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Abstract: Considering the complexity of landslide hazards, their manual investigation lacks effi-
ciency and is time-consuming, especially in high-altitude plateau areas. Therefore, extracting land-
slide information using remote sensing technology has great advantages. In this study, comprehen-
sive research was carried out on the landslide features of high-resolution remote sensing images on 
the Mangkam dataset. Based on the idea of feature-driven classification, the landslide extraction 
model of a fully convolutional spectral–topographic fusion network (FSTF-Net) based on a deep 
convolutional neural network of multi-source data fusion is proposed, which takes into account the 
topographic factor (slope and aspect) and the normalized difference vegetation index (NDVI) as 
multi-source data input by which to train the model. In this paper, a high-resolution remote sensing 
image classification method based on a fully convolutional network was used to extract the land-
slide information, thereby realizing the accurate extraction of the landslide and surrounding 
ground-object information. With Mangkam County in the southeast of the Qinghai–Tibet Plateau 
China as the study area, the proposed method was evaluated based on the high-precision digital 
elevation model (DEM) generated from stereoscopic images of Resources Satellite-3 and multi-
source high-resolution remote sensing image data (Beijing-2, Worldview-3, and SuperView-1). Re-
sults show that our method had a landslide detection precision of 0.85 and an overall classification 
accuracy of 0.89. Compared with the latest DeepLab_v3+, our model increases the landslide detec-
tion precision by 5%. Thus, the proposed FSTF-Net model has high reliability and robustness. 

Keywords: landslide extraction; FSTF-Net; deep learning; high-resolution remote sensing image; 
classification; spectral–topographic fusion 
 

1. Introduction 
A landslide is a type of natural disaster that is very common. In addition to its impact 

on the physical environment, landslides often have serious socio-economic impacts [1]. 
The accurate extraction of landslide disasters can provide key information for their early 
prevention. Remote sensing datasets and processing technologies (such as segmentation 
[2] and classification [3]) can be used to provide services for quick information extraction 
and the emergency management of landslide disasters. Compared with synthetic aperture 
radar (SAR) and light detection and ranging (LiDAR), optical imaging sensors are more 
easily supported by different platforms and have significant advantages including their 
wide coverage, short update cycle, few environmental limitations, and large amount of 
information. With the increasing number of satellites, the number of optical remote sens-
ing images is rapidly increasing. Therefore, landslide extraction using optical remote 
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sensing images has become a research hotspot in recent years [4–7]. As an increasing num-
ber of remote sensing satellites with high spatial resolution (<2 m) are being launched, 
researchers are able to obtain more abundant and detailed ground object information. In 
addition to more effective spectral information, information such as ground-object tex-
ture, geometric structure, and shape can also be obtained, which will improve the land-
slide extraction accuracy of distribution, quantity, and contour [8–10]. 

Current landslide information extraction methods using high-resolution remote 
sensing images are mainly divided into pixel based and object based [11,12]. In a study by 
Yong et al. [13], landslides were extracted from high-resolution remote sensing images 
based on the optimal partition algorithm. The random forest algorithm has also been used 
to extract landslide information based on the texture feature of Landsat 8 images [14]. The 
pixel-based method relies on the homogeneous radiation assumption of landslides repre-
sented by heterogeneous polygons. Therefore, it is unable to process the multi-level spa-
tial details of landslides provided by high-resolution images. Different machine learning 
methods and classifiers have been integrated with object-oriented extraction and used for 
landslide extraction. Heleno et al. [3] applied an automatic landslide extraction method 
for rainfall-induced landslides on Madeira Island using the support vector machine (SVM) 
and object-oriented with a radial basis function kernel. Ma et al. [15] used wordview2 
images for the automatic detection of shallow landslides, and the object-oriented method 
had a relatively high accuracy which could reach 85%. Efstratios Karantanellis et al. [16] 
developed a new object-based image analysis (OBIA) methodology, and its outputs 
demonstrated the potential for the accurate characterization of individual landslide ob-
jects. Since a landslide is a slope sliding process, the topographic-driven segmentation of 
the study area is of significance for the object-based methods [2,8,17]. From the perspec-
tive of mode identification, the selection of artificial thresholds and representative feature 
extraction limits the accuracy of landslide-information extraction. Therefore, the accuracy 
can be effectively improved by automatic feature learning from remote sensing datasets 
rather than manually performed, since we can carry out ground object classification and 
landslide extraction using effective features. 

Great theoretical and practical significance is involved in the application of deep 
learning to remote sensing images and performing research into intelligent analysis with 
target identification and ground-object classification [18]. Recently, various deep learning 
architectures based on graph convolutional networks (GCNs) [19], generative adversarial 
networks (GANs) [20] and long short-term memory (LSTM) [21] have been applied to 
remote sensing, and they have been shown to produce state-of-the-art results. Multilayer 
autoencoders (AEs) are usually used for spectral–spatial feature learning and have good 
effects [22]. Residual spectral-spatial attention networks [23] have made great progress in 
hyperspectral image classification. A gated bidirectional network was proposed for the 
feature fusion of remote sensing scene classification [24]. Current deep learning methods 
have demonstrated advantages in landslide extraction. Ding et al. [25] applied the convo-
lutional neural network (CNN) structure to landslide detection using GF-1 images in 
Shenzhen, and the landslide detection rate was 72.5%. Using a CNN and an improved 
region-growing algorithm, Yu et al. [26] extracted the area and boundary of landslides 
which exhibited high accuracy in the landslide extraction. A CNN model was developed 
by Lei et al. [27] to solve the complexity and spatial uncertainties of landslides. Nikhil 
Prakash et al. [4] presented a modified U-Net model for the semantic segmentation of 
landslides at a regional scale from EO data, and it has a better performance than tradi-
tional machine methods. Haojie Wang et al. [28] proposed a deep-learning method to 
identify natural terrain landslides using integrated geodatabases, which outperforms 
other machine learning algorithms due to its strengths in feature extraction and multi-
data processing. Multiple deep learning networks including VGG16, VGG19, ResNet50, 
ResNet101, DenseNet120, DenseNet201, UNet−, UNet+, and ResUNet were compared in 
the study of Chang Li et al. [29]. Results showed that VGG models have the highest pre-
cision but the lowest recall. Shengwu Qin et al. [30] introduced a distant domain transfer 
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learning (DDTL) method for landslide detection and classification, which outperforms 
traditional CNN methods. In these studies, good results could only be obtained based on 
a large number of training samples. Moreover, these methods were only applicable to 
specific areas. If cross-scenes and multiple sensors were taken into account, the perfor-
mance of these models would be greatly reduced. Therefore, a landslide extraction net-
work with a lifelong learning ability should be built. 

Internal factors such as topography, geological structure, and lithology are the pri-
mary causes of landslides, while external factors including rainfall, underground water, 
surface water, human activities, and earthquakes accelerate the occurrence of landslides. 
Owing to the complexity and uncertainty of landslides, it is challenging to extract land-
slide information. It was effective to detect landslides based on different features, given 
that landslides had no unique spectral features and shapes. For instance, NDVI [9], topo-
graphical features (slope, aspect, and curvature) [31], morphological features [15], and 
other geological features have been used for landslide detection and extraction. A residual 
network was trained based on spectral and topographical features, and the results of dif-
ferent feature integration strategies were compared [6]. Xu et al. [32] proposed an end-to-
end network model for post-earthquake landslide segmentation and extraction, and a 
number of non-landslide areas were removed through the comprehensive use of the geo-
logical features to improve the overall extraction accuracy. Peng Liu et al. [33] proposed 
improved U-Net model adding a spatial information band (DSM, slope, and aspect), and 
the extraction accuracy is 13.8% higher than the traditional U-Net model. With the accu-
mulation of multi-source data, such as remote sensing and basic geographic data, it is 
necessary to integrate multi-source data into the network to design an appropriate net-
work structure, thereby improving the accuracy of landslide extraction. 

The contributions of this study include the following aspects. (1) Given that image 
segmentation and classification could be integrated using the fully convolutional net-
work, such a network was chosen as the basic network for the pixel-level classification of 
landslides and surrounding ground objects, which provided the quantity of landslides as 
well as distribution, and contour information. (2) Based on the atrous convolution, pyra-
mid pooling, an encoder–decoder structure, the multi-scale feature, and contextual infor-
mation of the fully convolutional network model were effectively integrated. Moreover, 
the multi-source data (slope, aspect, and NDVI data) were input into the branch network 
to extract the features and then fused with the feature extracted by optical remote sensing 
RGB images. A landslide information extraction model of a fully convolutional spectral–
topographic fusion network, named FSTF-Net, was proposed. The FSTF-Net model can 
not only identify different shapes of landslides and ground objects but also obtain clear 
landslide boundaries. Our approach can considerably improve the extraction accuracy of 
landslides and surrounding ground objects. 

2. Methods 
In this paper, a fully convolutional spectral–topographic fusion network to extract 

landslide information from high-resolution remote sensing imagery is proposed. It con-
tains three stages: data preparation, training, and classification stages, which are illus-
trated in Figure 1. In the data-preparation stage (Figure 1a), the image data, slope, aspect, 
NDVI data, and labeled data were sliced into small patches using superpixel segmenta-
tion. Meanwhile, the multistage sampling 16 [34] method was employed to ensure that 
the sample proportions of various classes were relatively balanced. In the training stage, 
training samples were input to the proposed FSTF-net network (Figure 1b), and the sto-
chastic gradient descent (SDG) was used to update network parameters. In the final stage, 
the trained FSTF-Net network was performed on test data to generate the classification 
results of landslides and surrounding ground objects. 
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Figure 1. The workflow of our approach. 

2.1. Encoder–Decoder 
To obtain the classification results of each pixel, not only is the class information of 

the target required, but so is the location information. The encoder–decoder network 
structure [35] was adopted in this study, which conformed to the end-to-end learning 
mode. The encoding part was used to extract the deep and abstract feature based on which 
the decoding part obtained the pixel-level prediction results. 

2.1.1. Resnet and Atrous Spatial Pyramid Pooling 
In this study, the encoding structure chooses the ResNet50 feature extraction part 

(conv1-block4) combined with ASPP as the backbone of the encoding module. The struc-
ture of ResNet50 consists of one convolution layer and four blocks. Each block has several 
bottleneck units. Inside the bottleneck unit, there is a shortcut connection between the 
input and output. The bottleneck unit solved the vanishing gradient problem. Original 
images are downsampled by 1/32 in the standard ResNet50. It changed the 3 × 3 convolu-
tion stride of the first bottleneck in block4-1. For the receptive field, kept unchanged from 
the remaining convolution kernels in block4, the standard convolution was replaced with 
atrous convolution with the rate of 2 to obtain 16 times downsampled feature maps of the 
original image. 

Landslides have different directions, structures, boundaries, and shapes, and thus 
the multi-scale feature must be considered and redundant information eliminated so as to 
improve the accuracy of extraction. Since there is severe non-uniformity in the landslide 
area, it is difficult to obtain effective landslide features. However, this difficulty can be 
solved by the pyramid pooling (PP) module, which is suitable for the feature learning of 
the landslide area and solving the misclassification problem of small area landslides. 

In order to achieve the effectiveness of feature learning, we extract the output from 
convolutional layers of different scales. The last block in the ResNet50 network (block4 of 
ResNet50) is replicated in parallel by the ASPP network. There were four parallel atrous 
convolutions, one 1 × 1 convolution and three 3 × 3 convolutions at expansion rates of 6, 
12, and 18. Global average pooling is applied to the lasted feature image to include global 
contextual information into the model and generate a 1 × 1 convolution kernel with 256 
filters. It provides better global information than the maximum pooling. The final output 
of the encoding stage is the fusion result of multi-scale feature maps. After fusion, 1 × 1 
convolution is used to reduce the dimensionality of three feature maps of different sizes, 
and enter the decoding module to obtain a feature map with the same size as the original 
image. Figure 2 shows details of the encoder structure. 
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Figure 2. Network structure of encoder. 

2.1.2. Decoder 
Inspired by the encoding–decoding structure from UNet which has been widely used 

in the dense semantic classification task of remote sensing images, the skip connection 
between the downsampling path and the upsampling path restores the spatial infor-
mation lost during the maximum pooling operation [36]. The decoder structure connects 
the convolutional layer with the corresponding deconvolutional layer so that the decon-
volutional layer can perform targeted upsampling operations. Based on feature fusion 
from the encoder structure, the multi-step decoder structure is adopted to restore the orig-
inal resolution of the feature map. The feature map is bilinearly two times upsampled and 
concatenated with the corresponding low-level feature in the encoder part, which is the 
conv1 of bottleneck4 in block2 of ResNet, and then the lower level feature in ResNet 
(conv1 of bottleneck3 in block1) also used to be fused. The image resolution is refined after 
the last layer skip connection. As part of FSTF-Net, the Resnet + ASPP + encoder–decoder 
(RAE-D) network structure is illustrated in Figure 3, which only can be trained by high-
resolution RGB images. 

 
Figure 3. Network structure of Resnet + ASPP + encoder–decoder (RAE-D). 
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Based on the integration of multi-scale features and contextual information in remote 
sensing pixel-level semantic classification, the RAE-D network structure of the RGB image 
feature was used in this study. Equipped with the advantages of atrous spatial pyramid 
pooling (ASPP) and the encoder–decoder structure, a feature pyramid with different lev-
els was generated by the encoder. The low-level feature focused on details, while the high-
level feature focused on the overall situation. The PP module was integrated into the back-
bone network to overcome the global pooling problem. In the decoder, an additional con-
nection was added to the network so as to provide access to low-level information for the 
top-level classification layer. Two skip connections were used to integrate the low-level 
and high-level features into the final feature map, thereby effectively obtaining more con-
textual information and transmitting detailed information from the lower layer to a higher 
layer. Hence, the spatial information destroyed by pooling could be better restored, and 
the landslide obtained after the decoder in the final prediction had a clear boundary con-
tour. 

2.2. Proposed FSTF-Net 
In this study, a landslide information extraction model named FSTF-Net based on the 

fully convolutional network of multi-source data fusion was proposed that is composed 
of a fully convolutional network containing encoding and decoding stages and adding a 
completely different branch in the networks. The final feature is obtained after the RGB 
band of the image entered one branch structure composed of Resnet50 and ASPP. In ad-
dition, the features of the slope, aspect, and NDVI were effectively extracted in another 
branch and then integrated into the backbone framework to improve the extraction accu-
racy of landslides and surrounding ground objects. 

2.2.1. Fusion of Multiple Sources 
The multi-source data fusion strategy based on the deep-learning classification net-

work can be divided into layer stacking [7] and feature fusion [37], as shown in Figure 4. 
Multiple sources are integrated as multiple inputs of the single network model in layer 
stacking, and the number of input channels is increased. Targeted learning cannot be car-
ried out on the multi-source image data. In addition, different features have different se-
mantic expressions, thus the effect of layer stacking is not ideal [6]. In this study, a feature-
level fusion based on multi-source remote sensing-image data was researched. Multiple 
features were independently obtained through the backbone structure of different 
branches, then the feature was fused and input into the classifier, and the weight coeffi-
cients of each feature were automatically learned. The method improved image classifica-
tion performance and information extraction accuracy. 

 
Figure 4. Multi-source data fusion based on deep learning classification network (a) layer stacking; 
and (b) feature fusion. 

There are two methods of achieving feature-level fusion. In early studies, the corre-
sponding elements of two input vectors were directly added or multiplied, or the maxi-
mum value was taken [38]. The other method was to concat multiple vectors on a specified 
axis. Recent studies [39,40] showed that the mode of concat could more effectively encode 
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features of different sources. Thus, the mode of concat for feature fusion was used in the 
network structure in this study, as shown in Figure 5. 

 
Figure 5. Feature fusion implementation method (a) Concat; and (b) Eltwise Sum. 

The design of network architecture is difficult when the different sources of input 
data are collected. Therefore, a network model must be designed based on the input da-
tasets and types. In this study, landslide extraction was based on the spectral, slope, as-
pect, and NDVI using the proposed fusion network, and two parallel independent branch 
networks were used as feature extractors to convert the spectral data and topographical 
data into the abstract features for representation. Before classification, these features were 
fused through Concat, that is, various feature vectors were stacked on the specific axis 
and classified after being restored to the original resolution through the decoding module, 
thereby realizing landslide-information extraction. 

𝑍𝑍𝑖𝑖 (i = 1, 2,…, n) is the output of the 𝑖𝑖𝑡𝑡ℎ branch network to be fused. The 𝐻𝐻(𝑍𝑍) func-
tion is the feature fusion operation in the third dimension. The fusion equation is: 

𝑍𝑍𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻(𝑍𝑍1,𝑍𝑍2, …𝑍𝑍𝑛𝑛) (1) 

2.2.2. Spectral–Topographic Fusion Network 
In this study, a new fusion network model FSTF-Net was proposed to extract land-

slides and surrounding ground-object information from high-resolution remote sensing 
images based on spectral and topographical information. The aim was to obtain superior 
extraction results from multi-source data fusion than from single-source images. As core 
parts, ResNet, PP, VGGNet, and feature fusion were used in this study. FSTF-Net is com-
posed of two parallel networks that were merged at the final stage so that the entire net-
work could learn the fusion feature of branch networks. The spectral RGB data and multi-
source data (NDVI, slope, and aspect) were inputs of the proposed FSTF-Net. The scheme 
of the proposed FSTF-Net is displayed in Figure 6. 

 
Figure 6. Deep learning network for landslide extraction from a high-resolution remote sensing image. 

In the study of Sameen et al. [6], the CNN model had better performance than that of 
ResNet for inputs such as topographical variables. When the CNN model is used for 
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landslide extraction, a deeper-level model does not ensure better accuracy, and the net-
work depth has no impact on the final results. Therefore, to build a network with compu-
ting memory efficiency, conv1 to conv5 of VGG-16 were selected to extract high-level fea-
tures of multi-source data as the backbones of branch networks with the topographical 
data and NDVI data. The branch through four iterations of 2-fold downsampling and the 
16 times downsampled feature map was eventually generated, as shown in Figure 7. 

 
Figure 7. Network structure of slope, aspect, and NDVI data input branch. 

The FSTF-Net network integrates the advantages of multi-scale atrous convolution 
and skip connections, which can not only obtain multi-scale features and retain contextual 
information, but also improve the extraction ability of slope, aspect, and NDVI. The net-
work structure is shown in Figure 8. The red dotted line in the figure represents the fea-
tures extracted from the high-resolution RGB images using Resnet with the ASPP branch 
network, and the blue dotted line shows the extraction of the slope, aspect, and NDVI 
multi-source data feature using the VGG-16 branch network. The high-level output fea-
tures from the branch network are fused. Then, the fusion network model was trained 
based on error back-propagation. In this study, the cross-entropy function was used as 
the loss function, and the network parameters were updated using SDG. Conditional ran-
dom fields (CRFs) were not used for post-processing because the adjustment of additional 
hyper-parameters was required, which only leads to a small improvement or even ad-
verse effects. 

 
Figure 8. Network structure of FSTF-Net. 
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The loss function of the model is calculated by cross-entropy loss: 

𝐶𝐶 = −∑ 𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙 𝑎𝑎𝑖𝑖𝑖𝑖  (𝑎𝑎𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖
∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝑘𝑘
� , 𝑧𝑧𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑗𝑗 ) (2) 

Cross-entropy is a well-known and default loss function, where 𝑎𝑎𝑖𝑖  is the output 
value of the softmax that corresponds to the prediction value of each pixel, and 𝑦𝑦𝑖𝑖  is the 
result of true classification, which means the pixel point of the label value. 𝑤𝑤𝑖𝑖𝑖𝑖 , b, 𝑧𝑧𝑖𝑖, and 
𝑦𝑦𝑖𝑖  are the jth weight of the ith neuron, bias, ith output of the network, and the actual 
classification result. Dropout was introduced into the method, which reduced the number 
of iterating parameters during training and prevented over-fitting. 

In the training stage of the model, we used stochastic gradient descent (SGD) for pa-
rameters updating: 

𝑆𝑆(𝑛𝑛+1) = 𝑆𝑆(𝑛𝑛) − Δ𝑆𝑆(𝑛𝑛+1) (3) 

where Δ𝑆𝑆(𝑛𝑛+1) is the parameter increment, which is the combination of the original pa-
rameter, gradient, and historical increment, 𝑆𝑆(𝑛𝑛) and 𝑆𝑆(𝑛𝑛+1) are the original and updated 
parameters: 

Δ𝑆𝑆(𝑛𝑛+1) = 𝜂𝜂 ∙  �𝑑𝑑𝑤𝑤 ∙ 𝑆𝑆(𝑛𝑛) +
𝜕𝜕𝜕𝜕(𝑆𝑆)
𝜕𝜕𝑆𝑆(𝑛𝑛)� + 𝑚𝑚 ∙ Δ𝑆𝑆(𝑛𝑛)  (4) 

where 𝜂𝜂 is used to control the iteration step length by the preset learning-rate parameter; 
𝐽𝐽(𝑆𝑆) is the cost function; and 𝑑𝑑𝑆𝑆 and 𝑚𝑚 are the parameters of the weight decay and mo-
mentum. 

2.3. Dropout and Batch Normalization 
In this study, the feature extraction ability of the proposed FSTF-Net structure grad-

ually improved with the increasing number of network layers, however, the number of 
parameters in the network also increased. This leads to overfitting, resulting in the degra-
dation of network performance. Hence, dropout [41] and Batch Normalization (BN) [42] 
were introduced to the network to improve the calculation and learning efficiency. The 
dropout set a probability to eliminate the nodes in the neural network, thereby reducing 
the number of iterative parameters and preventing overfitting. BN was added to each 
convolutional layer in this study to reduce the difference in data distribution, thereby 
eliminating the local fluctuation caused by weight updating and lowering the probability 
of overfitting. In the network structure, the BN layer was inserted before inputting the 
data of each layer to the activation function. The input of the batch was set to 𝛣𝛣 = {𝑥𝑥(1⋯𝑚𝑚)}, 
and the training parameters of the BN algorithm are γ and β. 

Mini-batch mean—indent: 

𝜇𝜇𝐵𝐵 ←
1
𝑚𝑚
�𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 (5) 

Mini-batch variance: 

𝜎𝜎𝐵𝐵2 ←
1
𝑚𝑚
�(𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

− 𝜇𝜇𝐵𝐵)2 (6) 

Normalize: 

 𝑥𝑥𝚤𝚤� ← 𝑥𝑥𝑖𝑖−𝜇𝜇𝐵𝐵

�𝜎𝜎𝐵𝐵
2+𝜀𝜀

 (7) 

The output of batch normalization: 

𝑦𝑦𝑖𝑖 ← 𝛾𝛾𝑥𝑥𝚤𝚤� + 𝛽𝛽 ≡ 𝐵𝐵𝑁𝑁𝛾𝛾,𝛽𝛽(𝑥𝑥𝑖𝑖) (8) 
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To introduce dropout to the network structure, it was added to the bottom layer of 
the network structure before the classifier and after the rectified linear unit (ReLU) acti-
vation function and BN layer, as shown in Figure 9. Through the dropout and BN optimi-
zation, the proposed network achieved good classification results and showed great gen-
eralization ability. 

 
Figure 9. Dropout optimized network model. 

3. Experiment and Comparison 
3.1. Study Area 

Mangkam County, in the southeast of the Qinghai–Tibet Plateau, China, was taken 
as the study area in the present work (Figure 10). It is located in the plateau monsoon 
climate region with a rough topography, frequent geological disasters, and severe envi-
ronmental conditions (low pressure, anoxia, severe cold, gales, and intense radiation). 
Since there is no communication signal in most regions and people have to cross a wide 
range of depopulated zones, it is very difficult to manually explore landslide disasters. It 
is also difficult for short-range unmanned aerial vehicles (UAVs) to monitor detailed ter-
restrial changes within a severe environment. Thus, using high-resolution satellite remote 
sensing to obtain surface information has become the only choice. 

 
Figure 10. Study area: (a) WorldView-3 data; (b) average slope map; and (c) hill shade map. 
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3.2. Datasets 
Our datasets are composed of three different high spatial resolution optical satellite 

remote sensing data from January to March 2018, including Beijing-2, WorldView 3, and 
SuperView-1, as shown in Table 1. Among them, Beijing-2 is capable of collecting satellite 
imagery with a spatial resolution of 0.8 m panchromatic and 3.2 m spatial resolution mul-
tispectral bands. The WorldView-3 satellite images include a panchromatic image with 
0.31 m spatial resolution and eight-band multispectral imagery with a resolution of 1.24 
m, and it can be applied to the extraction of key elements of the landslide body. Super-
View-1 satellite images include panchromatic images with a 0.5 m spatial resolution and 
multispectral imagery with a resolution of 2 m. Taking into account the needs of landslide 
information extraction and the monitoring of the surrounding environment, since the 
edges of landslides have a certain degree of ambiguity, our datasets were labeled into the 
following six classes: landslide, building, forest, water, road, and bare land, which can 
better distinguish the landslides and surrounding ground objects in the study area (Figure 
11). 

Table 1. Data source information. 

Date Satellite Resolution (m) Band Number Size (Pixels) Samples 
January 

2018 
Beijing-2 0.8 3 3200 ∗ 3200 347 

January 
2018 

WorldView-3 0.3 3 3200 ∗ 3200 479 

March 2018 SuperView-1 0.5 3 3200 ∗ 3200 60 

 
Figure 11. Image-label example based on a classification standard (a) Example of landslide (the 
green part was covered with the sand-proof net) (b) Example of non-landslide 

Owing to the regionality of landslide disasters, topographical data (slope and aspect) 
and NDVI data were chosen as the extraction factors in our study with which to measure 
the difference between landslide and non-landslide features based on the geological 
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conditions, environmental feature, and topography in the study area and its surrounding 
areas. Although other factors such as rainfall and geological structure (lithology and seis-
mic intensity) were also important for landslide extraction, due to the small coverage of 
high-resolution remote sensing data in the study area, the rainfall and geological structure 
were not significantly changed. 

A stereoscopic image obtained by Resources Satellite 3 was used to generate the 
DEM, the accuracy of which can reach 5 m. The images of the study area collected by 
Resources Satellite 3 in February 2018 had a product level of 1A (radiation correction 
product through pre-processing) and a cloud cover of 0%. At the stage of pre-processing 
datasets [43,44], in order to fit the inputs of the fully convolutional network model, we 
applied the resampling method of cubic convolution [45] to process the DEM to the spatial 
resolution of 0.3 m. The NDVI data were calculated from Landsat 8 (30 m) and resampled 
to match the same resolution of the network input. Two topographical data (slope and 
aspect) were generated by the DEM. The source and format of the obtained landslide-
extraction factors are shown in Table 2. All data were converted into grid format in the 
WGS-1984 coordinate system. The construction of the landslide information database was 
mainly derived from 175 pairs of sample data, including remote sensing images, topo-
graphical, NDVI, and label data. The sample dataset was organized in the format of “im-
age–label” and for each pixel in the original image, the corresponding ground-object class 
and feature values of multi-source data could thus be obtained (Figure 12). 

Table 2. List of landslide recognition factors. 

Datasets Date Data Data Format Size (Pixels) 
Geological 

Disaster 
Distribution map 

January 2018–
March 2018 

Landslide 
point 

Point — 

Landsat8 April 2018 NDVI Raster image 0.3 m 
DEM February 2018 Slope aspect Raster image 0.3 m 

 
Figure 12. Dataset of the “Image-Label” (a) remote sensing image; (b) label image; (c) DEM; (d) slope; (e) aspect; and (f) 
NDVI. 
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3.3. Training and Metrics 
Based on the aforementioned datasets, two experiments were designed to verify the 

proposed method as follows: (1) high-resolution RGB images were used to train the en-
coding–decoding structure RAE-D of the FSTF-Net model, and (2) RGB images and multi-
source data were integrated to train the FSTF-Net model. 

To evaluate the effectiveness of multi-source data fusion, the feature learning perfor-
mances of four end-to-end classification network models (ASPP, DeeplabV3+, RAE-D, 
and FSTF-Net) were compared. ASPP and DeeplabV3+ were used as universal high-reso-
lution remote sensing image classification networks. Because of the triple-channel net-
work structure, multi-source data fusion could not be realized. RAE-D is an important 
branch structure of the proposed FSTF-Net model. As a branch network of RGB high-
resolution remote sensing image inputs, RAE-D is used as a reference structure for com-
paring the effect of non-multi-source data fusion on the final performance. The results 
showed the effectiveness and advantages of the FSTF-Net. 

Our approach was based on the TensorFlow framework in the Linux system envi-
ronment. The network layers were built through Tersorflow.keras, which can easily real-
ize the customization of multiple networks. The Sklearn library was used to evaluate the 
final accuracy. Our training used the SGD method for 300 epochs. A “step” policy for the 
learning rate adjustment (gamma = 0.1, step-size = 15,000) was used during each epoch. 
Batch normalization was used for optimization after each convolutional layer. The basic 
parameters for calculating the increments were m = 0.9 and dw = 0.0005, and the base 
learning rate was 0.001. In the training stage, we first randomly shuffled all of the samples 
and subsequently fed them into the network in batches. The labeled data were used to 
evaluate their accuracy. To ensure the consistency of the comparison of algorithms, these 
models used the same training and test datasets. 

The performance of the various methods can be evaluated based on the criteria as 
follows: per-class precision, overall accuracy (OA), average recall average, and F1-score 
G-mean, which are considered easily interpretable and have better theoretical properties 
than other classification measures. The research of this paper was mainly for the infor-
mation extraction of landslides and surrounding ground objects from high-resolution re-
mote sensing images. However, due to the fuzzy boundaries of the extracted landslides 
and the complicated internal structure, it is difficult to accurately evaluate the results of 
the landslide information extraction using only the evaluation method of classification 
accuracy. Taking into account the existing accuracy evaluation methods, our landslide 
extraction accuracy indicators are mainly divided into two schemes: the remote sensing 
image classification accuracy evaluation method based on the confusion matrix and the 
specific landslide target detection accuracy evaluation method based on error analysis. 

The following indicators are used as the classification accuracy evaluation criteria: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (9) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 (10) 

𝑂𝑂𝑂𝑂 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (11) 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

. (12) 

where 𝑇𝑇𝑇𝑇, 𝑇𝑇𝑇𝑇, 𝐹𝐹𝐹𝐹, and 𝐹𝐹𝐹𝐹 represent the numbers of true positives, true negatives, false 
positives, and false negatives as predicted by the network model, respectively. 

For the evaluation of the extraction results of a single landslide-specific target, a more 
reliable evaluation method was to use the error analysis of the evaluation of the accuracy 
of landslide extraction. The samples here are also divided into 𝐿𝐿𝑇𝑇𝑇𝑇 (the landslide that was 
correctly detected), 𝐿𝐿𝐹𝐹𝐹𝐹 (which was a landslide that was not detected as a non-landslide), 
𝐿𝐿𝑇𝑇𝑇𝑇 (a non-landslide that was correctly classified), and 𝐿𝐿𝐹𝐹𝐹𝐹 (it was a non-landslide that 
was falsely detected as a landslide). The four evaluation parameters used were: detection 
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percentage (𝐷𝐷𝐷𝐷), which indicates the probability that the algorithm correctly recognizes 
the landslide; the omission error affected by 𝐿𝐿𝐹𝐹𝐹𝐹, also known as the omission errors (𝑂𝑂𝑂𝑂); 
The misclassification error, affected by 𝐿𝐿𝐹𝐹𝐹𝐹, is also called commission errors (𝐶𝐶𝐶𝐶); quality 
percentage (𝑄𝑄𝑄𝑄) is a comprehensive index of the target extraction accuracy which is af-
fected by 𝐿𝐿𝐹𝐹𝐹𝐹 and 𝐿𝐿𝐹𝐹𝐹𝐹. The higher the 𝑄𝑄𝑄𝑄, the higher the overall accuracy of landslide 
extraction. The definition of the four comprehensive accuracy indicators is: 

𝐷𝐷𝐷𝐷 =
𝐿𝐿𝑇𝑇𝑇𝑇

𝐿𝐿𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐹𝐹𝐹𝐹
 (13) 

𝑂𝑂𝑂𝑂 =
𝐿𝐿𝐹𝐹𝐹𝐹

𝐿𝐿𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐹𝐹𝐹𝐹
 (14) 

𝐶𝐶𝐶𝐶 =
𝐿𝐿𝐹𝐹𝐹𝐹

𝐿𝐿𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐹𝐹𝐹𝐹
 (15) 

𝑄𝑄𝑄𝑄 =
𝐿𝐿𝑇𝑇𝑇𝑇

𝐿𝐿𝑇𝑇𝑇𝑇 + 𝐿𝐿𝐹𝐹𝐹𝐹
 (16) 

3.4. Experimental Results 
To better evaluate the performance of our method in the extraction of landslides and 

surrounding ground objects, Basic FCN, FCN-8s, ASPP, and DeepLab_v3+ [46] were 
adopted as the baseline for the comparison to our proposed model. Our model achieves 
the highest OA value of 0.89. Although the model has little improvement in terms of over-
all accuracy, there were significant changes from DeepLab_v3+ in the classification accu-
racies for the landslides: the accuracies of extraction were enhanced by 0.03. As shown in 
Table 3, the accuracy of landslide extraction reaches approximately 0.86. As part of FSTF-
Net, the Resnet + ASPP + encoder–decoder (RAE-D) also performed very well on small 
targets for roads’ and buildings’ classification accuracies with 0.80 and 0.78, respectively. 

Overall, according to the consistency analysis of Table 3 and Figure 13, although the 
RAE-D network obtained high classification accuracy, our FSTF-Net obtains the highest 
accuracy among all methods in the experiment. This is because the architecture of FSTF-
Net combines spectral information from RGB and NDVI images, with geographical infor-
mation from slope and aspect. 

Table 3. The comparison of the classification results of BasicFCN, FCN-8s, ASPP, DeepLab_v3+, RAE-D, and FSTF-Net on 
the Mangkam dataset. 

Method 
Bare 
Land 

Veg Water Building Road Landslide Avg Recall 
Avg 

F1-Score 
OA 

Basic FCN 0.83 0.79 0.72 0.57 0.51 0.69 0.72 0.70 0.77 
FCN-8s 0.90 0.83 0.80 0.63 0.62 0.79 0.74 0.76 0.81 
ASPP 0.87 0.84 0.81 0.71 0.69 0.80 0.82 0.80 0.84 

DeepLab_v3+ 0.91 0.85 0.84 0.78 0.73 0.82 0.85 0.86 0.87 
RAE-D 0.91 0.87 0.85 0.80 0.78 0.83 0.86 0.86 0.88 

FSTF-Net 0.90 0.89 0.87 0.81 0.78 0.86 0.87 0.88 0.89 
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Figure 13. Classification results of Mangkam County: (a) original image; (b) label image; (c–e) ASPP, encoder–decoder 
with ASPP and RAE-D; and (f) FSTF-Net classification results. 

This approach was also evaluated for landslide extraction accuracy based on error 
analysis. The DP, OE, CE, and QP for landslides in these experiments are shown in Table 
4. Compared with the results obtained by ASPP and DeeplabV3+, the results showed that 
the proposed FSTF-Net method was better in landslide extraction. The purpose of multi-
source data fusion by deep learning in this study was to improve the final accuracy of 
landslide extraction through the integration of more types of data, including basic geo-
graphical data such as DEM data and traditional RGB image data, thereby obtaining a 
better representation of landslide features. 

Table 4. Comparison results of landslide extraction accuracy. 

Method DP QP OE CE 
BasicFCN 0.73 0.53 0.26 0.31 

FCN-8s 0.77 0.67 0.23 0.21 
ASPP 0.79 0.70 0.21 0.20 

DeepLab_v3+ 0.80 0.72 0.20 0.18 
RAE-D 0.81 0.71 0.19 0.17 

FSTF-Net 0.85 0.76 0.15 0.14 
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4. Discussion 
4.1. Importance of Multi-Source Data Fusion 

The encoding–decoding structure of RAE-D only takes RGB images as input. Com-
pared with Deeplabv3+, this adds a skip connection to restore the detailed information of 
ground objects. As shown in Figure 14, landslides can be identified based on spectral in-
formation. When using the feature fusion network FSTF-Net, the additional topographic 
information could improve performance in the extraction of landslides and surrounding 
ground objects and reduce the salt-and-pepper noise. It is worth noting that DeeplabV3+ 
cannot distinguish small targets well because it has fewer low-level features compared to 
FSTF-Net and RAE-D. 

 
Figure 14. Comparison of landslide extraction results: (a) original image; (b) label image; (c) 
DeepLab_v3+ landslide extraction result; (d) RAE-D landslide extraction result; and (e) FSTF-Net 
landslide extraction result. 

A deep convolutional network is effective in the recognition of complex image pat-
terns and semantic classification. However, whether the landslide boundary can be ob-
tained in pixel-level classification should be discussed. For the explanation, the landslide 
areas extracted by FSTF-Net and RAE-D were overlapped, as shown in Figure 15a,b. Dif-
ferent models were used to compare the landslide boundary and range in the area. The 
red area is the true value of the yellow part of RAE-D, and the purple is that of FSTF-Net. 
It can be seen that the FSTF-Net benefited from the multi-source data, and the extracted 
landslide boundary was significantly better with a more complete shape. The landslide 
area in the figure has some additional extended structures that can be learned from the 
topographical feature. In summary, the results of FSTF-Net were more accurate, continu-
ous, and close to the true value. 

 
Figure 15. Comparison results of landslide boundary extraction: (a,b) results of landslide extrac-
tion using RAE-D and FSTF-Net 
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In addition, although topographical information does not significantly improve the 
overall accuracy of the results, it is very helpful for distinguishing built-up areas from 
landslide areas which have similar spectral features. As shown in Figure 16, the red poly-
gon marks the landslide area and the blue polygon marks the non-landslide built-up area. 
Their topographical information can be effectively distinguished because most landslides 
usually occur on steep slopes. From the hill shade, slope, and aspect, the blue flat area is 
unlikely to be a landslide area. Therefore, by training and learning the topographic fea-
tures of landslides, the FSTF-Net model can clearly distinguish a landslide area from a 
non-landslide area. The deep fusion network proposed in this study not only used two-
branch networks to obtain multiple features at the same time but also learned the multi-
scale expression of the feature from the branch networks. Without an additional super-
vised learning method, different branch networks were integrated into the network to 
improve the extraction capabilities of the network. 

 
Figure 16. Comparison result of landslide and artificial construction area: (a) original image and 
corresponding; (b) hill shade; (c) slope; and (d) aspect. 

4.2. Analysis of Landslide Change Detection 
The landslide extraction results of the FSTF-Net model from the March 2018 images 

were compared with those from the January and February 2018 images to analyze the 
landslide information changes in some areas of the study area from January to March 
2018. 

Figure 17 shows the specific information of new landslide area #1. The area is located 
near an artificial mining area, and there landslides have already occurred nearby. (a) The 
red polygon area was bare land in January 2018. (b) The red polygon area was a half-bare-
hand and half-landslide area in February 2018. (c) The red polygon area in March 2018 
became a landslide area. In March 2018, there were a few bare land areas and many land-
slides, possibly due to mining activities. 
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Figure 17. Landslide change detection in area #1 (located at 29°56′36″ N and 99°3′29″ E) from January 
to March 2018 (a) January 2018; (b) February 2018; and (c) March 2018. 

Figure 18 shows the information for new landslide area #2. This area is located in an 
unstable area, where there have already been landslides nearby. (a) The red polygon area 
was bare land in January 2018 and (b) was also bare land in February 2018 without any 
obvious changes. A small number of gravel fragments can be seen at the bottom, which is 
a sign of geological activity. (c) In March 2018, most of the red polygon area represented 
landslides. In terms of landslide monitoring, the present study provides useful ideas for 
change detection by the post-classification comparison of landslides and the surrounding 
ground objects. 

 
Figure 18. Landslide change detection in area #2 (locate at 29°56′59″ N and 99°2′50″ E) from January 
to March 2018 (a) January 2018; (b) February 2018; and (c) March 2018. 

4.3. Applications of Proposed Approach 
To verify the feasibility and applicability of the proposed approach, the high-resolu-

tion remote sensing images of landslides caused by the Jiuzhaigou earthquake were used 
for the information extraction of the landslide and surrounding ground objects. The da-
tasets were used as the experimental data, as shown in Table 5. We also obtained the 
resampled DEM and NDVI results by using the cubic convolution method in order to fit 
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the inputs of the fully convolutional network model. In the plateau area under the same 
constraints, the FSTF-Net model that was trained in the Mangkam County area was used 
for transfer learning. Results show that the model can directly identify and classify the 
Jiuzhaigou landslide and surrounding ground objects without extra training. Thus, the 
proposed FSTF-Net model has great advantages in cross-scene and multi-sensor scenar-
ios. 

Table 5. Introduction of data sources in Jiuzhaigou. 

Date Source Data Resolution (m) Band Number 
August 2017 Google Earth Google Earth 0.3 3 

August 2017 
Landslide Vector File 

[47] 
Landslide 
PLOGY 

0.3 1 

August 2018 Landsat8 Image NDVI 0.3 1 
August 2017 SRTM DEM 0.3 1 

In this study, the classification accuracy of the Jiuzhaigou landslide and surrounding 
ground objects using the FSTF-Net model is shown in Table 6. Among the results, the 
classification accuracy of vegetation was the highest, reaching approximately 88%. The 
accuracy of the landslides was also impressive (79%), and the overall accuracy was 82% 
(Figure 19). 

Table 6. Classification result on Jiuzhaigou high-resolution remote sensing images. 

Method Bare Land Veg Landslide Water Building Road Avg Recall 
Avg 

F1-Score 
OA 

FSTF-Net 0.82 0.88 0.79 0.87 0.68 0.64 0.80 0.79 0.82 

 
Figure 19. Classification results for the Jiuzhaigou high-resolution remote sensing image: (a) original image; (b) label im-
age; and (c) FSTF-Net classification results. 

From the perspective of landslide extraction accuracy, the DP, OE, CE, and QP of 
landslides are shown in Table 7, and the extraction results of landslides are shown in Fig-
ure 20. 
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Table 7. Introduction of data sources in Jiuzhaigou. 

Method DP QP OE CE 
MUS2+FSTF-Net 0.81 0.73 0.19 0.21 

 
Figure 20. Landslide information extraction results for the Jiuzhaigou high-resolution remote sensing image: (a) original 
image; (b) label image; and (c) FSTF-Net classification results. 

The model trained by the Mangkam dataset was applied to the Jiuzhaigou landslide 
extraction and high-quality results were obtained. From the Jiuzhaigou landslide extrac-
tion results, it can be clearly seen that the FSTF-Net model successfully extracted most of 
the landslide contour, without obvious omissions. The value of DP was approximately 
81%. In addition, the result was not influenced by other ground objects such as trees, ver-
ifying the advantages of using spectral and topographic information in the FSTF-Net 
model. Although the classification accuracy of the proposed method must still be im-
proved, it presents many advantages, requires less preparatory work, and has high ex-
traction efficiency. The overall performance is slightly lower than that of the Mangkam 
dataset, which may be due to the difference in scenes. In the Jiuzhaigou area, the vegeta-
tion area is higher than that in Mangkam County, and the network did not learn this prior 
knowledge. A possible solution to this problem is transfer learning; that is, a small sample 
dataset in the new landslide extraction area can be applied to fine-tune the model to im-
prove its performance. This method is especially suitable for post-disaster evaluation, 
where time constraints are prevalent and the number of landslide samples is small. 
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Aiming at the landslide extraction from high-resolution remote sensing images, we 
propose a comprehensive and widely used scheme. For two landslide extraction tasks in 
different regions, the designed model is able to use the information obtained in the first 
landslide extraction task, as prior knowledge about the landslide, and apply it to the sec-
ond landslide extraction task. This is a major improvement because the training of a com-
mon deep learning model was not very flexible and difficult to adapt to different regions. 
The model proposed in this study follows the trend of information extraction with specific 
constraints and specific targets. Currently, the model is limited to the extraction of land-
slide information from high-resolution remote sensing images in plateau areas. However, 
the network framework of deep learning and its variants are universal and can provide 
references for the analysis and application of other data in remote sensing images. 

5. Conclusions 
In this study, we proposed a deep convolutional neural network named FSTF-Net 

for landslide extraction. Based on multi-source data fusion, the network is an end-to-end 
accurate landslide extraction framework. The following conclusions can be drawn: 
• Based on the atrous convolution, pyramid pooling, and encoding–decoding struc-

ture, the multi-scale feature and the contextual information of the fully convolutional 
network model were effectively integrated to improve the performance of the net-
work. The multi-source data, including topographical factors (slope and aspect) and 
NDVI, were input into the network and integrated with the feature extracted by re-
mote sensing images. Through the improvement and optimization of the network 
structure, the end-to-end FSTF-Net model based on multi-source data was obtained. 
Comparison with other existing networks showed that the FSTF-Net model achieved 
accurate landslide extraction and the detailed recovery of different types of ground 
objects in complex scenes. Based on the existing multi-source data, the model effec-
tively increased the accuracy of landslide extraction. The overall classification accu-
racy reached 89% and the accuracy of the landslide detection was 85%. 

• Taking the geological disaster caused by the Jiuzhaigou earthquake in 2017 as an ex-
ample, high-resolution remote sensing satellite images were collected from Google 
Earth. Based on these images, the trained FSTF-Net model from the Mangkam da-
taset was used to extract the information of landslides and surrounding ground ob-
jects after the Jiuzhaigou earthquake. The accuracy of the landslide detection was 
81%. The method not only greatly reduced labor costs and time but also ensured the 
accuracy and reliability of the interpretation of the surface environment, providing a 
reference for subsequent research on the automatic extraction of landslide infor-
mation. 
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