, evergreen forests, and cultivated croplands, representing over 77% of the
combined study area [22]. The prevalence of vegetative cover in the study area suggests
that much of the flooding would be obscured in visible imagery, limiting its utility for flood
mapping activities.

Figure 1. NLCD 2016 land cover types for analysis areas [22]. UAVSAR data swaths are labeled as
LT 1, LT 2, CF 1, and CF 2, denoting the Lumber and Cape Fear River basins, respectively.

2.2. Datasets and Preprocessing
2.2.1. UAVSAR Data

UAVSAR is a quad-pol L-band radar that operates at a frequency of 1.26 GHz and
has a look angle range of 25° to 60° [23]. The system is intended for use on an uninhabited
aerial vehicle (UAV) for repeating acquisitions over defined paths of interest. The radar
instrument is currently operated from a NASA Gulfstream-III jet equipped with an onboard
flight system that uses real-time GPS navigation to keep the flight path within 10 m of the
desired track [24]. UAVSAR data were collected, processed, and made available via NASA
JPL. The Alaska Satellite Facility Distributed Active Archive Center (ASF DAAC) provides
open access to data collected by UAVSAR in addition to several other SAR sensors.
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Fully polarimetric data from twelve flight lines across North and South Carolina
were gathered from 17 to 23 September 2018, with up to six revisits, to support response
efforts to Hurricane Florence. This data is radiometrically calibrated by NASA JPL and is
available for download from the UAVSAR data portal at [25]. Four flight lines centered
over the Lumber and Cape Fear Rivers were chosen for analysis due to their proximity
and frequency of observations. Geographically projected multilook cross products and
incidence angle files were obtained for each day available for these flight lines, referred
to as LT1, LT2, CF1, and CF2, for a total of fifteen data swaths. Multilook is an SAR
data-processing method that reduces speckle noise, eliminating the need for image filtering
before classification [26].

2.2.2. UAVSAR Preprocessing

Fully polarimetric, or quad-pol, SAR sensors such as UAVSAR can transmit and
receive signals from four horizontal and vertical orientations (HH, VV, HV, and VH), which
enables the interpretation of different scattering mechanisms produced by the interaction of
the SAR signal with objects on the surface [27,28]. The radar emits energy in one phase and
detects backscatter from the same or opposite orientation, and these components are used to
derive a complex scattering matrix [29]. Compared to single- and dual-pol configurations,
the scattering mechanisms present in fully polarimetric SAR provide richer detail on
surface structures [30]. Different types of ground cover cause the energy transmitted by the
sensor to be returned in single, double, and volumetric scattering mechanisms, visualized
in Figure 2. These scattering effects can reveal floodwaters beneath dense vegetation
canopies through polarimetric decomposition approaches such as the Freeman–Durden
method [31]. Following the method set forth in [32], PolSARPro v6.0 software [33] is used
to perform the Freeman–Durden decomposition. This decomposition results in three arrays
representing each scattering mechanism corresponding with the intensity of the respective
backscattering patterns in the radar image. A clipping function is performed using numpy
to replace values smaller than zero with zero, and those larger than one as one. This allows
for a common range of backscatter intensities across each array, which are then bytescaled
for visualization as a false-color RGB with double-bounce scattering in red, volume in
green, and single in blue. This representation facilitates the gathering of training data for
classification by providing an easily understood reference of the dominant scattering types
for each pixel.

Single scattering dominates in relatively flat areas and is characterized by a single
reflection of energy off the surface and back into the atmosphere. Smooth surfaces such as
calm water, asphalt, and bare ground are all sources of single scattering. Incident radiation
from the radar hits these surfaces and is specularly reflected away from the sensor, leading
to a very dark appearance in the radar image [5,8]. Coarser ground surfaces generate Bragg
resonance, enhancing the single scattering signature [31,34].

Double or double-bounce scattering, in which the radar energy specularly reflects
off the ground or water surface and again off of vertical or semivertical structures, can
direct a significant fraction of energy back toward the sensor. The presence of inundation
beneath a vegetative canopy enhances the backscatter signature due to similar double-
bounce interactions between the water surface and tree trunks or plant stems [5,8,35]. The
orientation of vertical objects with respect to the sensor viewing angle can also have a
strong influence on the double-bounce scattering intensity [5,36].

Volume scattering occurs when there is a high density of scatterers in a pixel, such
as dense forests and urban areas, and dominates in dry forested areas [5,35]. Vegetation
canopies increase the amount of volume scattering as more energy is diffused by leaves
and stems as they grow [27,34].

The incidence angle of the radar beam also has an impact on observed backscatter.
This angle, denoted as θ in Figure 2, is found between the imaginary line perpendicular to
the surface of Earth and the radar signal [27,28]. Steeper, smaller angles have been shown
to increase the single scattering component as the amount of energy returned directly



Remote Sens. 2021, 13, 5098 5 of 22

from the ground is enhanced [31,37]. The opposite effect is observed in larger, shallower
incidence angles, where the path length and beam attenuation are increased, reducing
backscatter [38]. For these reasons, this study uses UAVSAR data from approximately 30°
to 50°, or 0.52 to 0.87 radians. Data from this range was extracted from each swath using a
mask in ESRI ArcGIS 10.6 software.

Figure 2. Visualizations of each distinct scattering mechanism derived from polarized UAVSAR
using the Freeman–Durden decomposition (Freeman and Durden 1998).

2.2.3. Visible Imagery

Visible true-color imagery covering portions of the study area was sourced from
Planet Labs, provided as part of the NASA Commercial Data Buy Pilot for FY19. Planet
is the first private sector data provider to directly support the International Charter on
Space and Major Disasters, making PlanetScope imagery available to the public, volunteers,
humanitarian organizations, and other coordinating bodies during select disaster events—
including Hurricane Florence [39]. Additionally, aerial damage assessment imagery was
collected by the National Geodetic Survey (NGS) in coordination with the National Oceanic
and Atmospheric Administration (NOAA), the Federal Emergency Management Agency
(FEMA), and other partners. True-color images capturing portions of the study area were
obtained using digital cameras aboard NOAA’s King Air turboprop aircraft at altitudes
ranging from 500 to 1500 m [40,41]. Visible imagery was used as a reference to identify the
land cover type of UAVSAR pixels used for training and to assign classes to truth points
randomly distributed in cloud-free areas of overlapping visible and UAVSAR data.

2.2.4. Ancillary Datasets

The ancillary datasets used in this study were chosen for their statistical information
about the study area, from land cover type and elevation to urban development level
and population distribution. These sources provide supplementary information that is
challenging or impossible to derive from UAVSAR and/or visible data alone. Implemented
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at various stages of the workflow presented in Figure 3, ancillary datasets play a critical
role in postclassification refinement and impact estimations.

Figure 3. An overview of the methodology and datasets used to generate flood extent and im-
pact information.

The NLCD 2016 is a reliable, high-resolution land cover reference for the contigu-
ous U.S. The dataset offers a 30 m resolution estimation of 16 land cover types derived
from Landsat and ancillary data [22]. NLCD 2016 values were used to estimate the area-
proportional number of training and ground truth points needed for classification.

The NASA Socioeconomic Data and Applications Center (SEDAC) hosts the Global
Manmade Impervious Surface (GMIS) dataset, a similar Landsat visible reflectance-derived
estimate of fractional impervious land cover with 30 m global coverage [42]. The Global
Manmade and Impervious Surface (GMIS) dataset is incorporated as a classification feature
to reduce potential sources of confusion between inundated and noninundated areas.
Urban samples were taken from areas of high imperviousness, with percentage values
near 100%. Water and inundated samples, all taken from the center of water bodies or
wetlands, have impervious values near 0%. This variation aids in class determination when
backscatter signatures for the different classes are similar.

Oak Ridge National Laboratory operates the Continental Flood Inundation Mapping
(CFIM) data repository, containing hydraulic properties for 2.7 million river catchments
across the contiguous U.S. [43]. The repository uses ORNL’s high-performance computa-
tional framework to derive Height Above Nearest Drainage (HAND) using 10 m USGS
National Elevation and National Hydrography Dataset Plus (NHDPlus) hydrologic data.
The HAND model was introduced by Nobre et al. (2011) as a method for normalizing to-
pography relative to its drainage network to estimate local water table depth and drainage
potential [44]. The topographic slope of each pixel is generated using methodology outlined
by Tarboton (1997), which calculates the steepest outward slope on one of eight triangular
facets centered at each grid cell. This method reports the drop in elevation over distance,
or inverse tangent of the slope angle, and requires an arctan conversion to derive the slope
angle used in analysis [45]. HAND and slope raster data for the Lumber and Cape Fear
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River basins were incorporated into a fuzzy logic model for postclassification refinement
of detected open-water and inundated forest pixels.

The USGS National Transportation Dataset is based on TIGER/Line data provided
by the U.S. Census Bureau supplemented with HERE Technologies road data to generate
maps of roads, railroads, trails, airports, and other transportation features [18]. This dataset
enables the estimation of flooding impacts on roadways, which is evaluated based on the
location and extent of affected thoroughfares.

In 2018, Microsoft released a machine learning-based building footprint dataset that
includes over 125 million buildings in all 50 US states in GeoJSON format. This dataset
was produced using labeled images from Bing imagery and the Open-Source Microsoft
Cognitive Toolkit (CNTK) [17]. Rasterized building footprints are used to estimate impacts
following classification.

Oak Ridge National Laboratory’s LandScan is the finest-resolution global population
distribution data publicly available and represents an area’s average population over 24 h.
The LandScan algorithm provides a 1 km view of tabular Census data by incorporating
imagery analysis technologies, spatial data, and a multivariable dasymetric modeling
approach [16]. Population information is used to estimate the level of societal impact in
localities affected by flooding.

3. Methods
3.1. Random Forest Classification
3.1.1. Class Determination and Training Sample Gathering

As noted in Section 2.1, forested and agricultural areas comprise a majority of the
study area. The focus of this analysis on flooding motivated the designation of the open
water and inundated forest classes. To account for the remaining types of land cover,
classes for dry forest, nonforest, and urban areas were developed. These classes were
chosen through an iterative process focused on maximizing classifier skill in the focus
classes of open water and inundated forest. Each class has a distinct backscatter signature,
as visualized in Figure 4. The sampled scattering mechanisms are expected to be ubiquitous
to similar land cover types and scenarios; therefore, some amount of skill is anticipated
when the model is applied to similar environments.

The distributions of single, double, and volume scattering intensities for the training
samples of each class are also demonstrated in Figure 4. Open water is characterized by
extremely low backscatter in all three scattering types, with single, double, and volume
scattering contributions ranging from 0.003 to 0.18. In some instances of specular reflection,
backscatter is very close to zero. These values are rounded down during the preprocessing
steps and result in apparent data gaps over some of the larger water bodies in the region.

Volume scattering strongly dominates in dry forest areas due to canopy interactions
with the radar beam. Single and double-bounce scattering occurs at each peak near 0.25 and
0.3, respectively (Figure 4). When inundation is present beneath the canopy, the dominant
scattering mechanism changes to double-bounce, as noted in previous studies [3,5,8]. This
shift in double-bounce scattering proportion is clearly identifiable in the histograms for
the inundated and dry forest classes. The enhanced double-bounce signature exhibited
by floodwaters present beneath the canopy gives inundated pixels a unique scattering
signature. Pixels containing inundation typically have average values near 160 for red, 83
for green, and 46 for blue, which stand out as hues of orange and pink in the false-color
RGB (Figure 4).
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Figure 4. Examples of each land cover type and their respective signatures in the UAVSAR false-color RGB and Planet true
color imagery. Histogram distributions of each Freeman–Durden scattering mechanism for the training samples of each
class are displayed in the center column.

Nonforest samples were taken from areas of bare soil or short or sparse vegetative
cover, which can exhibit similar scattering signatures to water. Though there is no observ-
able surface water in these areas, brightening due to the enhanced soil moisture can be
observed [36]. The sensitivity of UAVSAR to soil moisture allows it to capture a darkening
trend as soils incrementally dry each day, visualized by the contraction of the plotted
intensity distributions toward zero in Figure 5. Over the five-day period, the single and
double-bounce backscatter are reduced to near-zero over nonforest pixels, overlapping
with the range of observed values of water samples. This overlap indicates the potential
for misclassification given the similar training values associated with two separate classes.
In an attempt to mitigate some of this confusion, sample pixels were extracted from the
same areas on two days, 19 and 23 September, to capture conditions near peak flood and at
a relatively lower water extent.



Remote Sens. 2021, 13, 5098 9 of 22

Figure 5. Histogram distributions of the single, double, and volume scattering intensities of nonforest training pixels for the
five days observed between 18 and 23 September 2018.

The urban class represents another opportunity for misclassification, given the wide
range of backscatter values it represents. This is due to the diversity of ‘urban’ features:
roads, parking lots, commercial and residential buildings, and solar panel farms, all of
which have different scattering properties. Urban inundation classification in the Lumber-
ton, NC area following Hurricane Matthew (2016) using C-band Sentinel-1 was performed
by Lin et al. (2019). Asphalt surfaces and shadow effects were major sources of flood
underprediction in urban areas. Smooth paved surfaces exhibit backscatter signatures
similar to water, making them indistinguishable from flooded areas in most cases [36].
Likewise, the potential exists for confusion between the urban and inundated forest classes
due to their characteristic double-bounce scattering, especially when buildings are oriented
perpendicular to the instrument’s flight path [5].

As the actual land cover of a pixel cannot be consistently and accurately determined
from SAR data alone, Planet visible imagery is used as a reference. Thus, the collection
of training samples is limited to areas with overlapping visible and UAVSAR coverage.
Allocation of training pixels followed suggested practices outlined in Colditz (2015), which
recommends area-proportional sample allocation and a total sample area equivalent to
0.25% of the total image area [46]. Samples are taken from a single swath (LT1) to train the
RF classifier, which is then implemented on the remaining data swaths to minimize user
input. The proportional area of each sample class was estimated using reclassified NLCD
2016 values as a proxy. An example of the allocation of training pixels per class is outlined
in Table 1. This method assumes that all wetland areas are inundated, though there are
likely inundated non-wetlands and dry wetland pixels present in the image. However,
given the specificity of the UAVSAR observations to this flood event, NLCD 2016 is the
closest truth proxy available.

Table 1. Training sample allocation by class proportional area. Total sampling area equal to 0.25% of the total area as
recommended by Colditz (2015).

Class Percent Area Number of Pixels Target Training Pixels Actual Training Pixels

Water 0.015 2,095,824 6417 6421
Dry Forest 0.176 10,554,317 26,408 26,400

Inun. Forest 0.377 15,554,317 38,254 38,253
Non-Forest 0.348 13,879,889 34,676 34,710

Urban 0.083 7,506,615 17,646 17,720

Total 1.000 49,360,182 123,401 123,504
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3.1.2. Classification and Accuracy Assessment

The RF classification performed utilizes the scikit-learn Python module, which pro-
vides state-of-the-art machine learning algorithms for use in both supervised and unsuper-
vised classifications [47]. Decision tree classifiers such as RF do not assume a particular data
distribution, making them well suited for SAR applications [11,48]. RF uses a bootstrap
aggregating approach, randomly sampling training data with replacement. Since each
sample is replaced, it is possible to select the same data multiple times while other data
is unused. This method makes the classifier more robust to random variations or noise
and resistant to overfitting [11,13]. A train/test split of 0.7/0.3 was used to calibrate the RF
classifier, meaning that 70% of sampled pixels were used to train the classifier while the
remaining 30% were used to assess its performance. The parameters at which the classifier
achieves maximum accuracy can be determined using scikit-learn’s built-in validation
curve function, which indicates that the classifier quickly reaches optimal performance,
stabilizing after about ten trees. This motivated the number of trees to be set at 20. Addi-
tionally, while the default option allows trees to grow fully, the trees in this classifier are
pruned at a maximum depth of ten for computational efficiency. A similar validation curve
for maximum depth demonstrates that increases in classifier performance were negligible
after ten. Default values were used for the remaining hyperparameters.

A statistical assessment of the classifier’s accuracy is performed by comparing the
predicted land cover class to the class value of manually identified ground truth points.
The recommended accuracy assessment practices outlined in Olofsson et al. (2014) include
a stratified random sampling method, which allocates truth points to classes based on their
proportional area [15]. This allocation follows a method introduced by Cochran (1977) that
incorporates the user-desired standard error of overall accuracy, S(O), the proportional area
of class i (Wi), and the standard deviation of stratum i, Si =

√
UAi(1 − UAi) [15]. Since

the calculated target number of truth points (n) is dependent on the user-chosen overall
standard error and user accuracy (UAi) for each class, it is suggested that the calculations
be performed several times with a variety of input values (Equation (1)) [15]. The focus on
flooding for this study motivated the selection of 0.8 for open-water UA, 0.9 for inundated
forest UA, and 0.75 for the UA of the remaining classes. Additionally, an overall standard
error of 1.5% was selected.

n =

(
∑WiSi

S(O)

)2

(1)

The calculations performed by Olofsson et al. (2014) are based on a pixel resolution
of 30 m, approximately five times coarser than the UAVSAR resolution of ∼6 m. To
account for this difference, the calculated target number of truth pixels for each class is
divided by five. This adjustment results in about 4200 truth pixels for each of the fifteen
data swaths. Similar to training samples, ground truth pixels are assessed in areas with
overlapping UAVSAR and visible coverage, which vary on a daily basis depending on
satellite overpasses, aerial flight tracks, and cloud cover. The extent of flooding also varied
daily as waters drained and crests moved downriver. These factors required ground truth
pixels to be updated daily to maintain their validity. This verification process relies on the
availability of cloud-free optical data, and the manual identification of land cover classes is
exceedingly time-intensive. To account for these limitations, randomly-distributed ground
truth points were buffered by 10 m to collect groups of pixels rather than individual
ones. The resulting target value near 420 points per swath was more feasible for the time
constraints limiting this study. An example of the truth pixel allocation for a single flight
track is displayed in Table 2.
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Table 2. An example of the ground truth point allocation scheme for the LT1 swath on 18 September 2018 following the
practices of Olofsson et al. (2014).

Class Water Dry Forest Inundated Forest Non-Forest Urban Total

Wi (Pixels) 761,957 8,704,984 18,636,794 17,186,411 4,088,181 49,378,327
Ui 0.800 0.750 0.900 0.750 0.750 -
Si 0.775 0.707 0.894 0.707 0.707 -

Olofsson Method Truth Pixels 2771 3466 7185 4948 2775 21,144
UAVSAR Resolution Adjustment 554 693 1437 990 555 4229

Buffered Truth Points 55 69 144 99 56 423
Actual Truth Pixels 623 688 1432 991 565 4299

The accuracy metrics reported for the RF-generated land cover maps include the
overall accuracy, user’s accuracy (commission error), and producer’s accuracy (omission
error) [15]. Overall accuracy (OA) is given by dividing the sum of correctly classified points
for each class (up to q classes) by the total number of points (p) (Equation (2)).

OA =
q

∑
j=1

pjj (2)

User’s accuracy is calculated for each class and demonstrates the percentage of points
with output class i and reference class i (Equation (3)). High values of UA indicate a low
amount of overprediction, or false-positives, while low values signal significant overpre-
diction [36].

UAi =
pii
pi

(3)

Conversely, the producer’s accuracy (PA) demonstrates the percentage of points
with reference class j and output class j (Equation (4)). High values of PA indicate a
low amount of underprediction, or false negatives, while low values signal significant
underprediction [36].

PAj =
pjj

pj
(4)

The OA, UA, and PA for each iteration are reported by class in confusion matrices,
cross-tabulations of the class labels assigned by the RF classifier against ground truth pixels.
The matrix rows represent the RF classifier determinations, and the columns represent
the ground truth point class labels [15]. Confusion matrices were generated for each RF
classification iteration to assess accuracy before fuzzy logic cleanup operations. After
postclassification steps, UA and PA metrics are reassessed for the individual and combined
extent (“Floodmap”) of the open-water and inundated forest classes. Partners from FEMA
have requested a product accuracy of at least 80% within 48 h of impacts [49]. Therefore,
OA, UA, and PA values of 80% or higher are considered satisfactory.

3.1.3. Post-Classification

The resulting classified image contains small noise-like features and some obvious
misclassifications. To reduce false detections and generate a more continuous and realistic
output, fuzzy logic cleanup operations are performed using scikit-fuzzy, a robust fuzzy
logic toolkit for SciPy [50]. Defined by Zadeh (1965), a fuzzy set is characterized by a
membership function which assigns each object a 0–1 membership value [51]. Fuzzy
logic combines information from various sources and accounts for uncertainty through
membership rather than binary classes [52].

The fuzzy logic technique is used in Martinis et al. (2015) to refine SAR-derived
inundation based on pixel elevation, slope, backscatter power, and contiguous feature area.
Given the inclusion of SAR backscatter in the RF classification workflow, that element is
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omitted in the fuzzy logic scheme used here. ORNL-CFIM HAND and slope are incorpo-
rated to reduce false detections in elevated areas unlikely to be flooded. The contiguous
areas of classified water and inundated pixels are also used to reduce the number of small
lookalike features [52]. A standard Z function is used to determine membership degrees of
features above and below user-defined thresholds [51]. This function uses a polynomial
curve to assign 0–1 degrees of membership to input values which allows a transition
between pixels deemed flooded/not flooded. Values of HAND, slope, and feature area
below minimum thresholds are assigned membership values of zero, while those above the
maximum threshold have membership values of one. These thresholds were set according
to statistical margins decided after several trials aimed at maximizing the benefits and
minimizing the costs of this fuzzy logic cleanup method on the final flood map accuracy.
For HAND, the 50th to 75th percentiles are used as minimum and maximum thresholds.
These thresholds are 50–80th percentile for slope and 95–97th percentile for area. Example
distributions of each of the elements used in this fuzzy set are visualized in Figure 6.

Figure 6. Histogram distributions of HAND, slope, and water and inundation feature sizes within the LT1 portion of the
study area.

The fuzzy elements are combined into a composite set by averaging the membership
degrees of each pixel. A further “defuzzification” step is performed by masking pixels with
combined membership degrees of <0.85 [52]. This membership threshold was increased
from 0.65 to account for the upward shift in membership degrees attributed to the large
expanses of flat and low-lying areas in this region. The fuzzy logic scheme is implemented
on the water and inundation classes separately before the two are merged into a single flood
extent. Lastly, a morphological closing process is performed using scikit-image to fill small
gaps between features classified as water and inundated, generating a more continuous
flood map raster. Figure 7 demonstrates a comparison between the RF classification results
and the flood map derived from them through fuzzy logic and morphological closing.
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Figure 7. A comparison of the RF classifier output and resulting flood estimate following fuzzy logic cleanup and
morphological closing. False-color UAVSAR RGB and Planet true-color images are provided for reference.

4. Results
4.1. RF Classification

The RF classification was implemented on a total of fifteen UAVSAR data swaths
over four flight tracks sampled during the 18 to 23 September 2018 observation period.
Confusion matrices were developed for each classification output to derive user, producer,
and overall accuracies for each class. Results are reported in daily averages and a compre-
hensive event average across all fifteen classified images is shown in Table 3 for conciseness.
The average overall RF classification accuracy was 87.67%, with a daily maximum of
89.37% on 20 September and a minimum of 86.36% on 18 September. These values indicate
relatively low amounts of under- and overprediction, demonstrating the ability of the RF
algorithm to capture the temporal evolution of the flood with a relatively steady level
of skill.

Additionally, the average OA for each date and flight track exceeds the FEMA tar-
get of 80% [49]. The focus classes of open water and inundated forest also demonstrate
average UA and PA values above 80%. These results are consistent with Huang et al.
(2021), a machine learning-based inundation detection effort utilizing UAVSAR data col-
lected over irrigated croplands. In this study, an overall RF classification accuracy of
87.62% was attained using the Freeman–Durden decomposition and ancillary vegetation
data. Inundation in rice fields was detected with a UA and PA of 86.35% and 74.85%,
respectively [30].
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Table 3. User and producer accuracies for each RF classification averaged daily and over all fifteen data swaths. Values
are percentages.

18 September 19 September 20 September 22 September 23 September Event Average

Overall Accuracy (OA) 86.36 87.57 89.37 86.71 88.90 87.67

Open Water UA 87.87 87.51 85.00 79.29 84.81 85.65

Open Water PA 68.77 80.23 90.20 91.34 91.40 82.14

Dry Forest UA 88.69 88.52 90.31 88.74 86.96 88.74

Dry Forest PA 93.20 92.77 93.59 93.45 93.26 93.21

Inun. Forest UA 93.90 94.82 95.14 96.06 95.60 94.91

Inun. Forest PA 90.63 87.87 91.79 88.76 89.67 89.78

Non-Forest UA 74.46 78.92 85.21 79.17 84.32 79.74

Non-Forest PA 90.11 91.82 87.96 82.29 89.45 89.01

Urban UA 86.51 86.13 85.60 84.60 89.04 86.31

Urban PA 77.66 78.76 79.04 73.95 77.42 77.70

The scikit-learn RF algorithm uses a unitless Gini Index to estimate the importance of
input features used in the decision-making process by measuring the decrease in accuracy
observed from removing each element [47]. The Freeman–Durden scattering mechanisms
are shown to have the most value in class determination. Double-bounce and volume
scattering demonstrate a significant amount of added skill compared to the other features
used in this analysis, given their importances greater than 0.25 (Figure 8). Single scattering
is the third most important at 0.13, followed by HH, GIMS percentage, and VV at 0.10, 0.09,
and 0.08, respectively.

Figure 8. Calculated importance of each classification feature used for analysis.

4.2. Post-Classification

The feature size fuzzy element effectively reduces the number of small noise-like
water and inundated pixels and helps the interpretability of the flood map. However,
this element also removes accurate observations limited in size due to data artifacts or
misclassifications, which decreases the water PA by an average of 11%, denoted in Table 4.
The morphological image closing step adds some of these features back to the flood
extent (Figure 7). Unfortunately, it also works to increase the size of falsely detected water
features, compounding some areas of overprediction that remain after the fuzzy logic
process. This is reflected in the significant decrease of 62% in average open-water UA
after postclassification.

The inundated forest class showed an increase in PA (or reduction in underprediction)
of 4%, attributed to the elimination of small discontinuities in the flood extent. Seven out
of the fifteen classified maps obtained an inundated PA greater than 95%, and one reached
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100%. Some larger gaps remain in areas with significant urban misclassification or other
spaces too large to be filled in the image closing step. Areas of misclassification such as
these prevent a higher PA in the remaining maps. An increase in overprediction is observed
because more prominent edge artifacts are kept during the fuzzy logic process due to their
size. This results in a postclassification decrease in inundated UA of 24%, a significant but
smaller reduction than that of the open-water class UA.

Table 4. Post-classification user and producer accuracies for open water, inundated forest, and their combined flood extent
averaged daily and over the entire observation period. Values are percentages.

18 September 19 September 20 September 22 September 23 September Event Average

Open Water UA 21.24 21.21 23.53 23.17 24.81 22.42
Open Water PA 62.96 66.62 81.32 72.55 83.34 71.52
Inun. Forest UA 73.88 72.89 69.83 70.49 67.62 71.52
Inun. Forest PA 95.10 91.90 97.15 92.82 94.83 94.31
Floodmap UA 47.56 47.05 46.68 46.83 46.21 46.97
Floodmap PA 85.33 84.59 92.63 86.84 91.48 87.61

4.3. Societal Impacts

The estimation of impacts on buildings, roads, and people was complicated by dis-
continuities and false detections in the estimated flood extent. Impacts were calculated
by aggregating the daily flood extents for each flight track into an event maximum and
intersecting the ancillary datasets. This approach offers a rough summary of impacts for
the entire event comparable to the damage assessments currently performed operationally.
In total, an estimated 11,618 buildings and 6118 roads and road segments were impacted
by flooding across the study area during the 18 to 23 September observation period. Given
the comparatively coarse resolution of the LandScan 2018 dataset, population impacts are
expressed as an approximation of people within 1 km of detected flooding. The resulting
estimate of 365,853 people, or about 79% of the area’s population, is assumed to be a
significant overestimation due to the large resolution difference between LandScan and the
other datasets used for analysis.

The repeated UAVSAR observations capture the temporal evolution of the flood extent.
Some inaccessible areas on 18 September are no longer inundated after just a few days,
while others remain flooded for the entire observation period. This is visualized in Figure 9,
which depicts the downstream shift of flooding along the Cape Fear River in Bladen County,
NC. Northwestern portions of the county experienced a decrease in inundation over the
observation period (Figure 9a), while the opposite is true for areas in southeast Bladen
County (Figure 9b). For water-damaged structures, remediation actions are extremely
time-sensitive given the human health risks associated with mold. Daily observations
may support these actions by providing indications of where floodwaters are receding and
damaged routes and structures are becoming accessible to response personnel.
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Figure 9. Visualizations of the change in estimated flood extent along the Cape Fear River from 18 to 23 September
2018. (a) River flooding in the northwestern portion of Bladen County, NC decreases in extent over the time period. (b)
Approximately 60 km to the southeast, portions of the river basin experience an increase in flood extent over the observation
period as waters move downstream.

5. Discussion
5.1. Classifier Performance
5.1.1. Areas of Underprediction

The open-water class suffered from underprediction due to enhanced backscatter
caused by several phenomena. Water surface roughening due to wind is a common
source of error in SAR-based water detection [5,53]. Ripples and waves caused by the
wind generate Bragg resonance, which increases backscatter as a function of wind speed
and direction with respect to the radar viewing angle [54]. This type of wind-induced
misclassification is evident across several large, permanent water bodies within the region.
Classifier confusion generated by waves on water surfaces is a well-documented limitation
of water-mapping activities using SAR [3,9]. These areas of confusion disproportionately
impact the open-water UA because a majority of the ground truth points are taken from
such permanent water bodies.

The edges of detected water features are another source of underprediction, attributed
to inherent layover and shadow effects present in side-looking SAR systems such as
UAVSAR [36]. Figure 10A shows that the detected water pixels of the Cape Fear River and
overbank flooding are surrounded by “dry” nonforest pixels, underestimating the water
extent. Conversely, vertical objects oriented parallel to the UAVSAR flight track reflect a
significant amount of energy back to the sensor and can create bright artifacts larger than
the number of pixels the structure occupies in reality. The scattering signature from a single
building within the expansive flooded area south of A is an example of underprediction
stemming from a bright feature. Urban flood detection with SAR continues to be a challenge
because of the complex mosaic of backscatter intensities generated by a high density of
features such as trees and buildings [5,36,53].
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Figure 10. Instances of flood underprediction along the Cape Fear River near Elizabethtown, NC. (A) Misclassifications
are evident along the edges of several detected water features. (B) Vegetated areas with emergent plant stems can be
misclassified as nonflooded due to enhanced backscatter. (C) Confusion with the urban class is noted in inundated swampy
areas with greater spacing between trees.

Figure 10B highlights another source of confusion between the open-water and non-
forest classes. Variation in soil moisture levels or water depth can change the backscatter
signature of features and impact the ability to discriminate between flooded and non-
flooded areas [27]. The impact of vegetation on backscatter is a function of both plant
height and inundation depth. Pulvirenti et al. (2011) observed that emergent plant stems
can enhance backscatter until they become too submerged to produce significant double-
bounce scattering [53]. Visible imagery suggests that the fields to the southwest of the
marker are flooded, with vegetation partially or entirely submerged. Underprediction,
such as in Figure 10B, is prominent in rural and agricultural areas which feature expanses
of crops or grasses at varying stages of growth.

The inundated class encountered issues with underprediction due to brightness and
shadow artifacts. Spaces between trees larger than one or two pixels allow double-bounce
scattering to dominate, creating similar signatures to those produced by buildings and other
vertical structures. This causes some inundated areas to be falsely classified as urban, as
demonstrated by Figure 10C. While the difference between these areas of inundated forest
and the developed portion to the south is evident in true-color imagery, their structural
similarities generate very similar SAR backscatter signatures.

5.1.2. Areas of Overprediction

Overprediction of open water was significant in urban areas. Paved surfaces such
as airport runways and interstate highways exhibit specular backscatter akin to water
surfaces. The similar reflective properties of paved surfaces to water have been noted
as a limitation to urban flood detection using SAR by several studies [5,36,53]. Specular
reflection also caused numerous false water detections over expanses of bare soils and
patchy or short vegetation, such as the circled areas in Figure 11. In many of these fields,
there is no water visible on the surface. Bare soils and plants at an early growth stage have
been shown to exhibit backscatter similar to water in flooded conditions [53].
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Figure 11. Visualizations of common sources of flood overprediction. Circled areas denote false detections of open water in
visibly dry areas. Arrows indicate false detections of inundated forest along the edges of tree stands. These appear as linear
features oriented roughly parallel to the instrument flight path, or from northwest to southeast.

False detections of inundation were numerous among tree stands with edges parallel
to the UAVSAR flight track. These linear features are generated by the almost pure double-
bounce scattering produced by the vertical extent of trees bordering the flat surfaces of
fields or water, and are indicated with arrows in Figure 11. Misclassifications also occurred
in forest clearings with saturated soils. The area of these false inundation detections
remains relatively steady over the observation period, in contrast to the varying daily
extent of accurately classified inundation.

5.2. Comparison to Current Operational Product

The NASA Earth Science Disasters program has recently partnered with emergency
management personnel from the North Carolina Department of Public Safety (NC DPS).
This partnership aims to assess the current flood estimation products used in emergency
response situations, such as hurricane landfalls, and offers supplementary remote-sensing
products. Currently, the NC DPS uses flood estimates generated by the Rapid Infras-
tructure Flood Tool (RIFT) developed by Pacific Northwest National Laboratory (PNNL).
This hydrodynamic model generates 90 m resolution flood extents and depths based on
simulated or observed rainfall and is distributed by the FEMA Mapping and Analysis
Center (MAC) [55].

To compare the skill level of the UAVSAR-derived flood extent to the PNNL RIFT
model output, estimations for 19 September 2018 from both sources are tested against the
ground truth points (outlined in Section 3.1.2) for that date. Flood detections by PNNL
RIFT outside of the UAVSAR processing areas are masked to isolate the analysis to areas of
overlapping coverage and truth data. Figure 12 contains a visualization of the two flood
estimates over a subset containing the city of Lumberton, NC. The accuracy statistics for
each map is calculated over the entire flight track. The UAVSAR-derived flood map has a
UA of 47.05% and PA of 84.59%. The PNNL RIFT map demonstrates slightly lower user
and producer accuracy values of 42.23% and 81.51%, respectively. This limited analysis
suggests that UAVSAR-derived flood extents have a comparable or slightly higher level of
accuracy to the rapid response products currently being used by the NC DPS. It also shows
that overprediction is a significant source of error for other methods of estimating flood
extent, and suggests the results demonstrated from this methodology are comparable to
currently operational products. It should be noted that the PNNL RIFT model displays the
maximum possible extent of water based on observed precipitation and ground elevation,
irrespective of manmade structures. Conversely, the UAVSAR map is produced using
instantaneous observations of the ground, which includes all buildings and structures
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present. These features are classified as ‘urban’ and are omitted from the final flood map,
resulting in the large difference in the estimated inundation extent around the city seen in
Figure 12. Though it is hard to directly compare the varying estimates, both methods can
provide crucial information for response activities.

Figure 12. A numerical and visual comparison of flood extent estimations generated from UAVSAR observations and the
PNNL RIFT hydrological model for 19 September 2018.

6. Conclusions

This study demonstrated the unique capabilities of L-band SAR that make it a po-
tentially reliable source of inundation detection in forested or vegetated areas. Using
Hurricane Florence of September 2018 as a case study, an RF classification scheme was
developed based on L-band UAVSAR and ancillary datasets. This methodology produced
skillful class determinations with training data limited in spatial and temporal availability.
A consistent average overall RF classification accuracy above 85% was achieved for the
fifteen UAVSAR data swaths gathered over southeastern North Carolina. The results of
the RF classification suggest a high level of skill in detecting inundated vegetation, while
open-water estimation is somewhat limited by confusion with similar land surface types.
The inundated forest class showed average user and producer accuracies of 94.91% and
89.78%, respectively. The open-water class exhibited an average user accuracy of 85.65%
and producer accuracy of 82.14%.

Following the RF classification, pixels from these two classes were combined and
refined into a more contiguous flood extent using fuzzy logic. This postclassification
method maintains a high average producer accuracy (87.15%) while significantly reducing



Remote Sens. 2021, 13, 5098 20 of 22

the average user accuracy to 46.96%, indicating considerable overprediction of flooding.
Underprediction is notable in dense urban areas, limiting the estimation of societal im-
pacts in more populated locales. Validating data for these estimations is also extremely
limited. Despite relatively lower accuracies than the RF output, a postprocessed flood
map is demonstrated to have comparable skill to the PNNL RIFT hydrological model
for observations taken on 19 September 2018. The classification and postclassification
processes shown in this study can be implemented daily as UAVSAR (and later, NISAR)
data becomes available, making it useful in real-time response situations. The L-band
SAR-derived flood estimate can be used to supplement hydrological model outputs and
provide observations where visible and near-IR imagery is unavailable, increasing the
amount of information available to emergency responders. Future efforts will explore other
methods of polarimetric decomposition and machine learning techniques. Additionally,
the applicability of this model to other regions and flood events will be assessed.
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