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Abstract: The prerequisite for the use of remote sensing images is that their security must be
guaranteed. As a special subset of perceptual hashing, subject-sensitive hashing overcomes the
shortcomings of the existing perceptual hashing that cannot distinguish between “subject-related
tampering” and “subject-unrelated tampering” of remote sensing images. However, the existing
subject-sensitive hashing still has a large deficiency in robustness. In this paper, we propose a novel
attention-based asymmetric U-Net (AAU-Net) for the subject-sensitive hashing of remote sensing
(RS) images. Our AAU-Net demonstrates obvious asymmetric structure characteristics, which is
important to improve the robustness of features by combining the attention mechanism and the
characteristics of subject-sensitive hashing. On the basis of AAU-Net, a subject-sensitive hashing
algorithm is developed to integrate the features of various bands of RS images. Our experimental
results show that our AAU-Net-based subject-sensitive hashing algorithm is more robust than the
existing deep learning models such as Attention U-Net and MUM-Net, and its tampering sensitivity
remains at the same level as that of Attention U-Net and MUM-Net.

Keywords: security of remote sensing images; deep learning; subject-sensitive hashing; integrity
authentication; perceptual hash; U-Net

1. Introduction

With the development of Earth observation (EO) technology, remote sensing (RS) im-
ages have been widely used in many fields, such as environmental science [1,2], urban plan-
ning [3,4], disaster monitoring [5,6], agriculture [7,8], and surveying and mapping [9,10].
However, the use of RS images has an implicit premise, i.e., the security of the RS image
must be guaranteed. If an RS image is tampered with during transmission and storage, the
content of the RS image will change or may even be distorted. If a user uses a tampered RS
image, his/her analysis results obtained from the tampered RS image would either be not
accurate enough, or incorrect, both of which may lead to a wrong and dangerous decision
in some applications; if the user is not sure whether the RS image has been tampered with
or not, the value of that image can be greatly reduced, or it even becomes useless.

A set of examples of tampered RS images is shown in Figure 1. For tampered RS
images, as shown in Figure 1b, it is difficult to determine whether they have been tam-
pered with, even if they are compared with the original images, as shown in Figure 1a.
Furthermore, it is also difficult to compare the “suspicious” RS images with the original
RS images. Therefore, the data integrity of RS images must be guaranteed so that the RS
images can be trusted and used with peace of mind. To address the above problem, some
authentication technologies have been developed to ensure the integrity of RS images,
including cryptography, digital watermarking, block chains, and perceptual hashing.
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which inherits the deficiencies of cryptography technology in RS image authentication. 
Perceptual hash [11,12] overcomes the shortcomings of cryptography technologies and 
digital watermarking technology and has strong application prospects. Some scholars 
have carried out related research on perceptual hash authentication algorithms of RS im-
ages, leading to some encouraging results [13–15]. 

As the spatial resolution of RS images becomes higher and higher, the performance 
of the existing perceptual hash algorithms gradually encounters a bottleneck. For exam-
ple, the robustness of existing perceptual hashing algorithms to high-resolution RS images 
needs to be further strengthened. At the same time, as RS images are used in more fields, 
new security issues have arisen. For example, users pay different levels of attention to 
different contents of RS images in different applications: hydrologists tend to pay more 
attention to the information of rivers and lakes in the images; survey workers pay more 
attention to the roads, bridges, and buildings; and users who study the extraction of data 
related to moving objects are more interested in the features of moving objects, such as 
airplanes, ships, and vehicles. However, the current mainstream perceptual hash technol-
ogy cannot achieve “subject-sensitive” integrity authentication. As a branch of perceptual 
hash, subject-sensitive hashing [16] can enable “subject-sensitive” integrity authentication. 
However, the existing subject-sensitive hashing algorithms have the following shortcomings: 
1. The differences in the various bands of RS images are not taken into account. Each 

band of the RS image reflects the spectral information within the band. As a result, 
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Among the existing authentication technologies, cryptography technology authenti-
cates data at the binary level and is too sensitive to changes in data. Therefore, cryptography
technology has many shortcomings in the authentication of RS images. For example, after
the format conversion of remote sensing images, the binary changes greatly, but its content
does not change. Digital watermarking technology requires certain modifications to the
RS image, which is not allowed in many cases. Moreover, digital watermarking, similarly
to cryptography, cannot identify whether the content of the RS image has changed. Block
chain technology has strong application prospects in RS image authentication, but the
block chain relies on cryptography technology in the realization process, which inher-
its the deficiencies of cryptography technology in RS image authentication. Perceptual
hash [11,12] overcomes the shortcomings of cryptography technologies and digital water-
marking technology and has strong application prospects. Some scholars have carried out
related research on perceptual hash authentication algorithms of RS images, leading to
some encouraging results [13–15].

As the spatial resolution of RS images becomes higher and higher, the performance of
the existing perceptual hash algorithms gradually encounters a bottleneck. For example, the
robustness of existing perceptual hashing algorithms to high-resolution RS images needs
to be further strengthened. At the same time, as RS images are used in more fields, new
security issues have arisen. For example, users pay different levels of attention to different
contents of RS images in different applications: hydrologists tend to pay more attention
to the information of rivers and lakes in the images; survey workers pay more attention
to the roads, bridges, and buildings; and users who study the extraction of data related
to moving objects are more interested in the features of moving objects, such as airplanes,
ships, and vehicles. However, the current mainstream perceptual hash technology cannot
achieve “subject-sensitive” integrity authentication. As a branch of perceptual hash, subject-
sensitive hashing [16] can enable “subject-sensitive” integrity authentication. However, the
existing subject-sensitive hashing algorithms have the following shortcomings:

1. The differences in the various bands of RS images are not taken into account. Each
band of the RS image reflects the spectral information within the band. As a result,
there are certain differences among different bands. However, the current subject-
sensitive hashing algorithms do not make the best use of these differences [16].

2. The tampering sensitivity of the existing subject-sensitive hash still needs further
improvement. Compared with perceptual hash, subject-sensitive hashing further
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distinguishes robustness into “subject-related tampering” and “subject-unrelated tam-
pering”. However, the existing subject-sensitive hash cannot sufficiently distinguish
the above two types of tampering sensitivities.

3. While perceptual hashing methods (including subject-sensitive hashing) have better
robustness than cryptographic methods, the robustness of existing subject-sensitive
hashing algorithms still has room for improvement. For example, the robustness of
the existing methods for the lossy data compression of RS images is still not ideal.

To address the above problems, taking advantage of the characteristics of the attention
mechanism, in that it can focus attention on the important features of the image [17,18], we
constructed an attention-based asymmetric U-Net (AAU-Net) for the extraction of subject-
sensitive features of RS images. The attention mechanism was first successfully applied
in the field of natural language processing [19] and later successfully applied to image
processing and other fields [20,21]. According to the characteristics of subject-sensitive
hashing that distinguishes “subject-related features” and “subject-unrelated features”,
where the extracted features are as robust as possible and the feature image does not need
to be the same size as the original image, the AAU-Net adopts an asymmetric network
structure, which adds the attention mechanism to the decoder part and multi-scale input
to the encoder part.

In this paper, we propose a novel attention-based asymmetric U-Net (AAU-Net) for
the subject-sensitive hashing of RS images. Our AAU-Net improves the robustness of
features and demonstrates obvious asymmetric structure characteristics by combining the
attention mechanism and the characteristics of subject-sensitive hashing. On the basis of
AAU-Net, we propose a subject-sensitive hash algorithm based on band feature fusion,
taking into account the differences between the characteristics of each band of RS images.
In particular, we make the following key contributions:

1. In view of the shortcomings of existing subject-sensitive hashing algorithms, such as
the inability to distinguish between subject-related tampering and subject-unrelated
tampering, we introduce the attention mechanism into the research of subject-sensitive
hashing to better realize the integrity authentication of RS images.

2. Combining the characteristics of subject-sensitive hashing, a network named attention-
based asymmetric U-Net (AAU-Net) is proposed to extract the subject-sensitive fea-
tures of the bands of RS images, which has good tampering sensitivity and robustness.

3. There are certain differences in the content of different bands of RS images, while the
existing subject-sensitive hash algorithm does not take the differences into account.
To overcome this problem, a subject-sensitive hashing algorithm that integrates the
features of each band of RS images is proposed based on our AAU-Net.

The composition of this paper is as follows: Section 2 reviews the related work.
Section 3 presents the proposed AAU-Net and subject-sensitive hashing algorithm in detail.
Section 4 presents the experiment in detail and provides a discussion. Finally, we conclude
this paper in Section 5.

2. Related Work

In a broad sense, “hash” means “one-way mapping”. Perceptual hashing, also known
as perceptual hash, is a subset of the generalized “hash”, and it is a one-way mapping from
multimedia datasets to digests. Perceptual hash can uniquely map multimedia data with
the same perceptual content to a digital digest and meet the requirements of perceptual
robustness and safety. According to different multimedia objects, perceptual hash can
be subdivided into image perceptual hash, video perceptual hash, and audio perceptual
hash. In this paper, perceptual hash generally refers to image perceptual hashing unless
otherwise specified.

Suppose the original RS image is denoted as I, the RS image with the same effective
content as I but not necessarily the same in binary representation is represented as I′, the
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image perceptual hash function is denoted as PH(), and the output result of PH() is the
perceptual hash sequence denoted as ph; then,

PH(I) = phI (1)

PH(I) = phI′ (2)

phI = phI′ (3)

Suppose the function D() is used to measure the difference between two hash se-
quences, I′ ′ represents an image with a certain different content from the content of I, and
T is the threshold; then,

D(PH(I), PH(I′′)) > T (4)

Compared to cryptographic hash, perceptual hash is more suitable for the integrity
authentication of RS images: in the process of the distribution, transmission, and use of
RS images, the effective content information carried by the RS images is not changed after
format conversion, data compression, etc.; only the information carrier is changed. For the
integrity authentication of RS images, more attention should be paid to the integrity of the
content carried, rather than whether the carrier itself has changed.

Subject-sensitive hashing [16] is a special case of perceptual hashing, which can
realize the “subject-sensitive” authentication of RS images; that is, it divides the content
tampering of RS images into two types: “subject-related tampering” and “subject-unrelated
tampering”.

The relationship between hash, cryptographic hash, and perceptual hash is shown
in Figure 2. In the category of generalized hash, although perceptual hash has many
similarities with cryptographic hash, the difference is very obvious: cryptographic hash
generates a hash sequence based on the binary representation of data, while perceptual
hash generates a hash sequence based on the perceptual content of multimedia data.
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Figure 2. The relationship between hash, cryptographic hash, and perceptual hash.

Here, we take “buildings” as the subject to compare subject-related tampering with
subject-unrelated tampering—that is, tampering related to a building is “subject-related
tampering”, and tampering that is not related to a “building” is “subject-unrelated tam-
pering”, as shown in Figure 3. The comparison shows that although the size of tampering
areas in Figure 3b,c is roughly the same, it is clear that the subject-related tampering shown
in Figure 3b is more destructive to RS images, as the tampering in Figure 3b directly affects
the user’s analysis results of RS images. However, conventional perceptual hash algorithms
cannot achieve this “subject-sensitive” integrity authentication and cannot distinguish be-
tween these two types of tampering. Subject-sensitive hashing overcomes this shortcoming
of perceptual hashing.
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Figure 3. Comparison of subject-related tampering and subject-unrelated tampering: (a) original RS
image; (b) subject-related tampered RS image; (c) subject-unrelated tampered RS image.

Compared with traditional perceptual hash, the difficulty of subject-sensitive hashing
is to distinguish between “subject-related tampering” and “subject-unrelated tampering”—
that is, to achieve “subject-sensitive” integrity authentication of the RS image. However, it
is difficult to implement subject-sensitive hashing based on traditional image processing
technology: traditional image processing technology struggles to achieve “subject-sensitive”
feature extraction, and it also finds it difficult to define “subject-sensitive” features. For-
tunately, the rise of deep learning provides a feasible way to achieve subject-sensitive
hashing: through the learning of specific samples, deep neural networks have the ability to
extract “subject-sensitive” features. Compared with traditional methods, deep learning
has excellent feature expression capabilities [22–24] and can extract the hidden high-level
features of RS images [25]. Methods based on deep learning can automatically learn more
essential features from training samples, reduce the complexity of artificially designed
features, and provide a feasible way to achieve “subject-sensitive” authentication.

The framework of the deep learning-based subject-sensitive hashing algorithm is
shown in Figure 4: first, on the basis of analyzing the application of RS images, a training
sample set is constructed that meets the requirements of integrity authentication; then, a
suitable deep neural network is built and trained to extract the subject-sensitive features
of RS images; in the process of generating a subject-sensitive hash sequence, the subject-
sensitive features of the preprocessed RS image are extracted through the trained deep
neural network model, and the extracted features are dimensionally reduced, coded, and
enhanced to generate the final subject-sensitive hash sequence.
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The process of constructing the training sample set is generally divided into two
steps: the first step is to modify the existing training dataset to generate samples “directly
related to the subject”: for example, generating training samples based on the existing
building-oriented training dataset; the second step is to manually draw some robust
training samples: for example, manually drawing training samples with “false edges”
removed. The preprocessing enables the RS image to meet the input requirements of the
deep neural network; the subject-sensitive hash sequence can be expressed in a binary
or hexadecimal format. Among the above steps, the most critical step is to design a
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suitably deep neural network model, which will directly affect the performance of the
subject-sensitive hash algorithm.

The information regarding various bands of RS images often has certain differences,
but the existing perceptual hash algorithms (including subject-sensitive hashing) for RS im-
ages often do not take this difference into account. The existing perceptual hash algorithms
for RS images [13–16] generally perform a grayscale operation on the original image in the
preprocessing stage and then extract the characteristics of the obtained grayscale image.
This obviously does not take into account the band differences of RS images.

On the other hand, affected by the correlation of bands, there is a lot of information
redundancy between the various bands of RS images [26–28]. The subject-sensitive hash
algorithm used for RS image authentication should have excellent abstraction and com-
putational efficiency, which requires the subject-sensitive hash algorithm to reduce the
redundancy between the bands as much as possible while taking into account the differ-
ences between each band. To solve the above problems, drawing lessons from the idea of
band fusion, we separately extract the features of each band of remote sensing images and
then fuse the feature images. Remote sensing image fusion technology can coordinate two
or more different wavebands to generate new images with more information [29,30].

Feature extraction based on deep learning can effectively overcome the limitations
of traditional RS image processing methods [31] and provide a feasible way to carry out
subject-sensitive hashing. In the related methods of deep learning, the attention mechanism
enables the network to dynamically select a subset of input attributes in a given input–
output pair setting to improve the accuracy of decision making [32].

The attention mechanism has been widely used in tasks such as natural language
description [33], machine translation [34], image feature extraction [35,36], and image clas-
sification [37,38]. In essence, the attention mechanism is a weight probability distribution
mechanism that assigns larger weights to important content and smaller weights to other
content. This enables the attention mechanism to focus on finding useful information that
is significantly related to the current output in the input data, in order to highlight the
features related to the prediction, thereby improving the accuracy of the model’s prediction.
As the attention mechanism focuses on the features that are of interest to the user, and the
features that the user is interested in are the key to the extraction of “subject-sensitive”
features and the realization of subject-sensitive hashing, it is feasible to apply the attention
mechanism to the task of subject-sensitive hashing.

In this research, we refer to the attention gate (AG) proposed in [39] and combine
the characteristics of subject-sensitive hashing to propose a deep neural network named
attention-based asymmetric U-Net for subject-sensitive hashing of RS images.

3. Proposed Method

In this section, the proposed AAU-Net is introduced in detail, and then the subject-
sensitive hashing algorithm based on AAU-Net is discussed.

3.1. AAU-Net: Attention-Based Asymmetric U-Net
3.1.1. Asymmetric Network Architecture of AAU-Net

Although we are not the first to combine the attention mechanism with U-Net, our
AAU-Net is more suitable for the subject-sensitive hashing of RS images. To achieve subject-
sensitive authentication, it is not the case that the more information extracted by AAU-Net,
the better, but rather the more information related to the subject extracted, the better. The
attention gate pays more attention to useful salient features and can learn to suppress
irrelevant areas [17,21,39], which is very effective for subject-sensitive feature extraction.

The architecture of the proposed AAU-Net is shown in Figure 5, which is somewhat
similar to that of the original U-Net [40], but it is also obviously different. The asymmetry
structure of AAU-Net is mainly reflected in the following aspects:
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1. The encoder and decoder parts of the network structure are asymmetrical. In the
original U-Net and variant networks based on U-Net (such as TernausNet [41], Res-
UNet [42], MultiResUNet [43], and Attention U-Net [39]), the level of pooling in the
encoder stage and the level of upsampling in the decoder stage are generally the same,
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while in AAU-Net, the level of pooling is greater than the level of upsampling: after
upsampling in block 6, there is no upsampling in block 7, block 8, and block 9. If there
are more upsampling operations, the pixel-level noise (false features composed of
several pixels) will also increase.

2. The asymmetry of input and output. The size of the input image of AAU-Net is
256 × 256, but the output is 64 × 64. This not only helps to reduce information
redundancy, simplifying the downsampling operation of the algorithm in the feature
processing stage, but also improves the robustness of the subject-sensitive hashing
algorithm. In fact, even the traditional perceptual hash algorithm uses the method
of reducing the image resolution in the image preprocessing stage to increase the
robustness of the algorithm. After all, the lower the image resolution, the less useless
information it contains.

3. The continuous pooling operation and stride convolution in the original U-Net cause
the loss of some spatial information [44], while the multi-scale input can greatly
reduce the loss of spatial information [45], thereby improving the accuracy of the
model. In AAU-Net, we perform downsampling processing on the original input
image and build a multi-scale input (image pyramid) to reduce the loss of spatial
information due to convolution and pooling operations, so that each layer of the
encoding stage can learn more rich features, and then improve the model’s ability to
extract subject-sensitive features.

4. In the decoder stage of AAU-Net, an attention gate is added to suppress irrelevant
areas, while the encoder does not introduce the attention mechanism, which is similar
to Attention U-Net [39]. Although the multi-scale input of the encoder helps to extract
rich information, it also increases the possibility of extracting useless features such as
noise. The attention mechanism causes AAU-Net to suppress the useless features as
much as possible.

3.1.2. Attention Gate

In AAU-Net, attention gates are mainly used in each module of the decoding stage to
suppress irrelevant areas, which is similar to Attention U-Net [39]. The structure diagram
of the attention gate [39,46,47] is shown in Figure 6.
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In Figure 6, g represents the gating vector acting on the input pixel, which contains
context information and is used to reduce the response of lower-level features; XL represents
the initial feature map of the input; δ1 and δ2 represent the activation functions; α is the
attention coefficient related to a specific task, which is used to suppress the expression of

features not related to the specific task; and
∧

XL represents the output feature map, which is
obtained by multiplying the attention coefficient α and XL. The calculation formula of the
attention coefficient α is as follows:

α = δ2(ΨT(δ1(ω
T
x XL + ωT

g g + b1)) + b2) (5)

where b1 and b2 represent bias, and Ψ and ω represent 1 × 1 × 1 convolution operations.
It should be noted that the activation functions δ1 and δ2 are not limited to specified

activation functions. ∆1 and δ2 can be ReLU or Elu, LeakyReLU, PReLU, or other activation
functions. In our experiment, after repeated experiments, combined with the conclusions
in [39,46,47], δ1 was determined as ReLU, and δ2 was determined as the sigmoid function.
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3.1.3. Loss Function

Subject-sensitive features account for a small proportion of RS images; that is, this is
unbalanced sample learning. Therefore, the loss function of AAU-Net, which is known as
the cost function, should be adapted to this feature learning with “a small proportion of
effective features”. Focal loss (FL) [48] is very suitable for the learning of subject-sensitive
features. FL is a modified version of cross-entropy (CE) loss [49] and seeks to balance
between easy and hard samples. Our AAU-Net uses the α-balanced variant of focal loss [50]
as the loss function, as follows:

FL(pt) = −αt(1− pt)
γlog(pt) (6)

In the formula, pt represents the estimated probability of the model being a positive
class at this pixel, while αt can balance the ratio of positive and negative samples, and the
selection of αt needs to consider the value of γ. The optimal values of the two influence
each other, so the optimization of αt and γ needs to be combined and adjusted. In the
experiment, combined with the conclusions of [16,49,50], we determined that αt = 0.25 and
γ = 2 are the optimal settings, which makes the subject-sensitive hash algorithm relatively
optimal in terms of robustness and tampering sensitivity.

3.2. Subject-Sensitive Hashing Based on AAU-Net
3.2.1. The Process of Generating Subject-Sensitive Hash Sequences

The existing sensing hashing algorithms for RS images more or less refer to the image
sensing hashing algorithms. However, compared with ordinary images, RS images often
contain multiple independent bands, and different bands have clear physical meanings
and carry different spectral information; moreover, ordinary images are mainly grayscale
images (single band) or color images (three bands), while the number of bands of RS images
is not unique and may be more than three bands. The existing perceptual hash algorithm
for RS images mainly does not take into account the band characteristics of RS images.

To overcome the above problems, our AAU-Net-based subject-sensitive hashing
algorithm has some differences from the existing perceptual hash algorithm (including the
subject-sensitive hashing algorithm) [11–16]: our algorithm separately extracts the subject-
sensitive features of each band of RS images and then performs feature fusion, instead of
graying the image and then extracting features. Taking the RS image with 3 bands as an
example, our algorithm flow is shown in Figure 7.
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Step 1. Image preprocessing based on band split.
Assuming that the RS image (denoted as I) has N bands, each band of the original RS

image is represented by a single-band image independently and is adjusted to the input
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size of AAU-Net—that is, 256 × 256 pixels. The band image after preprocessing is denoted
as Ik, where k is a positive integer less than N.

If the RS image is too large, the image can be divided into grids first, and the divided
grid unit can be used for the next step, similarly to the method of [13,14,16].

Step 2. Subject-sensitive feature extraction of images based on AAU-Net. This step
uses the trained AAU-Net to extract the subject-sensitive features of the preprocessed band
image Ik, and the output result is a 64 × 64 grayscale image which is denoted as Fk.

Step 3. The fusion of the features of each band. The existing subject-sensitive hash
algorithm generally does not have this step, and this is the biggest difference between this
algorithm and the existing algorithm. Pixel-level image fusion can better retain the original
information, which is conducive to subsequent image analysis and feature extraction [51,52].
We construct an adaptive weighted feature fusion method which determines the weighting
coefficient according to information entropy:

First, calculate each weighting coefficient αk according to the information entropy of
each band, as shown in (7), where E represents the information entropy of the band image,
k represents the band number, and N represents the number of bands:

αk =
Ek

N
∑

i=1
Ek

(7)

Next, let the fusion result be denoted as F; then, each pixel F(i, j) of F is as shown in (8):

F(i, j) =
N

∑
k=1

αkFk(i, j) (8)

Among them, Fk(i, j) represents the value of the corresponding pixel in Fk.
Step 4. Compress and encode the fused feature image F to generate the subject-

sensitive hash sequence of the original RS image. Here, we use the PCA-based feature
dimensionality reduction method to extract the high-level values of the principal compo-
nents as the subject-sensitive feature. After the subject-sensitive features are normalized
and quantified, the binary sequence obtained is the subject-sensitive hash sequence.

The above process is described in pseudocode in Algorithm 1.

Algorithm 1: Subject-sensitive hash algorithm of an RS image.

Input: Storage path of the RS image
Output: Subject-sensitive hash sequence
1 I = read(Storage path of the RS image)
2 Band1, Band2, . . . , BandN = split(I)
3 I1, I2, I3 . . . , IN = pre-process(Band1, Band2, . . . , BandN)
4 for Ik in (I1, I2, I3 . . . , IN)
5 Fk = AAU-Net (Ik)
6 end for
7 F = αk Fk
8 Subject-sensitive feature = PCA(F)
9 Subject-sensitive hash sequence = Normalization and Quantification (Subject-sensitive feature)

3.2.2. Integrity Authentication Process

The authentication process of the subject-sensitive hashing algorithm based on AAU-
Net is realized by comparing the normalized hamming distance [53] of the hash sequence.
The detailed process is as follows:

Step 1. Generate the subject-sensitive hash sequence of the original RS image I, denoted
as hash1. Hash1 is stored and transmitted as an attachment to the RS image I, in case it is
necessary to authenticate the integrity of the RS image.
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Step 2. For the image to be authenticated (denoted as I’), use the same process in
Section 3.2.1 to generate its subject-sensitive hash sequence, denoted as hash2.

Step 3. Calculate the normalized hamming distance [53] between hash1 and hash2,
denoted as Dis:

Dis =

(
stringlength

∑
i=1

|hash1(i)− hash2(i)|
)

/stringlength (9)

where stringlength is the length of the hash sequence in binary format.
Step 4. Compare Dis with the set threshold T. If Dis is greater than or equal to T, the

content of the RS image I’ to be authenticated has been tampered with; if Dis is less than
T, the content of the RS image I’ has not been tampered with—that is, the RS image I’ has
passed the authentication.

The above process is described in pseudocode in Algorithm 2.

Algorithm 2: Integrity authentication process.

Input: T, Hash1 and I’
Output: Authentication result
1 Hash2 = Subject-sensitive_hash (I’)
2 Dis = Normalized_hamming_distance (Hash1, Hash2)
3 If (Dis > T)
4 Integrity authentication failed
5 else
6 Passed integrity authentication
7 end if

4. Experiment and Discussion
4.1. Performance Evaluation Metrics

For perceptual hashing, evaluation metrics include robustness, tampering sensitiv-
ity, high efficiency (computing efficiency), and security. Among them, robustness and
tampering sensitivity are the two most important evaluation metrics. As a special case
of perceptual hashing, the evaluation metrics of subject-sensitive hashing can refer to the
evaluation metrics of perceptual hash, and the evaluation component of subject-sensitive
authentication should be added.

In this paper, we mainly used the following metrics to evaluate the performance of
subject-sensitive hashing algorithms based on the evaluation metrics of perceptual hash:

(1) Performance of robustness.

Robustness refers to the proportion of data whose hash sequence changes below the
threshold after the image in the test dataset undergoes the operation of “not changing the
image content”. We further divided the robustness into two categories: subject-related
robustness and subject-unrelated robustness. The metrics for evaluating robustness are
defined as

RO(T) =
NumRO

NumTotal_RO
(10)

where T represents a preset threshold, NumTotal_RO represents the number of images for
robustness testing, and NumRO represents the number of images whose hash sequence
change is higher than the threshold T.

(2) Performance of sensitivity to tampering.

Sensitivity to tampering, also known as tampering sensitivity, was used to test the
ability of the subject-sensitive hash algorithm to detect malicious tampering. In this paper,
the proportion of tampering detected successfully under different thresholds was used
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to describe the tampering sensitivity of the algorithm, which is the same as perceptual
hashing. It is defined as follows:

SE(T) =
NumSE

NumTotal_SE
(11)

where NumSE represents the number of images whose hash sequence change is lower than
the preset threshold T. As with robustness testing, tampering sensitivity testing also needs
to be performed under multiple different thresholds.

(3) Other evaluation metrics.

Other evaluation metrics include computing efficiency, algorithm security, and ab-
straction. Computing performance means that the algorithm calculates the hash sequence
of the image as quickly as possible while ensuring robustness and tampering sensitivity;
algorithm security requires that the effective information of the original image cannot be
obtained from the hash sequence; abstraction means that the length of the hash sequence
is as short as possible, because the shorter the hash sequence, the more conducive it is to
storage and use.

4.2. Datasets and Experimental Settings
4.2.1. Datasets

In this paper, three types of datasets were used to train AAU-Net and evaluate the
performance of the subject-sensitive hashing algorithm based on AAU-Net: the datasets
for model training, the datasets for robustness testing, and the datasets for tampering
sensitivity testing. For the dataset used for model training, we used the same training
dataset as MUM-Net [16], which combines the existing WHU building dataset [54] and the
method of manually drawing robust edge images. The datasets used for robustness testing
and tampering sensitivity testing are discussed in Sections 4.4.1 and 4.4.2, respectively.

4.2.2. Implementation Details

We implemented our AAU-Net network using Keras (Tensorflow as backend) on a
GPU workstation equipped with an Intel I7-9700K CPU @3.60 GHz, 32 GB DDR4 RAM, and
NVIDIA RTX 2080Ti GPU (11 G memory). In the training process of AAU-Net, the batch
size was set to 4, and the number of epochs was set to 100; ReLu and sigmoid were selected
as the activation functions of the attention gate of AAU-Net, since we found through
experimental comparison that if δ1 is ReLU and δ2 is sigmoid, the tampering sensitivity
and robustness of the algorithm are better than other activation functions (such as Elu,
LeakyReLU, and PReLU).

During the experiment, we selected the following models for comparison with AAU-
Net: original U-Net [40], M-Net [55], MUM-Net [16], MultiResU-Net [43], Attention U-
Net [39], Attention ResU-Net [56], and Attention R2U-Net (integration of recurrent residual
U-Net (R2UNet) [57] and Attention U-Net [39]).

To prove the effectiveness of AAU-Net’s asymmetric input and output, we employed
Multi-scale Attention U-Net (MA-U-Net) [58,59] as a comparison model. The network
structure of MA-U-Net is similar to that of Attention U-Net, with multi-scale input. The
biggest difference between MA-U-Net and our AAU-Net is that each block of the network
decoding part of MA-U-Net contains an upsampling layer—that is, the input and output
of MA-U-Net are symmetrical.

For each comparison model, the same process as in Section 3.2.1 was used to construct
the subject-sensitive hashing algorithm, which is compared with the AAU-Net-based al-
gorithm in the following sections. Although the lightweight model semi-U-Net proposed
in [60] can also be used to implement subject-sensitive hashing, its main purpose is to re-
duce the weight of the model and improve the computational performance. The robustness
and tampering sensitivity of subject-sensitive hashing algorithms based on semi-U-Net are
not outstanding, so we do not discuss semi-U-Net as a comparison model in this paper.
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Moreover, as the algorithm flow in this paper is quite different from the algorithm in [60],
the algorithm in this paper is not comparable with the subject-sensitive hashing algorithm in [60].

4.3. Examples of Integrity Authentication

To more intuitively illustrate the integrity authentication of the subject-sensitive
hashing algorithm based on AAU-Net, we chose the RS image shown in Figure 8a as an
example to compare the performance of our algorithm and each comparison algorithm.
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In Figure 8, Figure 8a is the original RS image (TIF format), and the others can be
divided into 3 groups: Figure 8b,c are images after format conversion (TIFF format to
BMP format) and lossy compression (90% JPEG compression), respectively; Figure 8d–f
are examples of subject-unrelated tampering—that is, the content change of the image
has nothing to do with the building; Figure 8g–j are subject-related content tampering:
Figure 8g has a building added, Figure 8h has been maliciously smeared, in Figure 8i, a
building has been razed, and a building in Figure 8j is replaced.

We used the subject-sensitive hashing algorithm based on AAU-Net and the subject-
sensitive hashing algorithm based on the contrast models in Section 4.2.1 to generate the
hash sequence of each image in Figure 8. Each subject-sensitive hashing algorithm differs
only in the model it uses, and the other processes remain the same. The normalized distance
between the subject-sensitive hash sequences of each image in Figure 8b–j and the original
RS image (i.e., Figure 8a) is shown in Table 1.

It can be seen from Table 1 that all of the subject-sensitive hashing algorithms based
on each deep learning model can realize “subject-sensitive” integrity authentication. That
is, a certain tolerance is maintained for subject-unrelated image changes, but the subject-
sensitive hash sequence changes more drastically for subject-related image changes. The
results of the integrity authentication based on Table 1, when the threshold T was set to
0.03, are shown in Table 2.

It can be seen from Table 2 that our AAU-Net-based subject-sensitive hashing al-
gorithm is the best-performing algorithm compared to algorithms based on other deep
learning models. The AAU-Net-based algorithm not only shows a certain degree of robust-
ness to subject-unrelated image content changes but also detects all malicious tampering.
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The U-Net-based algorithm, the M-Net-based algorithm, the MultiResU-Net-based algo-
rithm, and the Attention R2U-Net-based algorithm can also detect malicious tampering
in Figure 8, but they are not robust enough to subject-unrelated content changes; the
Attention ResU-Net-based algorithm, the MA-U-Net-based algorithm, and the Attention
U-Net-based algorithm are more robust to subject-unrelated content changes but fail to
detect all malicious tampering in Figure 8.

Table 1. Normalized hamming distance of the algorithms based on different models.

Tampering Test Figure 8b Figure 8c Figure 8d Figure 8e Figure 8f Figure 8g Figure 8h Figure 8h Figure 8h

U-Net-based
algorithm 0.0 0.046875 0.05859375 0.02734375 0.05859375 0.20703125 0.12109375 0.078125 0.03515625

M-Net-based
algorithm 0.0 0.15234375 0.01171875 0.0234375 0.01953125 0.24609375 0.24609375 0.171875 0.1328125

MultiResU-Net-based
algorithm 0.0 0.09375 0.015625 0.0390625 0.0625 0.2578125 0.23046875 0.06640625 0.13671875

MUM-Net-based
algorithm 0.0 0.20703125 0.0234375 0.03515625 0.0625 0.11328125 0.20703125 0.2578125 0.01171875
Attention

ResU-Net-based
algorithm

0.0 0.02734375 0.0 0.015625 0.0 0.07421875 0.234375 0.015625 0.0

Attention
R2U-Net-based

algorithm
0.0 0.10546875 0.10546875 0.0234375 0.125 0.1796875 0.26953125 0.1640625 0.0703125

Attention U-Net-based
algorithm 0.0 0.0625 0.0078125 0.02734375 0.01171875 0.125 0.23046875 0.1015625 0.01171875

MA-U-Net-based
algorithm 0.0 0.078125 0.03125 0.09375 0.02734375 0.140625 0.1796875 0.21875 0.08203125

AAU-Net-based
algorithm 0.0 0.0234375 0.0078125 0.00390625 0.0078125 0.11328125 0.2890625 0.06640625 0.0390625

Table 2. Result of the integrity authentication based on Table 1 (threshold T set to 0.03).

Tampering Test Figure 8b Figure 8c Figure 8d Figure 8e Figure 8f Figure 8g Figure 8h Figure 8h Figure 8h

U-Net-based algorithm Success Fail Fail Success Fail Success Success Success Success
M-Net-based algorithm Success Fail Success Success Success Success Success Success Success
MultiResU-Net-based

algorithm Success Fail Success Fail Fail Success Success Success Success

MUM-Net-based algorithm Success Fail Success Fail Fail Success Success Success Fail
Attention ResU-Net-based

algorithm Success Success Success Success Success Success Success Fail Fail
Attention R2U-Net-based

algorithm Success Fail Fail Success Fail Success Success Success Success

Attention U-Net-based
algorithm Success Fail Success Success Success Success Success Success Fail

MA-U-Net-based algorithm Success Fail Fail Fail Success Success Success Success Success
AAU-Net-based algorithm Success Success Success Success Success Success Success Success Success

In the actual integrity authentication process, the threshold T is often set according to
the requirements of the RS image application environment, training sample set, authentica-
tion intensity, and other requirements, and different thresholds T often result in different
authentication results. For example, if the authentication intensity is required to be high,
the threshold T should be set relatively low; on the contrary, if robustness is required,
the threshold T should be set relatively high. On the basis of Tables 1 and 2, the value
of the threshold T was set to 0.02 and 0.05, respectively, and the corresponding integrity
authentication results are shown in Tables 3 and 4, respectively.

It can be seen from Table 3 that a smaller threshold T reduces the robustness of
the algorithms. At the same time, it can be seen from Table 4 that a larger threshold T
greatly improves the robustness of the algorithms, but the sensitivity to tampering of the
algorithms also decreases.

Of course, testing a set of examples can only provide an intuitive explanation and
does not guarantee the performance of the algorithm. Next, we test and compare AAU-
Net-based subject-sensitive hashing algorithms in more depth.
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Table 3. Result of the integrity authentication based on Table 1 (threshold T set to 0.02).

Tampering Test Figure 8b Figure 8c Figure 8d Figure 8e Figure 8f Figure 8g Figure 8h Figure 8h Figure 8h

U-Net-based algorithm Success Fail Fail Fail Fail Success Success Success Success
M-Net-based algorithm Success Fail Success Fail Success Success Success Success Success
MultiResU-Net-based

algorithm Success Fail Success Fail Fail Success Success Success Success

MUM-Net-based algorithm Success Fail Fail Fail Fail Success Success Success Fail
Attention ResU-Net-based

algorithm Success Fail Success Fail Success Success Success Fail Fail
Attention R2U-Net-based

algorithm Success Fail Fail Fail Fail Success Success Success Success

Attention U-Net-based
algorithm Success Fail Success Fail Success Success Success Success Fail

MA-U-Net-based algorithm Success Fail Fail Fail Fail Success Success Success Success
AAU-Net-based algorithm Success Fail Success Success Success Success Success Success Success

Table 4. Result of the integrity authentication based on Table 2 (threshold T set to 0.05).

Tampering Test Figure 8b Figure 8c Figure 8d Figure 8e Figure 8f Figure 8g Figure 8h Figure 8h Figure 8h

U-Net-based algorithm Success Success Fail Success Fail Success Success Success Fail
M-Net-based algorithm Success Fail Success Success Success Success Success Success Success
MultiResU-Net-based

algorithm Success Fail Success Success Fail Success Success Success Success

MUM-Net-based algorithm Success Fail Success Success Fail Success Success Success Fail
Attention ResU-Net-based

algorithm Success Success Success Success Success Success Success Fail Fail
Attention R2U-Net-based

algorithm Success Fail Fail Success Fail Success Success Success Success

Attention U-Net-based
algorithm Success Fail Success Success Success Success Success Success Fail

MA-U-Net-based algorithm Success Fail Success Fail Success Success Success Success Success
AAU-Net-based algorithm Success Success Success Success Success Success Success Success Fail

4.4. Performance Analysis
4.4.1. Performance of Robustness

Differing from deep learning applications such as image segmentation and image
classification, the testing of subject-sensitive hashing algorithms based on deep learning
requires a large amount of data for testing to make the results more reliable.

In this paper, we constructed an RS image dataset named Datasets10000 to test the
robustness of the algorithm. The number of RS images contained in Datasets10000 is 10,000,
which means

card(Datasets10000) = 10, 000 (12)

The images of Datasets10000 are stored in TIF format and generated from the GaoFen-2
(GF-2) satellite, DOTA [61], and some test data in [16,60]. In addition, the size of each
image in Datasets10000 is adjusted to 256 × 256 pixels.

Unlike ordinary images which focus on visual effects, RS images have higher require-
ments regarding accuracy. There are not as many content retention operations for RS
images as for ordinary images. Data format conversion, digital watermark embedding, and
data compression are common retention operations for RS images. Among them, digital
watermarking technology is often used to protect the copyright of RS images [62]. Data
compression can reduce the amount of data to reduce storage space and improve their
transmission and storage efficiency [63]. Therefore, we tested and compared the robustness
of the algorithm from the above aspects.

First, we tested the robustness of the algorithm to image compression. Here, we used
portable network graphics (PNG) compression technology to perform lossy compression
on the images in Datasets10000 and used the percentage of images whose hash sequence
changes are lower than the threshold to describe the robustness of the algorithm. In the
actual application of integrity authentication, due to factors such as different training
datasets and different authentication strengths, the threshold setting is often not unique.
Therefore, we counted the results under different thresholds, as shown in Table 5.
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Table 5. Robustness test comparison of PNG lossy compression.

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 64.2% 75.0% 85.2% 96.6% 99.3% 99.9%
M-Net-based algorithm 71.6% 81.0% 91.9% 98.0% 99.6% 100%

MultiResU-Net-based algorithm 87.8% 93.0% 97.5% 99.2% 99.9% 100%
MUM-Net-based algorithm 63.0% 74.8% 88.5% 97.2% 100% 100%

Attention ResU-Net-based algorithm 94.1% 96.4% 98.3% 99.9% 100% 100%
Attention R2U-Net-based algorithm 53.0% 64.8% 78.9% 92.0% 97.8% 100%

Attention U-Net-based algorithm 91.6% 94.5% 97.8% 99.4% 99.9% 100%
MA-U-Net-based algorithm 90.7% 92.2% 98.5% 99.8% 100% 100%
AAU-Net-based algorithm 96.1% 97.8% 98.8% 99.8% 100% 100%

It can be seen from the results in Table 5 that our AAU-Net-based algorithm has the
best robustness under different thresholds. Especially when the threshold T is set relatively
low, such as T = 0.02, the performance of the algorithm based on AAU-Net is still relatively
good, which is better than the algorithm based on other deep learning models.

It should be noted that the process of each comparison algorithm is the same, except
that the deep neural network models used to extract subject-sensitive features are different.
In other words, the difference in algorithm performance is caused by different models.
However, the process of each algorithm in [16,60] is quite different from the process of the
algorithm in this paper: the algorithm in this paper extracts the features of each band of the
RS image separately, while the algorithms in [16,60] perform feature extraction on the gray
image after band fusion; moreover, the algorithm in this paper performs a more compact
compression coding on the subject-sensitive features.

Next, we tested and compared the robustness of each algorithm to joint photographic
experts group (JPEG) compression. Here, we performed 95% JPEG compression on the
images in Datasets10000 using opencv 2.4.13, with C++ as the programming language. The
robustness test results of each algorithm are shown in Table 6.

Table 6. Robustness test comparison of JPEG compression (95% JPEG).

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 63.3% 75.1% 88.9% 96.7% 99.8% 100%
M-Net-based algorithm 70.2% 80.1% 92.2% 97.6% 99.7% 100%

MultiResU-Net-based algorithm 76.3% 86.0% 94.7% 98.1% 99.6% 100%
MUM-Net-based algorithm 79.6% 90.9% 97.6% 99.9% 100% 100%

Attention ResU-Net-based algorithm 86.0% 91.1% 96.1% 99.3% 99.9% 100%
Attention R2U-Net-based algorithm 58.5% 69.2% 83.0% 95.5% 99.3% 100%

Attention U-Net-based algorithm 85.9% 92.6% 97.1% 98.9% 100% 100%
MA-U-Net-based algorithm 87.6% 93.0% 97.4% 99.6% 100% 100%
AAU-Net-based algorithm 73.6% 81.0% 93.3% 98.8% 99.8% 100%

It can be seen from Table 6 that the AAU-Net-based algorithm is less robust to JPEG
compression than the Attention U-Net-based [56] algorithm, the MA-U-Net-based [58,59]
algorithm, and the MUM-Net-based [16] algorithm, but it is stronger than the U-Net-
based [40] algorithm and the Attention R2U-Net-based [57] algorithm. It can be seen from
Table 6 that MUM-Net is more robust than U-Net and M-Net, which is consistent with the
conclusion of [16].

The application of digital watermarking technology in RS images is used for the
copyright identification and data tracking of RS images. The RS images before and after
the watermark is embedded are generally considered to be consistent in content. For
RS images, the embedding position of the digital watermark can be a single band or
multiple bands, while our subject-sensitive hashing algorithm extracts the features of each
band of the RS image. Therefore, we separately tested the robustness of our algorithm to
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digital watermarks in the case of single-band watermarking and multi-band watermarking,
instead of testing the robustness of the watermark type indiscriminately.

For a single-band watermark, we took a spatial watermark as an example to embed 32-
bit information into the RS images in Datasets10000 and calculated the normalized hamming
distance between the hash sequences of the watermark-embedded RS image and the
original RS image. The robustness test results are shown in Table 7.

Table 7. Robustness test comparison of watermark embedding (32 bits embedded in single band).

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 99.6% 99.8% 99.8% 100% 100% 100%
M-Net-based algorithm 100% 100% 100% 100% 100% 100%

MultiResU-Net-based algorithm 100% 100% 100% 100% 100% 100%
MUM-Net-based algorithm 100% 100% 100% 100% 100% 100%

Attention ResU-Net-based algorithm 100% 100% 100% 100% 100% 100%
Attention R2U-Net-based algorithm 99.7% 99.9% 100% 100% 100% 100%

Attention U-Net-based algorithm 99.8% 99.8% 99.8% 99.9% 100% 100%
MA-U-Net-based algorithm 99.8% 99.9% 99.9% 100% 100% 100%
AAU-Net-based algorithm 99.8% 100% 100% 100% 100% 100%

It can be seen from Table 7 that the robustness of each algorithm to single-band water-
marking is relatively ideal. This is mainly because the single-band watermarking algorithm
only modifies one band of the RS image, and the other bands are not changed, while each
subject-sensitive hashing algorithm extracts all the bands of the RS image to generate the
hash sequence, which is affected by the single-band watermark to a lesser extent.

For the robustness test of a multi-band watermark, we embedded 24-bit watermarks
on the three bands of the RS image in Datasets10000. The test results are shown in Table 8.

Table 8. Robustness test comparison of watermark embedding (24 bits embedded in 3 bands).

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 61.7% 81.8% 85.6% 95.8% 99.3% 100%
M-Net-based algorithm 68.7% 88.5% 90.03% 97.5% 99.5% 100%

MultiResU-Net-based algorithm 87.5% 92.1% 96.8% 99.1% 99.9% 100%
MUM-Net-based algorithm 62.1% 74.3% 88.2% 97.3% 99.7% 100%

Attention ResU-Net-based algorithm 93.6% 96.1% 98% 99.8% 100% 100%
Attention R2U-Net-based algorithm 48.7% 60.2% 77.5% 92.0% 98.5 100%

Attention U-Net-based algorithm 90.1% 94.2% 97.3% 99.0% 99.9% 100%
MA-U-Net-based algorithm 90.6% 96.0% 98.2% 98.9% 99.9% 100%
AAU-Net-based algorithm 95.1% 97.1% 98.3% 99.6% 99.9% 100%

It can be seen from Table 8 that our subject-sensitive hashing algorithm based on
AAU-Net performs best, and it is not only better than traditional deep neural networks
such as U-Net and M-Net but also better than other attention mechanism-based deep neural
networks, such as Attention U-Net, Attention ResUNet, Attention R2U-Net, and MA-U-Net.

Subject-sensitive hashing should be robust to the subtle operations that do not change
the subject-related content of the RS image. Here, we simulated the above-mentioned
subtle subject-unrelated tampering by randomly setting a few pixels of the RS image to 0.
In detail, four pixels from each RS image in Datasets10000 were randomly selected and set to
0 (the same position of the three bands was modified). Table 9 shows the robustness test
results of subtle subject-unrelated tampering.

It can be seen from Table 9 that our AAU-Net-based subject-sensitive hashing algo-
rithm has the best robustness for subtle subject-unrelated tampering among all of the
compared algorithms. Even when the threshold T is small, it can still maintain good
robustness. Other models such as U-Net, M-Net, and MUM-Net can only guarantee a
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certain robustness when the threshold T is large, but if the threshold T is set too large, the
algorithm’s tampering sensitivity will be weakened.

Table 9. Robustness test comparison of subtle subject-unrelated tampering.

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 52.0% 64.2% 90.6% 93.4% 98.6% 100%
M-Net-based algorithm 53.5% 63.4% 78.5% 92.8% 98.6% 100%

MultiResU-Net-based algorithm 79.7% 88.5% 96.0% 98.7% 99.8% 99.9%
MUM-Net-based algorithm 42.1% 52.3% 71.1% 90.4% 98.3% 99.9%

Attention ResU-Net-based algorithm 81.5% 86.6% 92.1% 96.4% 98.9% 100%
Attention R2U-Net-based algorithm 19.5% 27.0% 41.3% 64.2% 86.1% 99.9%

Attention U-Net-based algorithm 52.0% 64.2% 80.6% 93.4% 98.6% 100%
MA-U-Net-based algorithm 87.4% 93.2% 97.1 99.3% 99.7% 100%
AAU-Net-based algorithm 90.9% 93.7% 97.4% 99.4% 100% 100%

Based on the robustness test results in Tables 5–9, we can draw the following con-
clusions: the robustness of our AAU-Net-based algorithm is the best among various
comparison algorithms; the most widely used models, such as U-Net, MA-U-Net, and At-
tention U-Net, can also be used to implement subject-sensitive hashing, but the robustness
is not as good as that of AAU-Net; Attention R2U-Net has the worst robustness and is not
recommended for subject-sensitive hashing.

In this study, we do not consider operations such as image scaling and image rotation
as content retention operations, since they obviously change the content of the RS image.

4.4.2. Performance of Sensitivity to Tampering

While having good algorithm robustness, the subject-sensitive hashing algorithm
should also have good tampering sensitivity (also known as “sensitivity to tampering”)—
that is, it can detect the content tampering of RS images. We tested the tampering sensitivity
of each comparison algorithm from the following aspects:

First of all, we performed random content tampering on the RS image of Datasets10000,
and performed tampering sensitivity testing on the tampered RS image. The size of the
tampering area is 16× 16 pixels, and the position is random, which can simulate the subject-
related tampering of the RS image in reality as effectively as possible. Figure 9 shows a set
of examples of the above RS image tampering, and Table 10 shows the tampering detection
results corresponding to Figure 9, in which the normalized hamming distance between
the hash sequences of the RS images before and after tampering is presented. The overall
experimental statistical results of each algorithm are shown in Table 11.

It can be seen from Table 10 that each comparison algorithm can detect the tampering
example shown in Figure 9 if the threshold T is set to 0.02. If the threshold T is set to 0.05,
the Attention ResU-Net-based algorithm and the MA-U-Net-based algorithm fail to detect
the tampering shown in Figure 9g,h, while the Attention U-Net-based algorithm fails to
detect the tampering shown in Figure 9h.

Although the experimental data in Table 11 show that the tampering sensitivity based
on the Attention R2U-Net-based algorithm is the best, the experiment in Section 4.4.1
shows that the robustness of Attention R2U-Net is too poor to be suitable for subject-
sensitive hashing. The tampering sensitivity of our AAU-Net-based algorithm is only
slightly weaker than that of the Attention R2U-Net-based algorithm, while it has been
proved in Section 4.4.1 that the robustness of our AAU-Net algorithm is the best among all
comparison algorithms.

In order to further analyze the tampering sensitivity of each algorithm to subtle subject-
related tampering, we reduced the size of the tampering area on the basis of the above
tampering sensitivity test—that is, we used a smaller 8 × 8 pixel size tamper instead of a
16 × 16 pixel size tamper to test the tampering sensitivity of each comparison algorithm.
The experimental results are shown in Table 12.
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Figure 9. Examples of comparisons before and after subject-related tampering: (a) original image 1;
(b) original image 2; (c) original image 3; (d) original image 4; (e) tampered image 1; (f) tampered
image 2; (g) tampered image 3; (h) tampered image 4.

Table 10. Normalized hamming distance of each algorithm corresponding to Figure 9.

Image 1 Image 2 Image 3 Image 4

U-Net-based algorithm 0.2500 0.2539 0.1210 0.1093
M-Net-based algorithm 0.1484 0.2148 0.2578 0.2500

MultiResU-Net-based algorithm 0.2421 0.2421 0.1054 0.2734
MUM-Net-based algorithm 0.1914 0.2773 0.0546 0.1367

Attention ResU-Net-based algorithm 0.1250 0.2421 0.0312 0.0234
Attention R2U-Net-based algorithm 0.1992 0.2695 0.0664 0.2187

Attention U-Net-based algorithm 0.1875 0.2656 0.2421 0.0312
MA-U-Net-based algorithm 0.1562 0.2382 0.0468 0.1484
AAU-Net-based algorithm 0.1523 0.1796 0.2109 0.0703

Table 11. Tampering sensitivity comparison of subject-related tampering (16× 16 pixel tampering area).

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 98.9% 98.0% 96.2% 86.4% 59.2% 0.9%
M-Net-based algorithm 99.2% 99.0% 96.2% 87.0% 60.7% 1.3%

MultiResU-Net-based algorithm 99.1% 97.7% 92.4% 79.3% 54.3% 1.5%
MUM-Net-based algorithm 98.8% 98.5% 95.3% 78.7% 42.8% 1.6%

Attention ResU-Net-based algorithm 83.9% 76.7% 57.5% 34.7% 12.1% 0.7%
Attention R2U-Net-based algorithm 99.9% 99.9% 99.9% 98.0% 81.5% 1.8%

Attention U-Net-based algorithm 98.9% 98.0% 96.2% 86.4% 59.2% 0.9%
MA-U-Net-based algorithm 99.2% 98.1% 93.9 76.2% 38.9% 1.1%
AAU-Net-based algorithm 99.5% 99.2% 96.4% 87.0% 64.2% 1.6%

Table 12. Tampering sensitivity comparison of subject-related tampering (8× 8 pixel tampering area).

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 97.0% 94.9% 85.6% 61.4% 31.1% 0.8%
M-Net-based algorithm 96.3% 94.3% 89.2% 66.8% 33.2% 0.3%

MultiResU-Net-based algorithm 84.0% 78.3% 62.5% 35.0% 11.8% 0.3%
MUM-Net-based algorithm 95.0% 91.0% 82.2% 56.2% 14.9% 0.4%

Attention ResU-Net-based algorithm 67.9% 58.1% 40.7% 23.1% 7.8% 0.3%
Attention R2U-Net-based algorithm 98.8% 98.1% 95,4% 80.9% 52.8% 1.2%

Attention U-Net-based algorithm 93.7% 91.3% 84.4% 68.6% 36.2% 0.6%
MA-U-Net-based algorithm 88.8% 85.5% 74.2% 48.4% 16.8% 9%
AAU-Net-based algorithm 92.8% 90.9% 83.0% 65.6% 29.5% 1.1%
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It can be seen from Table 12 that the tampering sensitivity of the Attention R2U-Net-
based algorithm is still the best among all algorithms. The tampering sensitivity of our
AAU-Net-based algorithm is close to that of the Attention U-Net-based algorithm, the
MA-U-Net-based Algorithm, and the MUM-Net-based algorithm, but weaker than that of
the Attention R2U-Net-based algorithm. Therefore, further study of the model’s detection
of subtle tampering is one of our next key tasks.

Subject-sensitive hashing should also be able to detect subject-unrelated tampering,
but the detection strength will be lower than that of subject-related tampering. To test
the sensitivity of each comparison algorithm to subject-unrelated tampering, we selected
some of the RS images in Datasets10000 for manual tampering and combined them with
the image dataset used to test subject-unrelated tampering in [16] to construct a new RS
image dataset, which is named Datasets400, as it has 400 sets of RS images. The tampering
sensitivity test results of each comparison algorithm on Datasets400 are shown in Table 13.

Table 13. Tampering sensitivity comparison of subject-unrelated tampering with 400 RS images.

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 88.75% 84.5% 74.5% 43.25% 16.0% 0.25%
M-Net-based algorithm 69.5% 60.0% 36.5% 14.75% 4% 0%

MultiResU-Net-based algorithm 73.5% 65.25% 45.75% 15.5% 4.0% 0%
MUM-Net-based algorithm 87.25% 82.25% 68.5% 38.25% 7.5% 0%

Attention ResU-Net-based algorithm 30.75% 25.5% 14.5% 6.5% 1.5% 0%
Attention R2U-Net-based algorithm 89.5% 84.5% 73% 47.25% 21.25% 0.25%

Attention U-Net-based algorithm 82.0% 76.5% 60.25% 28.75% 12.25% 0%
MA-U-Net-based algorithm 87.8% 80.9% 65.1% 36.9% 12.5% 0.1%
AAU-Net-based algorithm 82.75% 80.25% 65.5% 29.5% 10.5% 0%

Comparing Tables 11–13, it can be seen that the sensitivity of each comparison al-
gorithm to the subject-unrelated tampering decreased, which shows that each algorithm
maintains a certain degree of robustness to the subject-unrelated tampering. Of course, if
necessary, this tampering can still be detected as long as the threshold is lowered.

In order to show the subject-unrelated tampering more clearly, we selected four sets
of subject-unrelated tampering examples in Datasets400, as shown in Figure 10, and the
corresponding experimental results are shown in Table 14.

Remote Sens. 2021, 13, x FOR PEER REVIEW 21 of 27 
 

 

AAU-Net-based algorithm is close to that of the Attention U-Net-based algorithm, the 
MA-U-Net-based Algorithm, and the MUM-Net-based algorithm, but weaker than that of 
the Attention R2U-Net-based algorithm. Therefore, further study of the model’s detection 
of subtle tampering is one of our next key tasks. 

Subject-sensitive hashing should also be able to detect subject-unrelated tampering, 
but the detection strength will be lower than that of subject-related tampering. To test the 
sensitivity of each comparison algorithm to subject-unrelated tampering, we selected 
some of the RS images in Datasets10000 for manual tampering and combined them with the 
image dataset used to test subject-unrelated tampering in [16] to construct a new RS image 
dataset, which is named Datasets400, as it has 400 sets of RS images. The tampering sensi-
tivity test results of each comparison algorithm on Datasets400 are shown in Table 13. 

Table 13. Tampering sensitivity comparison of subject-unrelated tampering with 400 RS images. 

 T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30 
U-Net-based algorithm 88.75% 84.5% 74.5% 43.25% 16.0% 0.25% 
M-Net-based algorithm 69.5% 60.0% 36.5% 14.75% 4% 0% 

MultiResU-Net-based algorithm 73.5% 65.25% 45.75% 15.5% 4.0% 0% 
MUM-Net-based algorithm 87.25% 82.25% 68.5% 38.25% 7.5% 0% 

Attention ResU-Net-based algorithm 30.75% 25.5% 14.5% 6.5% 1.5% 0% 
Attention R2U-Net-based algorithm 89.5% 84.5% 73% 47.25% 21.25% 0.25% 

Attention U-Net-based algorithm 82.0% 76.5% 60.25% 28.75% 12.25% 0% 
MA-U-Net-based algorithm 87.8% 80.9% 65.1% 36.9% 12.5% 0.1% 
AAU-Net-based algorithm 82.75% 80.25% 65.5% 29.5% 10.5% 0% 

Comparing Table 13 and Tables 11 and 12, it can be seen that the sensitivity of each 
comparison algorithm to the subject-unrelated tampering decreased, which shows that 
each algorithm maintains a certain degree of robustness to the subject-unrelated tampering. 
Of course, if necessary, this tampering can still be detected as long as the threshold is lowered. 

In order to show the subject-unrelated tampering more clearly, we selected four sets 
of subject-unrelated tampering examples in Datasets400, as shown in Figure 10, and the 
corresponding experimental results are shown in Table 14. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 10. Examples of RS images in Datasets400: (a–d) the original RS images 1–4; (e–h) the tampered 
RS images 1–4 (subject-unrelated tampering). 
Figure 10. Examples of RS images in Datasets400: (a–d) the original RS images 1–4; (e–h) the tampered
RS images 1–4 (subject-unrelated tampering).
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Table 14. Normalized hamming distance of each algorithm corresponding to Figure 10.

Image 1 Image 2 Image 3 Image 4

U-Net-based algorithm 0.0273 0.0234 0.0742 0.1054
M-Net-based algorithm 0.0117 0.0 0.0078 0.0

MultiResU-Net-based algorithm 0.0429 0.0 0.0 0.0156
MUM-Net-based algorithm 0.0468 0.0 0.0 0.0195

Attention ResU-Net-based algorithm 0.0117 0.0 0.0 0.0
Attention R2U-Net-based algorithm 0.0429 0.0429 0.0156 0.0390

Attention U-Net-based algorithm 0.0156 0.0 0.0390 0.0429
MA-U-Net-based algorithm 0.0234 0.0078 0.0469 0.0664
AAU-Net-based algorithm 0.0078 0.0039 0.0195 0.0234

In the examples shown in Figure 10, the size of the tampered area is larger than the
area of the tampering example in Figure 9, which is 16 × 16 pixels, but the tampered
area in Figure 10 is subject unrelated, such as woods and shrubs, and the change in the
corresponding subject-sensitive hash sequence should not be as drastic as that seen in the
example in Figure 9, as shown in Table 14.

It can be seen from Table 14 that our AAU-Net-based algorithm and other comparison
algorithms are significantly less sensitive to subject-unrelated tampering, but, if necessary,
this tampering can still be detected by lowering the threshold.

Corresponding to subject-unrelated tampering, we specially constructed an RS image
dataset with building contents that had been tampered with to further test the sensitivity
of each comparison algorithm to subject-related tampering. This RS image dataset selects
200 original RS images from Datasets10000 and is named Datasets200. Figure 11 shows four
sets of RS images in Datasets200, and the corresponding experimental results are shown
in Table 15.
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RS images 1–4.

It can be seen from Table 15 that even if the threshold T is set to a small value (such as
0.02), each algorithm can still detect subject-related tampering.

A more comprehensive tampering sensitivity test on Datasets200 is shown in Table 16. Com-
paring Tables 14 and 16, it can be seen that each algorithm is highly sensitive to building-
related tampering. Moreover, our AAU-Net-based algorithm is slightly more sensitive to
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tampering than the U-Net-based algorithm and the Attention U-Net-based algorithm, but
inferior to the MUM-Net-based algorithm and the Attention R2U-Net-based algorithm.

Table 15. Normalized hamming distance of each algorithm corresponding to Figure 11.

Image 1 Image 2 Image 3 Image 4

U-Net-based algorithm 0.1171 0.2265 0.0820 0.1484
M-Net-based algorithm 0.2421 0.1796 0.2539 0.1484

MultiResU-Net-based algorithm 0.1367 0.1757 0.1718 0.1015
MUM-Net-based algorithm 0.2226 0.1914 0.1132 0.2265

Attention ResU-Net-based algorithm 0.0273 0.0625 0.0546 0.0351
Attention R2U-Net-based algorithm 0.1054 0.1875 0.0898 0.2070

Attention U-Net-based algorithm 0.1835 0.2656 0.2656 0.1445
MA-U-Net-based algorithm 0.2148 0.2265 0.2304 0.2109
AAU-Net-based algorithm 0.1875 0.2929 0.1601 0.1796

Table 16. Tampering sensitivity comparison of subject-related tampering with 200 RS images.

T = 0.02 T = 0.03 T = 0.05 T = 0.10 T = 0.20 T = 0.30

U-Net-based algorithm 96.0% 94.0% 85.5% 63.5% 30.0% 1.0%
M-Net-based algorithm 98.0% 97.0% 93.5% 76.5% 37.5% 0.5%

MultiResU-Net-based algorithm 90.5% 86.5% 72.0% 39.5% 12.5% 0.0%
MUM-Net-based algorithm 99.0% 98.5% 94.0% 70.0% 31.0% 0.0%

Attention ResU-Net-based algorithm 57.0% 47.5% 32.5% 16.5% 5.0% 0.5%
Attention R2U-Net-based algorithm 99.5% 98.5% 95.0% 82.5% 52.5% 1.0%

Attention U-Net-based algorithm 96.0% 94.0% 85.0% 63.5% 30.0% 0.0%
MA-U-Net-based algorithm 96.9% 94.8% 91.1% 68.2% 28.2% 0.5%
AAU-Net-based algorithm 96.5% 94.0% 87.0% 67.0% 30.0% 1.0%

Comparing Tables 11 and 16, we can see that each algorithm (not just our AAU-
Net-based algorithm) is more sensitive to the random tampering of 16 × 16 pixels than
building-related tampering. This is mainly because the random tampering of 16× 16 pixels
and the building-related tampering are both subject-related tampering, and the random
tampering of 16 × 16 pixels will damage the information regarding the building in the RS
image more strongly.

4.4.3. Analysis of Security

Subject-sensitive hashing requires the same security requirements as perceptual hash-
ing, and both are required to meet the “one-way” security requirements; that is, the effective
information of the original data cannot be obtained from the hash sequence.

Since the interpretability of deep neural networks is difficult, which means it is difficult
for the current deep neural network to interpret the decision of the model from a human
perspective [64,65], it is difficult to inversely obtain the effective information of the original
RS image from the subject-sensitive hash sequence, which satisfies the security requirement
of being “one-way”. Moreover, our algorithm fuses the features of each band before
the feature compression and encoding, which further enhances the “one-way” nature of
subject-sensitive hashing.

4.5. Discussion

Subject-sensitive hashing is a theory developed on the basis of perceptual hashing,
which can be regarded as a special case of perceptual hashing. However, due to this
concept only being proposed relatively recently, there are still many imperfections in the
existing subject-sensitive hashing algorithms. In view of the existing main subject-sensitive
hashing problems, such as an “inability to perceive content changes in different bands”
and “insufficient algorithm robustness”, this study proposes a deep neural network named
AAU-Net based on the attention mechanism for subject-sensitive hashing of RS images.

Due to the combination of characteristics of subject-sensitive hashing that requires the
subject-sensitive features to be as robust as possible, the structure of AAU-Net presents
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asymmetric characteristics: a multi-scale input is added in the encoder stage of AAU-Net
to extract richer information from RS images, and attention gates are added to each module
in the decoder stage to enhance the model’s ability to extract subject-related features,
which ultimately significantly improves the performance of the subject-sensitive hashing
algorithm; furthermore, in the encoding stage of AAU-Net, there are four pooling layers,
while there are only two upsampling layers in the decoding stage.

In the theoretical analysis and experiments of this paper, we used building information
as an example to construct a training dataset and a dataset used to test the performance of
subject-sensitive hashing algorithms. From the experimental results in Sections 4.3 and 4.4,
we can draw the following conclusions:

(1) Robustness.

The asymmetric structure of AAU-Net makes it more robust than the most widely
used models, such as U-Net, MA-U-Net, and Attention U-Net. Although the robustness
of JPEG compression is slightly weaker than that of Attention U-Net, AAU-Net is better
than the seven compared models in other robustness tests. The robustness of Attention
ResUNet is second only to AAU-Net. Moreover, Attention R2U-Net is not recommended
for subject-sensitive hashing due to its poor robustness.

(2) Tampering sensitivity.

Although the robustness of Attention R2U-Net is the worst among all the models,
its tampering sensitivity is the best, according to the experimental results. This cannot
change the fact that Attention R2U-Net is not suitable for subject-sensitive hashing, but the
tampering sensitivity of Attention R2U-Net can be used as a benchmark for other models.
The tampering sensitivity of AAU-Net is basically the same as that of Attention U-Net,
the MA-U-Net-based algorithm, and MUM-Net, and second only to Attention R2U-Net.
Additionally, Attention ResUNet’s tampering sensitivity is relatively poor.

(3) Security.

The security of each comparison algorithm depends on the one-way nature caused by
the inexplicability of the deep neural network, meaning there is no obvious difference in
the security of each model.

Differing from the existing perceptual hash algorithms for RS images which perform
the grayscale operation in the preprocessing stage, our algorithm extracts the features
of each band and then fuses the feature images. Although this increases the computa-
tional cost of the algorithm, it makes the algorithm of this paper better than the existing
subject-sensitive hashing algorithms (such as the algorithm in [16]). The most prominent
performance is that for operations that only change one band, for which the robustness
of our algorithm is greatly improved. For example, comparing Tables 7 and 8, it can be
seen that our algorithm is far more robust to single-band watermarking algorithms than
multi-band watermarking algorithms.

5. Conclusions and Future Work

In this research, we introduced the attention mechanism into subject-sensitive hashing
and proposed an attention-based asymmetric U-Net (AAU-Net). Due to the combination
of the characteristics of subject-sensitive hashing, such as the extracted features being
as robust as possible, AAU-Net presents obvious asymmetric structure characteristics
compared to Attention U-Net. The results show that the asymmetric structure of AAU-Net
makes it more robust than existing deep learning models such as Attention U-Net and
MUM-Net, and the tampering sensitivity is basically the same as that of Attention U-Net
and MUM-Net.

However, the subject-sensitive hashing algorithm based on AAU-Net in this paper
still has certain limitations, mainly including the weak robustness to JPEG compression,
and the insufficient ability to detect subtle subject-related tampering. Therefore, the future
focus of this research includes two aspects: improving the sensitivity of the algorithm
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to subtle subject-related tampering, and improving the robustness of the algorithm to
JPEG compression.
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