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Abstract: Deep learning has been widely used in the field of SAR ship detection. However, current
SAR ship detection still faces many challenges, such as complex scenes, multiple scales, and small
targets. In order to promote the solution to the above problems, this article releases a high-resolution
SAR ship detection dataset which can be used for rotating frame target detection. The dataset contains
six categories of ships. In total, 30 panoramic SAR tiles of the Chinese Gaofen-3 of port areas with a
1-m resolution were cropped to slices, each with 1024 × 1024 pixels. In addition, most of the images
in the dataset contain nearshore areas with complex background interference. Eight state-of-the-art
rotated detectors and a CFAR-based method were used to evaluate the dataset. Experimental results
revealed that the complex background will have a great impact on the performance of detectors.

Keywords: ship detection dataset; high-resolution SAR; rotating frame target detection

1. Introduction

Synthetic aperture radar (SAR) has been widely used in various fields due to its ability
to acquire high-resolution images nearly all the time and in all weather conditions. With the
development of high-resolution spaceborne SAR, high-resolution SAR data are becoming
more abundant and easier to acquire. As one of the significant ocean applications of SAR
images, ship detection plays an important role in shipwreck rescues, maritime traffic safety,
and so on.

Traditional SAR image target detection methods can be divided into four main types,
including detection algorithms based on statistical features and saliency, as well as shape
and texture features [1,2]. Among these detection methods, the constant false alarm rate
(CFAR) detection algorithm and its improved algorithm [3,4] are the most widely studied
and applied. However, this type of algorithm has the problem of poor adaptability, and
changes in the background often have a great impact on the detection results.

In recent years, convolutional neural networks have achieved great success in the
field of computer vision through their powerful capability for of automatic feature extrac-
tion [5–9]. The introduction of target detection technology based on convolutional neural
networks has strongly promoted the development of SAR target detection. However, due
to the inherent imaging mechanism of SAR, SAR image target detection still faces many
challenges. For example, the speckle noise in SAR images will affect the performance of
the detector, and the angular scintillation effect of radar scattering makes detection more
difficult. Besides, the detected targets have different scales—some targets are small in size
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or even only a few pixels—and background interference, clutter interference, etc. will affect
the performance of the detector.

At present, research into SAR ship detection methods based on deep learning has
made great progress. In 2017, target detection in SAR images based on deep learning began
to become a hotspot [10–13]. Since 2018, many SAR target detection algorithms have used
FPN [7] or its variants [14–16] for multiscale fusion to solve multiscale, especially small,
target detection problems [17–20]. Meanwhile, the reference of the attention mechanism
effectively improves the detection performance [18–21]. In addition, much research has also
looked into improving the detection speed to achieve real-time detection while ensuring
detection accuracy [19,22,23]. However, there have also been some problems. Currently,
the ship detection performance in the offshore scenarios is satisfactory, while there is still
much room for improvement in ship detection in inshore scenes. As for port ships, the
buildings on the shore show a strong similarity to the SAR image, which create great
interference in the detection of nearshore ships. In particular, ships usually have relatively
large differences in length and width. The rectangular frame detection usually used will
make the detection area contain more ground object interference, which will affect the
detection. Cui et al. conducted comparative experiments using a SSDD dataset, and
the detection performance on nearshore ships was much lower than that for the offshore
part [18]. Sun et al. conducted related experiments on the AIR-SARShip-1.0 dataset released
by themselves [24]. The experimental results indicated that there is still a large gap in the
practicality of the detection of inshore ship targets.

In order to detect targets with a large difference in length and width, rotating frame
detection networks have been proposed. Rotating frame detection was first applied in
the field of text detection, such as RRPN, EAST, R2CNN, etc. [25–27]. Subsequently,
rotating frame detection was introduced into the field of optical remote sensing. For
objects that are densely arranged and whose directions are arbitrary, the introduction
of the rotatable box can effectively promote detection performance [28]. Recently, the
rotatable box was introduced into the field of SAR target detection. Jizhou Wang et al.
conducted simultaneous ship detection and orientation estimation in SAR images based on
the attention module and angle regression [29]. An et al. proposed a one-stage DRBOX-v2,
which improved the encoding scheme of the rotatable box [30]. Chen Chen et al. proposed
a multiscale adaptive recalibration network (MSARN) to detect multiscale and arbitrarily
oriented ships in complex scenarios and modified the rotated non-maximum suppression
(RNMS) method to solve the problem of the large overlap ratio of the detection box [31].
Shiqi Chen et al. proposed a rotated refined feature alignment detector (R2FA-Det), which
ingeniously balances the quality of bounding box prediction and the high speed of the
one-stage framework [32]. However, the datasets used by these researchers were all in a
single category or labeled by themselves without a unified standard, and it is difficult to
make effective comparisons.

Deep learning is data-driven, and the quantity and quality of datasets will have a
great impact on a model’s performance. However, it is very difficult to label the SAR
image targets, and this has become one of the limitations of the development of SAR target
detection and recognition based on deep learning. At present, some public SAR target
detection datasets have been released by some researchers. Among them, SSDD [16] is a
SAR ship detection dataset released in 2017, which is currently widely used. However, the
resolution of the SSDD dataset is not very high. As the acquisition of high-resolution SAR
images has become easier, the SSDD is no longer suitable for ship detection under high-
resolution conditions. The SAR-Ship-Dataset [33] is a dataset with many slices released
in 2019. Nevertheless, the size of a single slice is 256 × 256. The features contained in a
single slice are very limited, as the slice is too small. Consequently, some datasets have
beenreleased recently, such as AIR-SARShip-1.0 [24], HRSID [34], and LS-SSDD-v1.0 [35].
These datasets have a higher resolution, and the image size in the datasets has also been
improved. However, these datasets only contain one category, namely ships, and it is
not possible to conduct multicategory target detection research on sets such as the Pascal
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VOC [36] and Microsoft COCO [37] target detection datasets. In addition, most of these
datasets are labeled with horizontal boxes. As ships are generally oriented, this inevitably
creates strong background interference.

Based on the above considerations, we released the SRSDD-v1.0 dataset. Compared
with other existing SAR ship datasets, the unique advantages of our SRSDD-v1.0 dataset
are fourfold.

1. All data in the dataset are from GF-3 Spotlight (SL) mode with a 1-m resolution and
each image has 1024 × 1024 pixels, which is relatively larger and can contain more
abundant information.

2. The data of inshore scenes occupy a proportion of 63.1%, with complex backgrounds
and much interference, making detection more challenging.

3. We used the rotatable box to label the target, which is helpful for detecting dense
targets and effectively excluding interference.

4. Compared with other existing datasets, the dataset contains multiple categories,
namely a total of six categories of 2884 ships.

2. Materials and Methods
2.1. The Detailed Information of the Dataset

All original SAR images are from the Chinese GF-3, which is a civilian SAR satellite.
These original SAR images are in spotlight (SL) mode with a resolution of 1 m in range
direction and azimuth. We selected 30 panoramic SAR tiles of port areas. The detailed infor-
mation on the original SAR images, including resolution, imaging mode, and polarization,
can be seen in Table 1. The coverage of the original images can be seen in Figure 1.
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Table 1. Detailed information of the original SAR images.

Sensor Imaging Mode Resolution (m) Polarization Position Images (N)

GF-3 SL 1 HH, VV Nanjing 4
GF-3 SL 1 HH, VV Hongkong 9
GF-3 SL 1 HH, VV Zhoushan 5
GF-3 SL 1 HH, VV Macao 3
GF-3 SL 1 HH, VV Yokohama 9

The raw SAR images are in 16-bit tag image file format (TIFF). These images were
processed by geometrical rectification and radiometric calibration. In addition, we used
peak quantization to adjust the contrast and brightness of the SAR images in Photoshop
for easy labeling.

2.2. Annotation Strategies and Annotation Information

A comparison of the horizontal box and the rotatable box is shown in Figure 2.
Although the labeling process of the horizontal box is simple, it is greatly affected by back-
ground interference, and when the ships are densely arranged, it is difficult to distinguish
them effectively. When constructing the dataset, we used a rotatable box for labeling.
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Figure 2. Comparison of the horizontal box and the rotatable box: (a) horizontal box; (b) rotatable box.

The slice generation method selects an area with ships in the wider picture for in-
terception, and the image size is set to 1024 × 1024. Some representative SAR slices in
the dataset are shown in Figure 3. After slice production was completed, we started to
label the slice. The labeling tool is a set of development tools for rotating frame labeling
developed by our laboratory based on OpenCV. We used optical images to assist to label
inshore ships. The annotation process can be divided into three steps. First, we obtained
the corresponding optical images from Google Earth or GF-2 according to the SAR imaging
dates as well as latitude and longitude information. We then found the corresponding
area on the optical image according to the SAR image. Finally, we marked it on the SAR
image after confirming the target category on the optical image. When optical images of
the same date could not be obtained, taking into account that the position of some big ships
berthing in the port is generally relatively fixed, we used the time-close optical image as a
reference. For SAR images without corresponding optical images, we distinguished the
targets according to the SAR target characteristics of different types of ships. A comparison
of the optical image and the SAR image is shown in Figure 4.
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The annotation format refers to the DOTA dataset format [28], and the annotation
information of the image is saved in a text file with the same file name. The annotation
information of objects can be seen in Figure 5. From the third line to the last line of the text
file, a comment for each instance is given, including the coordinates of the four corners of
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the box, the target category, and whether it is difficult to identify (the default, 0, means it is
not difficult).
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According to the coordinates of the four corners, the center point coordinates (x, y),
length and width (w, h), and rotation angle θ of the object can be obtained. The definition of
the angle is consistent with the DOTA dataset. The specific definition is shown in Figure 6.
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As seen in Figure 6, the rotation angle θ is found by the horizontal axis (x-axis) rotating
counterclockwise until it stops at the first side of the rectangle. The length of this side is the
width, and the length of the other side is the height. In other words, width and height are
not defined in terms of length. In addition, in OpenCV, the origin of the coordinate system
is in the upper left corner. Relative to the x axis, the counterclockwise rotation angle is
negative and the clockwise rotation angle is positive. Hence, θ is ∈ (−90◦, 0].



Remote Sens. 2021, 13, 5104 7 of 20

2.3. Data Statistics

The dataset contains a total of 666 images, all of which are cut from the original
30 panoramic tiles. The number of images including land cover is 420, which contain
2275 ships. The number of images with only the sea in the background is 246, which
contain 609 ships. Inshore scenes occupy a proportion of 63.1% and offshore scenes occupy
a proportion of 36.9%. Besides, our dataset contains six categories, labeled C1 to C6, which
correspond to ore-oil ships, bulk cargo ships, fishing boats, law enforcement ships, dredger
ships, and container ships. The specific number in each category is shown in Table 2 and
illustrated in Figure 7. It can be seen that the dataset has a certain data imbalance problem,
which also places higher requirements on the detection algorithm.

Table 2. Statistics of the number of vessels of each type.

Category C1 C2 C3 C4 C5 C6 Total

N 166 2053 288 25 263 89 2884
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As seen in Figure 8, the six types of ship have different characteristics. For ore-oil
ships, the typical feature is that it is very large and very long, and the body shape is obvious.
As for container ships, the hull is relatively large and densely packed with boxes. The
characteristics of the dredger are obvious, that is, it is empty in the middle, filled with sand,
or divided into small sections that are not obvious. Bulk cargo ships are relatively small
but have the largest number, while fishing boats are relatively dim compared with bulk
cargo ships. In addition, law enforcement ships do not have obvious features but they are
generally fixed in position and are labeled with the aid of optical images.

For the anchor-based target detection algorithms, the size and aspect ratio of the target
will have a greater impact on the detection effect, as it is necessary to set up anchors in
advance. In the dataset, different types of ship have different sizes and aspect ratios. The
scatter of the aspect ratio distribution of our dataset is shown in Figure 9.

From the statistical results, the ships in the dataset cover a large range in terms of size
and aspect ratio. This is a problem that needs to be noted when performing ship detection.
We can see that when using the horizontal box for labeling, the aspect ratio of many objects
will be close to 1:1 [35], while the distribution of the data is closer to the actual aspect ratio
of ships when using a rotatable box for labeling.

The statistics of these SAR ship detection datasets can be seen in Table 3. Detailed
information, including the resolution, image size, number of images in the dataset, labeling
method, and number of categories, is given for comparison. As seen in Table 3, our
dataset has unique advantages compared with other datasets, except for HRSID, in terms



Remote Sens. 2021, 13, 5104 8 of 20

of resolution, annotations, and categories. Compared with HRSID, the main advantage of
our dataset is centered on the categories and the proportion of nearshore scenes. In HRSID,
inshore scenes occupy a proportion of 18.4% and offshore scenes occupy a proportion of
81.6%. As for SRSDD, inshore scenes occupy a proportion of 63.1% and offshore scenes
occupy a proportion of 36.9%. The dataset is available at https://github.com/HeuristicLU/
SRSDD-V1.0 (accessed on 12 August 2021).
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Table 3. Statistics of several SAR ship detection data sets.

Datasets Resolution (m) Image Size (pixel) Images (n) Annotations Categories

SSDD 1–15 190–668 1160 Bounding box 1
[33] 3–25 256 × 256 43,819 Bounding box 1
AIR-

SARShip 1, 3 3000 × 3000 31 Bounding box 1

HRSID 0.5, 1,3 800 × 800 5604 Polygon 1
LS-SSDD-v1.0 5 × 20 24,000 × 16,000 15 Bounding box 1
SRSDD-v1.0 1 1024 × 1024 666 Rotatable box 6

3. Results
3.1. Experimental Models

After constructing the dataset, we used the rotating frame detection algorithms to
conduct experiments on the dataset. In order to evaluate the dataset more comprehensively,
we selected several different types of detection algorithms, including two-stage, one-stage,
and anchor-free detection algorithms. We hoped to obtain the performance of different
types of detection algorithms on this dataset to form a baseline.

3.1.1. FR-O

FR-O adds an angle prediction based on Faster RCNN [5] and adds FPN [7] for
multiscale feature fusion. The region proposal network (RPN) still uses horizontal boxes
for preliminary filtering, which has the advantage that it can speed up the training and
testing of the algorithm to a certain extent. In the second stage, it adds a prediction of
the angle information based on the first stage. The network architecture is shown in
Figure 10. The network structure is mainly composed of three parts: the backbone network
for extracting features, the FPN for multiscale feature fusion, and the rotation branch
prediction part.
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3.1.2. Rotated RetinaNet

Similar to FR-O, Rotated RetinaNet also adds a prediction of the angle information
based on RetinaNet [38]. The network architecture can be seen in Figure 11. The backbone
network is responsible for extracting the features of the input, whereas FPN performs
multiscale fusion of the extracted features, and then fused feature maps will be sent to
the prediction network. The prediction network can be divided into the classification
sub-network and the regression sub-network. The classification sub-network is the same as
the original RetinaNet. The difference from RetinaNet is that the regression sub-network
in Rotated RetinaNet [39] predicts five parameters, namely the coordinates of the center
point, the length and width of the rotatable box, and the rotation angle [40].

3.1.3. ROI Transformer

The rotating frame detection model RRPN [25] realizes multiangle target detection by
generating a large number of rotatable anchors. The main disadvantage of this method of
generating a large number of rotatable anchors is that the detection speed is very slow due
to redundant calculation. The authors of [41] proposed a module named RoI Transformer
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to solve this problem, which is used in the two-stage detector. It consists of two parts. The
first part is RRoI Learner, which learns the conversion from HRoIs to RRoIs. This strategy
does not need to increase the number of anchors and can obtain a more accurate RRoI. The
second part is RRoI Warping, which extracts rotation-invariant features from the RRoI for
subsequent classification and regression sub-tasks. The network architecture is shown in
Figure 12 [39].
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3.1.4. R3Det

R3Det is a refined one-stage rotated detector. It combines the advantages of the high
recall rate of horizontal anchors and the adaptability of rotatable anchors to dense scenes. In
the first stage, horizontal anchors are used to obtain a faster speed; in the refinement stage,
refined rotatable anchors are used to adapt to dense scenes [42]. In addition, taking into
account the shortcomings of feature misalignment in existing refined single-stage detectors,
R3Det designs a feature refinement module (FRM) to obtain more accurate features to
improve the detection performance of rotated targets. The network structure follows
the RetinaNet structure, and FRM can be superimposed multiple times. The network
architecture is shown in Figure 13.
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3.1.5. BBAVectors

BBAVectors is a one-stage anchor-free detection method. Anchor-free detection algo-
rithms began to arise in 2019 and are a current research hotspot. This type of algorithm
does not set anchors in advance and determines the position of the object by predicting the
center and corner points of the object [43–45]. BBAVectors adds predictions of the angle
information based on CenterNet [45]. Instead of directly returning w, h and θ, it learns box
boundary-aware vectors, namely [t, r, b, l, w, h], and then obtains the directional bounding
box of the object [46]. The network architecture is shown in Figure 14.
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3.1.6. Rotated FCOS

Rotated FCOS is also a one-stage anchor-free detection method based on FCOS [43].
FCOS is a pixel-by-pixel target detection algorithm based on FCN, which realizes an anchor-
free and proposal-free solution, and puts forward the idea of center-ness [43]. Unlike FCOS,
Rotated FCOS adds a one-channel convolution layer on the top of the regression features in
order to predict the direction. The four-dimensional predictions of the bounding box and
the 1-dimension angle prediction are concatenated as the final predictions. The network
architecture is depicted in Figure 15.
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3.1.7. Gliding Vertex

Gliding Vertex [47] uses the structure of Faster RCNN [5], but the predicted results are
slightly different. In addition to the classification results of Faster RCNN and the horizontal
box coordinates (x, y, w, h), the output of the network also has additional information
needed to determine the rotated rectangle (α 1, α 2, α 3, α 4). It also uses a rotation factor r
that indicates whether the rectangle is horizontal or rotated. The network architecture of
Gliding Vertex is shown in Figure 16.
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3.1.8. Oriented RCNN

The overall framework of Oriented R-CNN [41] is shown in Figure 17. It is a two-stage
target detection method. Firstly, oriented proposals are generated through Oriented RPN,
and then features of fixed size are extracted through Rotated RoIAlign, and, finally, the
extracted features are used as the input of the detection head to perform classification and
fine regression. The core of Oriented R-CNN lies in Oriented RPN. Oriented RPN is built
on the RPN network by modifying the output dimension of the RPN regression branch,
aiming to produce high-quality oriented proposals.
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3.2. Evaluation Metrics

In the experiments, the precision, recall, mean average precision (mAP), and images
per second (IPS) were utilized to evaluate quantitatively the performance of the detectors.
Precision and recall can be expressed as follows:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)
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where TP is true positives, TN means true negatives, FP stands for false positives, and FN
represents false negatives. AP can then be defined based on the precision and recall. AP is
calculated as follows:

AP =

1∫
0

p(r)dr (3)

where p denotes precision and r represents recall. For each target category, we calculate an
AP value, and the mean of these AP values is mAP. In addition, IPS represents the speed of
the detector. The larger IPS is, the faster the detector performs.

F1 =
2 ∗ precision ∗ recall

precision + recall
(4)

In the formula above, F1 takes precision and recall into account simultaneously to
quantitatively evaluate the comprehensive performance of the detector.

3.3. Experimental Details and Results

The dataset was randomly divided into the training set and test set according to the
ratio of 4:1. All experiments were conducted on the Ubuntu18.04 operating system with
an NVIDIA RTX 2080s GPUwith 8 GB of memory. In addition, the hardware capabilities
included an AMD 3700x CPU with 32 GB RAM. In the experimental process, the input SAR
images were converted to three-channel images, and the image size was set to 1024 × 1024.
Given the limit of GPU memory, we set the batch size to 3 for six detectors, except that the
batch size was 1 for R3Det and BBAVectors. Seven detectors were implemented by PyTorch,
but R3Det was implemented by TensorFlow. In each experiment, the network was trained
for a total of 120 epochs. The optimizer and learning rate for R3Det and BBAVectors were
the same as in [42,45], respectively. For the other six detectors, the optimizer used in the
experiments was SGD and the initial learning rate was 0.005. The momentum was 0.9 and
the weight decay was 0.0001. The learning rate was decayed by dividing by 10 in the 80th
and 110th epoch. Besides, the intersection over union (IoU) threshold in the experiments
was set to 0.5 and the confidence threshold was set to 0.3.

The ship detection evaluation results of the eight detectors are shown in Tables 4 and 5.
In Table 5, when calculating the recall and the precision, TP and FP are the sum of six cate-
gories, as our dataset has six categories. Recall was calculated by dividing the total TP by
the total ground truth (GT). Precision is calculated similarly to recall, and F1 is calculated
using recall and precision. As seen from the results, the two-stage detection algorithms
performed best on this dataset, while the one-stage anchor-based methods produced the
worst detection results. We see that the anchor-free algorithms did not perform well as well.
It can be inferred that the background interference of many slices in the dataset is complicated,
which is not conducive to the prediction of the algorithm. The reason why the performance
of the two-stage algorithm is best on this dataset may be that the two-stage algorithm has
preliminary filtering in the first stage, which alleviates the problem of sample imbalance. Some
of the detection results of Oriented RCNN for the dataset are shown in Figure 18.

Table 4. Ship detection evaluation results for several models.

Model Category mAP IPS Model Size

FR-O Two-stage 53.93 8.09 315 MB
R-RetinaNet One-stage 32.73 10.53 277 MB

ROI Two-stage 54.38 7.75 421 MB
R3Det One-stage 39.12 7.69 468 MB

BBAVectors Anchor-free, one-stage 45.33 3.26 829 MB
R-FCOS Anchor-free, one-stage 49.49 10.15 244 MB

Gliding Vertex Two-stage 51.50 7.58 315 MB
O-RCNN Two-stage 56.23 8.38 315 MB
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Table 5. The results of recall, precision, and F1 on the test set.

Model Recall Precision F1

FR-O 57.12 49.66 53.13
R-RetinaNet 53.52 12.55 20.33

ROI 59.31 51.22 54.97
R3Det 58.06 15.41 24.36

BBAVectors 50.08 34.56 40.90
R-FCOS 60.56 18.42 28.25

Glid Vertex 57.75 53.95 55.79
O-RCNN 64.01 57.61 60.64

The detailed results for the AP of each category are shown in Table 6, and some simple
analyses can be conducted based on these. Although C1 has a large scale, the one-stage
detection algorithms did not perform well. The reason is that C1 often overlaps with the
features on the shore due to general docking and there is much interference. Because
of the obvious characteristics of C5 and C6, almost every algorithm had good detection
effects for them. Due to the small number of C4 ships, it is very challenging to detect them,
and the results in Table 6 illustrate that most detection algorithms performed poorly on
these. In addition, C2 has the largest number in the dataset. The one-stage and anchor-
free algorithms did not show a detection effect for these, while the two-stage detection
algorithm performed better. As for C3, there was no clear distinction between C3 and C2,
which led to relatively poor detection performance.

Table 6. Ship detection results of the mAP and AP of each category for several models.

Model C1 C2 C3 C4 C5 C6 mAP

FR-O 55.62 46.71 30.86 27.27 77.78 85.33 53.93
R-RetinaNet 30.37 35.79 11.47 2.07 67.71 48.94 32.73

ROI 61.43 48.89 32.89 27.27 79.41 76.41 54.38
R3Det 44.61 42.98 18.32 1.09 54.27 73.48 39.12

BBAVectors 54.33 34.84 21.03 1.09 82.21 78.51 45.33
R-FCOS 54.88 47.36 25.12 5.45 83.00 81.11 49.49

Glid Vertex 43.41 52.80 34.63 27.27 71.25 79.63 51.50
O-RCNN 63.55 57.56 35.35 27.27 77.50 76.14 56.23

To demonstrate the influence of complex backgrounds on detection performance, we
also evaluated the performance close to shore and far from shore. The results can be seen
in Table 7. Among them, the calculation methods of the recall, precision, and F1 are the
same as those in Table 5.

Table 7. The performance for inshore and offshore scenes.

Model Scene Recall Precision F1

FR-O
Inshore 52.30 47.97 50.04

Offshore 84.38 56.64 67.78

R-RetinaNet
Inshore 47.33 11.45 18.44

Offshore 88.54 17.71 29.52

ROI
Inshore 54.14 50.26 52.13

Offshore 88.54 54.84 67.73

R3Det
Inshore 54.14 15.65 24.28

Offshore 80.21 14.56 24.65

BBAVectors
Inshore 42.54 33.19 37.29

Offshore 92.71 38.70 54.61

R-FCOS
Inshore 55.06 17.11 26.11

Offshore 91.67 24.93 39.20

Glid Vertex
Inshore 53.22 51.79 52.50

Offshore 83.33 63.49 72.07

O-RCNN
Inshore 60.04 56.50 58.22

Offshore 86.46 62.41 72.49
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From Table 7, we can see that the ship detection methods have difficulty with inshore
scenes. The detection performance of different detection algorithms shows a large differ-
ence between the near-shore scenes and the offshore scenes. It is clear that the complex
backgrounds have a great impact on the detection performance of deep learning ship
detection algorithms and enlarge the performance gap between the two-stage algorithms
and the single-stage algorithms.

To make the results comparable to other literature that evaluated systems of SAR ship
detection [48], a modified CFAR [49] was tested on the dataset; the results can be seen in
Table 8. We refer to the method in [48] to calculate the recall and FAR/km2 for comparison.
As the resolution is 1 m in both the range direction and azimuth, and the image size is
1024 × 1024, the area represented by an image is about 1.05 km2. Besides, the results in
Table 8 also verify the impact of complex backgrounds on the ship detection performance.

Table 8. The results of traditional ship detection methods on the test set.

Scenes Method Recall Precision FAR/km2

Full scene Modified CFAR 23.00 64.76 0.5694
Inshore Modified CFAR 11.79 45.07 0.8265

Offshore Modified CFAR 86.45 97.65 0.0433

4. Discussion

As is well known, many factors influence detection performance. In the experiments,
background interference was a relatively large problem. When there is land in the background,
some buildings or mountains on the land usually have similar characteristics to the targets,
which creates great difficulties in ship detection. In addition, it is generally difficult to detect
ships in shipyards, and the surrounding building structures cause great interference.

As seen from the experimental results, the two-stage detection algorithms performed
better on this dataset than the single-stage and anchor-free detectors. In general, it is
important to make the best trade-off when choosing a detector. In the experiments, Oriented
RCNN achieved the best mAP on the dataset and an acceptable detection speed at the
same time.

Given that the dataset is challenging, the detection algorithms inevitably have some
missed detections, false alarms, and false detections. We give some examples in Figure 19
for analysis. As depicted in Figure 19, the left column represents the ground truth while the
right column stands for the real detections. As for the false alarm in Figure 19b, we can see
that the shape of the wharf is very similar to that of the ship, which created interference and
caused the false alarm. With respect to the false detections in Figure 19d, some fishing boats
were incorrectly detected as bulk cargo ships because there were no obvious distinguishable
features between them. In terms of the missed ship on the left in Figure 19f, the scattering
characteristics of the wharf are mixed with the ship, causing false detection. As for the
missed ship on the right, it can be inferred that the mixed scattering characteristics of the
adjacent ships interfered with the detection, which caused the missed detection.

We know that there are still some shortcomings in this dataset. For example, the
amount of data is not very large, and there are also some imbalances in several categories.
However, for some categories with obvious characteristics, the detection performance is
still satisfactory, on the condition that the number is not great enough. The experimental
results of multiple models have also proved this point.
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(c) ground truth; (d) false detections; (e) ground truth; (f) missed detections.

5. Conclusions

In this study, a high-resolution SAR ship detection dataset with a complex background
and much interference was released, which can be used for rotating frame target detection.
In addition, the dataset contains six categories of ships. In order to construct a baseline,
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eight state-of-the-art rotated detectors and a CFAR-based method were used to evaluate
the dataset. The experimental results show that the performance of the detection algo-
rithms was very different between near-shore scenes and offshore scenes. The complex
backgrounds had a great impact on the detection performance of ship detection algorithms
and magnified the performance gap between the two-stage algorithm and the single-stage
algorithm. At present, the field of SAR ship detection urgently needs a dataset such as this,
so we have released version 1.0. We will continue to improve this dataset in the future. We
believe that this dataset can more effectively promote the research into SAR ship detection
methods based on deep learning.
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