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Abstract: With rapid advancements in remote sensing image registration algorithms, comprehensive
imaging applications are no longer limited to single-modal remote sensing images. Instead, multi-
modal remote sensing (MMRS) image registration has become a research focus in recent years.
However, considering multi-source, multi-temporal, and multi-spectrum input introduces significant
nonlinear radiation differences in MMRS images for which researchers need to develop novel
solutions. At present, comprehensive reviews and analyses of MMRS image registration methods
are inadequate in related fields. Thus, this paper introduces three theoretical frameworks: namely,
area-based, feature-based and deep learning-based methods. We present a brief review of traditional
methods and focus on more advanced methods for MMRS image registration proposed in recent
years. Our review or comprehensive analysis is intended to provide researchers in related fields with
advanced understanding to achieve further breakthroughs and innovations.

Keywords: MMRS image registration; area-based methods; feature-based methods; deep-learning
based methods

1. Introduction

Image registration is the process of geometrical alignment and matching of two or
more images of the same scene, acquired from different sensors, with different views and at
different times [1]. In the field of remote sensing, the accuracy of image registration plays a
crucial role in subsequent applications, such as image fusion, map correction and change
analysis [2,3]. It is possible to obtain multi-source remote sensing image data with the rapid
development of aerospace technology and remote sensing. Comprehensive utilization
of multi-source remote sensing data has been widely used to realize the uniqueness and
complementarity of different remote sensing images, in order to acquire images containing
more information.

The registration of MMRS images still has difficulties in applications due to significant
geometric distortion and nonlinear intensity differences between these images. However,
it is necessary to integrate these images for earth observation applications [4]. For instance,
different sensors capture optical and synthetic aperture radar (SAR) images, and different
imaging mechanisms produce distinct characteristics of an area. Therefore, fusing two
types of images is more conducive to representing a given area. Simultaneously, when
encountering emergencies, such as weather disasters, only SAR images are useful since
they can work during both day and night and see-through cloud and fog to capture images.
In this case, there is an inevitable problem in combining traditional optical images with a
currently acquired SAR image to analyze the imaged area [5].

Although significant advances have been made in automatic image registration tech-
nologies in the past few decades, due to the high-performance requirements of MMRS
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image registration, scholars strive to propose technologies advancing the state-of-the-art to
address the problems of geometric differences and time efficiency.

The field of remote sensing can be roughly divided into remote sensing image acquisi-
tion technology and remote sensing information processing technology. Photogrammetry
technology that mainly relies on aerospace and ground imaging platforms is different
from the remote sensing technology that relies on satellite platforms. There are also dif-
ferences in imaging bands and imaging methods. Photogrammetry is mainly to obtain
accurate geographic information from remote sensing, and its application also has the
above-mentioned problems. Therefore, remote sensing image acquisition technology and
close-range application of photogrammetry cannot benefit from this survey.

Existing surveys on remote sensing image registration mostly include single-modal
general registration frameworks and matching methods, while MMRS image registration,
as a very important branch, only occupies a small part of the article [1,6–8]. A large part of
the multi-modal image processing work is focused on medical image registration [9–11],
and few papers specifically review the part of multi-modal images in remote sensing image
processing. Common MMRS images include cross-temporal, cross-season, optical to SAR,
optical to infrared, optical to Light Detection and Ranging (LIDAR), map to visible, etc.
In the existing literature, research on optical-SAR [12–14] and optical-infrared [15–17] is
most common. We discuss registration methods for MMRS images, rather than the types
of modal image pairs. Readers who want to know about more registration methods can
refer to [18]. In this regard, we review the general methods of MMRS image registration,
especially classification according to the registration method category, and introduce
recently popular learning-based methods, so that readers can learn about cutting-edge
methods in the field at a glance. The integrated structural framework of this review is
shown in Figure 1.

Figure 1. Structural framework of this review.

2. General Framework of MMRS Image Registration Methods

Area-based methods (also called intensity-based methods) generally use a robust
similarity measure to search for the optimal geometric transformation through a predefined
template window. Feature-based methods primarily include three steps: feature detection,
feature description and feature matching [12].
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2.1. General Framework of Area-Based Methods

The framework of area-based method is illustrated in Figure 2. This framework
consists of three major components: namely, similarity measures, geometric transformation
models and optimizations.

Figure 2. Framework of area-based image registration.

2.1.1. Similarity Measures

Similarity measurement as the core factor in the iterative process of MMRS image
registration is used to design various standards based on the intensity difference between
two images [10]. Common similarity measures include the sum of square differences (SSD),
sum of absolute differences (SAD), cross-correlation and normalized cross-correlation
(NCC). Based on the assumption that two images have similar intensities, SSD directly
calculates the distance between the template window and the corresponding pixels of the
original image. Due to the simplicity of SSD, it has high computational efficiency. SSD can
be expressed by the following formula:

D(x, y) =
m

∑
i=1

n

∑
j=1

[I(x + i − 1, y + j − 1)− T(i, j)]2 (1)

where T indicates the template window of size m × n, I represents the original image,
in which we need to find an area matching the template. Taking (x, y) in the upper left
corner of the original image I as the starting point, the subgraph of size m × n traverses
the whole image and calculates its similarity with the template and finds the subgraph
with the maximum similarity as the final matching result. NCC [19,20] judges the linear
correlation of two images by calculating the correlation coefficient matrix. NCC can be
expressed as:

ρ(x, y) =
σ(Ix,y, T)√

Dx,yD
=

1
mn

m
∑

i=1

n
∑

j=1
(Ix,y(i, j)− Ix,y)(T(i, j)− T)√

1
mn

m
∑

i=1

n
∑

j=1
(Ix,y(i, j)− Ix,y)

2
√

1
mn

m
∑

i=1

n
∑

j=1
(T(i, j)− T)2

(2)

where Ix,y indicates that the sub-block with the same size in the original image which takes
(x, y) as the upper left corner point. σ(·) is the covariance. Dx,y and D are the variances of
Ix,y and T respectively. Ix,y and T are expressed as the mean gray value.

Note that SSD and NCC are sensitive to nonlinear radiation differences, they are not
suitable for MMRS image registration. Mutual information (MI) is more robust to radiation
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changes [21,22], whose objective, analogous to NCC, is to maximize the MI between the
two images. The MI of random variables A and B can be expressed as [23]:

I(A, B) = E(A) + E(B)− E(A, B) (3)

where E(·) are the entropies, and E(A, B) is the joint entropy. The MI metric specifies that
when I(A, B) reaches its maximum value, two images are registered. The entropy and joint
entropy can be calculated as:

E(A) = ∑
a
−PA(a) logPA(a) (4)

E(B) = ∑
b
−PB(b) logPB(b) (5)

E(A, B) = ∑
a,b

−PA,B(a, b) logPA,B(a, b) (6)

where PA(a) = ∑
b

PA,B(a, b) and PB(b) = ∑
a

PA,B(a, b) are the marginal probability mass

functions, and PA,B(a, b) = h(a, b)/∑
a,b

h(a, b) is the joint probability mass function, h is the

joint histogram of the two images, which can be represented by the following matrix:

h =


h(0, 0) h(0, 1) · · · h(0, N − 1)
h(1, 0) h(1, 1) · · · h(1, N − 1)

...
...

...
...

h(M − 1, 0) h(M − 1, 1) . . . h(M − 1, N − 1)

 (7)

where h(a, b) is the number of point pairs for which the intensity in one image is a and
for the other image is b, M and N are the ranges of the intensity values. We determine the
MI value between two images by calculating the joint histogram of each window to be
matched. Although MI is more suitable for MMRS image registration due to its robustness
to nonlinear radiation differences, researchers are committed to improving this method to
enhance the registration performance of MMRS by reducing the computational cost. For
instance, Yang et al. [24] and Lehureau et al. [25] combined MI with feature-based methods
to improve the registration accuracy of optical-to-SAR images.

2.1.2. Geometric Transformation Models and Optimizations

The other key steps of area-based MMRS image registration are the selection of
geometric transformation models and optimizations. The transformation model, also called
the mapping function, requires estimation of model parameters for image warping and
resampling, and finally alignment and registration. Existing transformation models can be
simply divided into linear models (for example, rigid models, affine transformation models,
and projection models) and non-rigid models, such as physical models and interpolation
models [10].

After selecting the metric and transformation model, it is necessary to find the optimal
transformation in the iterative process of MMRS image registration to achieve optimal
matching between two images. However, it is easy to fall into a local optimum during the
search process, which leads to a decrease in registration performance [26]. It can be seen
that the choice of the transformation model and optimization method largely determines
the accuracy of registration. Readers can refer to [10,27] for more methods and details.

2.2. General Framework of Feature-Based Methods

Feature-based MMRS image registration includes main three steps. First, feature detec-
tion, which selects the prominent features between two images, such as point features [28],
edge features [13] and region features [29]. Second, feature description, which refers to
describing the extracted features for the next step of matching; and third, feature matching,
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which designs a specific similarity measure for the descriptor to establish a geometric
transformation model, to realize the alignment and registration between the two images.
Figure 3 illustrates the feature-based framework.

Figure 3. Framework of feature-based image registration.

2.2.1. Feature Detection

Feature detection and extraction can be divided into corner and blob detection. Cor-
ners usually refer to the position in the image where the gray value changes substantially,
such as an edge intersection point. Moravec first proposed a corner detector, which mainly
extracts key points from the intensity difference in a local image area [30]. After this, based
on the Moravec detector, the Harris corner detector was developed by the image gradient
and the response function was proposed [31]. Subsequently, the Gaussian Laplace (LOG)
detector motivated Mikolajczyk [32] to combine the LOG and Harris detectors to develop a
new version that locates key points in scale space, i.e., the scale-invariant Harris detection
(Harris-Laplace).

Blobs generally refer to areas that are different in color and gray scale from the
surrounding area (also called singular areas). The scale-invariant feature transform
(SIFT) [33,34] is a classical algorithm for blob detection. Owing to its invariance to scale
changes, translation and rotation, and robustness to geometric distortion, it is widely
used in feature detection. The SIFT feature detector generates the key points of position
and the scale by constructing a Gaussian pyramid and locating the extreme points in the
difference of Gaussian (DOG) space. Due to the scale invariance and positioning accuracy
of SIFT, SIFT-like methods have been widely used in various applications. Many academics
have successfully improved SIFT to eliminate multi-modal difference, thereby achieving
MMRS image registration, including multispectral [35,36], optical-to-SAR images [5,14]
and visible-to-infrared images [37].

2.2.2. Feature Description

Feature description refers to generating specific descriptors for the extracted feature
points to prepare for the follow-up feature matching. This step directly determines the
registration performance, which requires generating stable descriptors for the matched
features and being robust to geometric transformation and image resolution. SIFT men-
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tioned above and SURF (speeded up robust features) [38] are the two most common feature
descriptors. The major idea is to calculate the gradient amplitude and direction around the
interest point to generate a histogram descriptor. At the same time, Gaussian derivative,
moment invariant, and shape context are also frequently used descriptors.

2.2.3. Feature Matching

Assuming that two sets of interest points have been extracted from the reference
image and the sensed image, feature matching finds the correspondence between them
based on a specific algorithm to obtain more matching point pairs. A direct method is
to correspond the two interest points by directly using spatial geometrical relations like
graph matching and point set registration. An indirect method is based on the similarity
of local feature descriptors with false matches being rejected using local and/or global
geometrical constraints. The most typical methods for mismatch removal are resampling-
based methods, which are also known as fast sample consensus (FSC) and random sample
consensus (RANSAC) [39].

2.3. General Framework of Deep Learning-Based Methods

Traditional image registration technology is constrained by image resolution, intensity
differences and low computational efficiency. With the rapid development of deep learning,
learning-based methods can promote an iterative area-based method, directly estimate the
geometric transformation parameters, and reduce the computational complexity. At the
same time, in the process of MMRS image registration, deep learning shows great potential
in detecting feature points of images with appearance differences, further improving
the registration performance. Common methods for solving MMRS image registration
problems based on deep learning are described in detail in Section 3.4.

2.3.1. Convolutional Neural Network

The model construction of deep learning is based on a neural network and consists of
many layers [40]. These layers transform input data into output by learning features. The
“hidden layers” are usually between the input and output layers. Deep learning refers to
a large number of hidden layers [40]. Convolutional neural network (CNN) is one of the
most common models in the field of deep learning. Because of the structure characteristic
of continuous layers, it can capture more complex image features and learn features for
registration tasks. These continuous layers are specifically divided into convolutional layer,
pooling layer and fully connected layer. The convolution operation is mainly to extract
image features. With the increase of convolutional layers, multi-layer networks can extract
richer image features. After convolution, there are still many dimensional features of the
image. The pooling layer divides the feature matrix into several individual blocks and takes
the maximum or average value; that is, maximum pooling and average pooling, which play
a role in dimensionality reduction. Finally, the fully connected layer non-linearly combines
all the local features and the feature matrix of each channel to obtain the output.

2.3.2. Generative Adversarial Networks

At present, Generative adversarial networks (GANs) [41] is a very popular technology
for deep learning. It is composed of the generator and the discriminator. In the learning
process, the generator makes the output image as real as possible, while the discriminator
has to work hard to identify the true and false images. This process is similar to a “two-
person game”. Both networks try to optimize two completely opposite loss functions [42].
Unlike CNN’s powerful ability to analyze data and extract features, GANs focus on
generating data, enhancing data by the adversarial network, or generating fake images to
eliminate modal differences.
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2.3.3. Other Deep Learning Models

Widely used deep learning models include recurrent neural networks (RNN) [43], au-
toencoders (AEs) [44], stacked autoencoders and Restricted Boltzmann machines [45]. They
are mostly utilized in the fields of sequence analysis [46], feature representation [47,48],
data compression and dimensionality reduction [49], and image classification [50–53], and
do not involve remote sensing image registration.

3. Review of MMRS Image Registration Methods

Remote sensing images are obtained from remote sensing satellites, which record
the magnitude of electromagnetic waves of various ground objects. Depending on the
imaging system, it mainly includes optical, SAR, Light Detection and Ranging (LIDAR)
and Radio Detection and Ranging (RADAR) data, which could be combined for remote
sensing applications. For MMRS image registration, there are several types of multi-source,
multi-spectrum, and multi-temporal algorithms. Common research mainly includes the
following types: optical-to-SAR, optical-to-LIDAR, infrared-to-visual, and visual-to-map
images. As shown in Figure 4, in the optical and SAR images of the same area, due to the
differences among imaging systems and the presence of speckle noise, it is very difficult to
make use of traditional methods to register two images.

Figure 4. An example of radiation difference between MMRS images: (a) Optical image. (b) SAR image. As shown by the
enlarged patch, the radiation differences and noise effects are particularly noticeable.

For this type of MMRS image registration problem, with significant non-linear ra-
diation differences, the area-based method is susceptible to problems of image overlap,
geometric distortion, and high-resolution images with high computational cost. However,
the typical feature-based method (SIFT) is not suitable for multi-modal images. It is dif-
ficult to extract a large number of matching point pairs and find a suitable descriptor to
match them. In order to improve the accuracy and efficiency of MMRS image registration,
researchers have proposed many improvements. This section will review and discuss
these methods in detail. The following mainly include area-based, feature-based and deep
learning-based improvements.

3.1. Review of Area-Based Methods

As mentioned in Section 2, an area-based method finds an appropriate similarity
measure in two images to accurately estimate the optimal parameters of the geometric
transformation in the iterative process. However, this method needs a large amount of
computation and is easily trapped into a local optima. Thus, relevant researchers have
made improvements in the following aspects:
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1. Improving the similarity measure MI that is the most suitable for MMRS image
registration;

2. Establishing a similarity measure to eliminate modal differences based on the shape
and structure of an image;

3. Improving the optimization method for high-resolution and noise-affected images to
enhance registration performance.

Table 1 shows a summary of the improvements on area-based algorithms in MMRS
image registration.

Table 1. Analysis of area-based method improvements.

Author Method Category Method Improvement Conclusion

Cole-Rhodes
et al. [21]

Methods to improve
similarity measures

Improve the joint histogram of MI
and propose the simultaneous
perturbation stochastic approximation
(SPSA) algorithm.

The algorithm relies on gradient
approximation instead of the target
gradient value and finds the global
maximum value through the local
extrema of the objective function,
which greatly speeds up the entire
registration process.

Chen et al. [23] Methods to improve
similarity measures

A new joint histogram estimation
algorithm is proposed, called
Generalized Partial Volume Estimation
(GPVE, with a second-order
B-spline function).

Overcome the problem of
interpolation-induced artifacts.

Shadaydeh
et al. [54]

Methods to improve
similarity measures

Propose a weight-based joint histogram
estimation method (WJH-MI).

Reduces the peaks in the joint histogram
caused by the background or
homogeneous regions by assigning more
weight to the high gradient pixels
containing more registration
related information.

Xu et al. [55] Methods to improve
similarity measures

Propose using the symmetric form of
Kullback-Leiber divergence, namely
Jeffrey’s divergence as
similarity measure.

The registration model based on Jeffrey’s
divergence can provide a larger feasible
search space and solve the problem of MI
facing insufficient image
overlapping area.

Xie et al. [56] Methods to improve
similarity measures

MLPC method combining multi-scale
Log-Gabor filter and phase consistency

Effectively resolving the non-linear
intensity difference in MMRS image
registration.

Xie et al. [57] Methods to improve
similarity measures

Based on the extended phase
correlation of log-Gabor, an improved
LGEPC method is proposed

Use the overall structure information to
eliminate the influence of radiation
differences as much as possible.

Hasan et al. [58] Methods to improve
optimization

Using CCRE to align SAR and Google
satellite images and applying partial
volume interpolation to calculate the
gradient of the similarity measure.

Directly implement the optimization
process based on partial volume
interpolation.

Dame and
Marchand [59]

Methods to improve
optimization

Define a new inverse combinatorial
optimization method to handle the
quasi-concave shape of MI, where the
required derivative can be
pre-calculated allowing the Hessian
matrix to be estimated after
convergence.

Reduce the calculation time and estimate
an accurate parameter.

Liang et al. [60]
and Wu et al. [61]

Methods to improve
optimization

The authors used the ant colony
optimization (ACO) algorithm to
optimize the similarity measure to
maximize MI.

The similarity curve of MI has been
proved to have many local
optimal values.
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Table 1. Cont.

Author Method Category Method Improvement Conclusion

Yan et al. [26] Methods to improve
optimization

Propose a method of using transfer
optimization (TO) to maximize MI,
optimize conversion parameters and
transfer better results to another
optimizer in the iterative process.

Enhance the global search capability of
TO and avoid a local optima.

Liu et al. [62] Hybrid methods

Propose an image registration method
that combines local self-similarity (LSS)
and MI, which combined local internal
features and global intensity
information.

The proposed method can register
multi-sensor images with different
resolutions and handle the geometric
differences between grayscale and
corresponding pixels and regions.

Ye et al. [63] Hybrid methods

A fast and robust template matching
framework for MMRS images called
channel features of orientated
gradients (CFOG).

A new general scheme of template
matching based on pixel feature
representation, suitable for all kinds of
multi-modal image registration.

Yan et al. [2] Hybrid methods
Introduced the histogram of oriented
gradient distance (HOGD) and the grey
wolf optimizer (GWO).

It avoids falling into the local optimum
and reduces the calculation time.

Liang et al. [64] Hybrid methods
A variable template matching method
based on DOG features and the sum of
cosine difference.

The proposed matching method has good
robustness to nonlinear light intensity
changes, and effectively improves the
matching accuracy.

3.1.1. Methods to Improve Similarity Measures

Multi-resolution remote sensing image registration using stochastic gradient to opti-
mize the MI similarity metric was proposed in [21]. First, it improved the joint histogram of
MI into 64 bins to produce a smoother surface, which can better integrate the optimization
method. In addition, the author proposed using the simultaneous perturbation stochastic
approximation (SPSA) algorithm, which relies on an efficient gradient approximation
instead of an accurate target gradient value. Then, the global maximum value was found
through a local extrema of the objective function, which greatly accelerates the entire
registration process. Chen et al. [23] put forward a new joint histogram estimation algo-
rithm called generalized partial volume estimation (GPVE, with a second-order B-spline
function) for computing MI to register multi-temporal remote sensing images, to overcome
the problem of interpolation-induced artifacts.

Regardless of whether mutual information (MI) or normalized mutual information
(NMI) overcomes the overlapping area problem, the estimation of the similarity measure
requires calculating its joint histogram. Shadaydeh et al. [54] proposed a weight-based joint
histogram estimation method (WJH-MI). That is, each bin in the joint intensity histogram
is calculated as the sum of the weights corresponding to the pixel intensity value of
the bin. The weight of each pixel is defined as the exponential function of the distance
image and the normalized gradient image. This method reduces the peaks in the joint
histogram caused by the background or homogeneous regions by assigning more weight
to the high gradient pixels containing more registration related information. Experiments
show that the proposed method produces a better similarity measurement surface, with
more obvious peaks and fewer registration errors. In order to solve the problem of MI
(also known as Kullback–Leiber divergence) facing insufficient image overlapping area,
Xu et al. [55] proposed using the symmetric form of Kullback–Leiber divergence, namely
Jeffrey’s divergence as similarity measure. Jeffrey’s divergence quantifies the distinction of
image pairs by bidirectionally measuring the “distance” between the joint histogram and
the product edge histogram of two images. Derived from the definition, the registration
model based on Jeffrey’s divergence can provide a larger feasible search space. Experiments
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showed that the sensitivity of Jeffrey’s divergence to scene overlap is lower than other
measures, and it is more suitable for registering small size images.

Structure and shape features have been used as similarity measures in multi-modal
medical image registration, achieving better performance than traditional similarity mea-
sures. The features extracted by the phase correlation or phase congruency (PC) algorithm
proposed by De Castro [65] and Reddy [66] are widely used in robust MMRS image reg-
istration due to their insensitivity to changes in illumination and contrast. Xie et al. [56]
proposed the MLPC method, based on the multi-scale Log-Gabor [67] filter combined
with traditional phase congruency methods [65,66], effectively resolving the non-linear
intensity difference in MMRS image registration. The authors obtained the amplitude of
the reference and sensed images in the frequency domain after Fourier transform, and then
used log-Gabor filters with different central frequencies to filter the amplitude to obtain a
series of filtered images. After filtering, a multi-scale map space was constructed and each
image pair in the map was phase-correlated. The maximum response peak was considered
as the optimal solution, and the coordinates of the maximum response peak were used
to obtain the rotation angle and scale factor. Finally, the cross-power spectrum between
the superimposed structure spectrum of the reference image and the corrected sensed
image was calculated to eliminate the radiation difference. The inverse Fourier transform
was used to obtain the maximum peak value, and the coordinates of the maximum peak
value determined the transformation. Subsequently, based on this article, the authors
proposed an improved LGEPC [57], which is an extended phase correlation algorithm
based on log-Gabor. Similarly, the filtered amplitude image obtained by log-Gabor filters
with different central frequencies was used to construct a multi-scale atlas space and obtain
rotation and scale factors. In addition, the filter structure spectrum obtained by log-Gabor
filters of different central frequencies was superimposed together to enhance the overall
structure information, which helps eliminate the influence of radiation differences as much
as possible on the step of solving translation in the extended phase correlation.

3.1.2. Methods to Improve Optimization

A new similarity measure, called cross-cumulative residual entropy (CCRE), was
successfully applied to multi-modal medical image registration to adapt to images with
different brightness and contrast, while being more robust to noise. Hasan et al. [58]
used CCRE to align SAR and Google satellite images, and at the same time extended the
Parson-window optimization method proposed by Thevenaz [68]. The authors applied
partial volume interpolation to calculate the gradient of the similarity measure instead of
the joint histogram, which allowed the authors to directly implement the optimization
process based on partial volume interpolation. Results showed that the use of partial
volume interpolation in the optimization process significantly improved the registration
success rate and accuracy of CCRE-based and MI-based algorithms. The authors defined a
new inverse combinatorial optimization method in [59] to handle the quasi-concave shape
of MI, where the required derivative can be pre-calculated allowing the Hessian matrix
to be estimated after convergence. Thus, this method can reduce the calculation time and
estimate an accurate parameter. Note that the definition of MI has been adapted to the
differential image alignment problem, so that the alignment function is as smooth and
concave as possible and retains robustness to multi-modal image intensity changes. In
addition, utilizing a new method based on reference pixel selection greatly reduces time
consumption, which results in an accurate, fast and robust registration process. In [60,61],
the authors used the ant colony optimization (ACO) algorithm to optimize the similarity
measure to maximize MI. However, the similarity curve of MI has been proved to have
many local optimal values. Thus, Yan et al. [26] was inspired by transfer learning and pro-
posed a method of using transfer optimization (TO) to maximize MI, optimize conversion
parameters and transfer better results to another optimizer in the iterative process. This
helps enhance the global search capability of TO and avoid a local optima.
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3.1.3. Hybrid Methods

Liu et al. [62] proposed an image registration method that combines local self-similarity
(LSS) and MI, which combined local internal features and global intensity information to
achieve a better registration effect. A likelihood map was calculated for each CP in the
image using the Gaussian pyramid weighted Bayesian probabilistic model. The position of
the peak in the likelihood map represented the corresponding CPs in the image. At the
same time, the authors took the maximum of MI as the optimization goal and introduced
the particle swarm optimization (PSO) algorithm to search for the best parameter of the
geometric mapping function. Considering effectiveness and performance, experiments
show that the proposed method can register multi-sensor images with different resolutions
and handle the geometric differences between grayscale and corresponding pixels and
regions. Ye et al. [63] proposed a fast and robust template matching framework for MMRS
images. The first step extracts a local descriptor at each pixel of the image, which can
be HOG, LSS, or SURF to generate a pixelized feature representation. Here, the author
introduced a novel pixelized feature representation called channel features of orientated
gradients (CFOG), which is an extension of the pixelated HOG descriptor. The pixelated
feature representation can be constructed by using HOG descriptors with a single unit block.
The trilinear interpolation in a single unit block can be regarded as a convolution operation
with a triangular kernel. Thus, the HOG descriptor was reconstructed by convolution in the
image gradient of a specific direction, and the convolution was performed by the Gaussian
kernel instead of the triangular kernel. The reconstructed CFOG descriptor suppressed
noise more effectively and reduced the contribution of the gradient away from the center of
a region, improving the computational efficiency. Subsequently, a new template matching
similarity measure based on pixel feature representation was introduced, and fast Fourier
transform was used for faster computation. Yan et al. [2] proposed a new similarity measure,
the histogram of oriented gradient distance (HOGD). In order to avoid falling into local
optimality, the grey wolf optimizer (GWO) was introduced since it exhibited global search
capabilities for complex optimization problems. GWO searched for optimal transformation
parameters by minimizing HOGD. To reduce computation time, GWO was combined with
a data-driven strategy, namely DDGWO. In DDGWO, a support vector machine (SVM)
model was trained to predict HOGD instead of calculating it directly, which can lead to
a significant reduction in computation time. Liang et al. [64] proposed a fast-matching
method based on dominant orientation of gradient (DOG), which constructed a feature map
by extracting the DOG feature of each pixel in an image. The author defined a new similarity
measure called the sum of cosine difference, which can be accelerated by the Fast Fourier
Transform (FFT). In order to improve the matching performance, a new variable template
matching (VTM) method was proposed to determine the correspondence between images.
Experimental results showed that the proposed matching method had good robustness to
nonlinear light intensity changes, and effectively improved the matching accuracy.

3.2. Review of Feature-Based Methods

Researchers have made many improvements and contributions to the area-based
methods. However, there are still cumbersome and time-consuming calculations in the
iterative optimization process caused by high resolution and strong noise. Most methods
rely on geometric correction based on the geographic information of an image. However,
when geographic information is not available, an image is difficult to optimize considering
large geometric changes. Feature-based methods are robust to rotation, translation and
geometric distortion; but, due to speckle noise and intensity differences, it is very difficult
to extract feature points between two images and it is easy to remove outliers. Hence, how
to detect reasonable features between reference and sensed images and design suitable
descriptors for them has become a challenge for scholars. Table 2 shows a summary of the
improvements on feature-based algorithms in MMRS image registration.
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Table 2. Analysis of feature-based method improvements.

Author Method Category Method Improvement Conclusion

Yu et al. [28] Methods to improve
SIFT or Harris operator

Combine the advantages of SIFT and
Harris to propose a coarse to fine
MMRS image registration.

The proposed method is more suitable
for MMRS image registration.

Sedaghat
et al. [35]

Methods to improve
SIFT or Harris operator

Propose a registration method, called
Uniform Robust SIFT (UR-SIFT),
suitable for a variety of optical
multi-source remote sensing images
with illumination, rotation and up to
five times the scale difference.

In the process of descriptor merging, this
algorithm led to many other
combinations to be merged into the same
final descriptor, which greatly reduced
the registration accuracy.

Hossain
et al. [69]

Methods to improve
SIFT or Harris operator An improved symmetric SIFT method.

The descriptor merging step in
symmetric SIFT can be skipped to obtain
excellent matching accuracy.

Fan et al. [5] Methods to improve
SIFT or Harris operator

A novel spatial consensus matching
(SCM) algorithm.

Using improved SIFT and K-nearest
neighbors (KNN) to obtain an initial set
of matching features and utilized spatial
consistency constraints for refinement.

Huang
et al. [70]

Methods to improve
SIFT or Harris operator

A new algorithm for improving feature
extraction and feature matching was
introduced.

Using Harris operator, Canny operator
and shape context descriptor to match
multimodal images.

Xiang et al. [12] Methods to improve
SIFT or Harris operator

Propose a SIFT-like algorithm
(OS-SIFT), which introduce multi-scale
ratio of exponentially weighted
averages (ROEWA) and multi-scale
Sobel operators.

By calculating the consistent gradients of
SAR and optical images, it is proved that
the algorithm is robust to noise and has
excellent registration performance
and accuracy.

Aguilera
et al. [71]

Methods to improve
feature descriptor

The edge-oriented histogram (EOH)
descriptor

The descriptor contained the information
of the contour near each feature point
without using the gradient information to
describe the shape and contour of
the image.

Ye et al. [72] Methods to improve
feature descriptor

Combine Harris and LSS descriptors to
establish a piecewise linear
transformation

The impact of the low discriminability of
the LSS descriptor is reduced, and the
reliable registration of multi-spectral
remote sensing images is realized.

Sedaghat
et al. [73]

Methods to improve
feature descriptor

An advanced version of the
self-similarity descriptor, which has
high distinguishability, called
distinctive order based self similarity
(DOBSS) descriptor.

The DOBSS descriptor has better recall,
precision and positioning accuracy.

Ye et al. [74] Methods to improve
feature descriptor

Based on the internal self-similarity
of images, the author introduced a
shape descriptor of dense local
self-similarity (DLSS).

Using the internal structure information
of the image to construct the descriptor is
more suitable for multi-mode image
registration.

Xiong et al. [75] Methods to improve
feature descriptor

A rank-based local self-similarity
(RLSS) to describe the local shape of an
image in a distinguishable manner.

The rank value was used as a substitute
for the correlation value to indicate the
relative relationship of the correlation
value, which further improved
distinguishability of feature descriptors.

Cui et al. [76] Methods to improve
feature descriptor

A multi-scale phase-congruency
descriptor (MS-PC), which captured the
shape and structural characteristics of
an image.

The descriptor compensates for the
sensitivity of traditional descriptors to
radiation differences.
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Table 2. Cont.

Author Method Category Method Improvement Conclusion

Ye et al. [4] Methods to improve
feature descriptor

Combine the PC describing structural
features with the histogram of gradient
directions (HOG) as a feature
descriptor, called HOPC.

Using the structure information of the
image to construct the descriptor can
eliminate modal differences and is more
suitable for multi-mode image
registration.

Liu et al. [15] Methods to improve
feature descriptor

A maximum stable phase congruency
(MSPC), which combined affine
invariant region extraction and image
structural features.

The algorithm extracted structural
features by merging phase congruency
images in multiple orientations.
Registration was achieved according to
the correspondence of the descriptors.

Ye et al. [77] Hybrid methods

A local invariant feature that was
robust to geometric distortion and
radiation changes, which consisted of a
feature detector named MMPC-lap and
a feature descriptor named local
histogram of orientated phase
congruency (LHOPC).

This method also solved the radiation
differences caused by spectral and time
changes between MMRS images.

Fan et al. [78] Hybrid methods
An UND-Harris detector that
introduced nonlinear diffusion, feature
ratio and block strategy.

Experimental results on different SAR
and optical image pairs showed the
effectiveness of this method, which can
obtain better registration results and
improve registration accuracy.

Zeng et al. [37] Hybrid methods
An infrared-to-visible image
registration method based on
morphological gradient and C-SIFT.

The algorithm uses morphological
methods to preserve the gray-scale edges
of the image and improve the similarity
of infrared and visible images.

Li et al. [79] Hybrid methods

A radiation insensitive image
registration method based on phase
congruency (PC) and a maximum index
image (MIM), which was called
radiation variation insensitive feature
transform (RIFT).

This method realizes the insensitivity and
rotation invariance to multi-modal image
radiation changes.

Sui et al. [13] Hybrid methods

An iterative process combining line
segment extraction and line intersection
matching based online segment
extraction, and integrated Voronoi
polygons into spectral point matching
(SPM) to obtain the correspondences
between line intersections.

An iterative strategy of “re-extraction”
and “re-matching” mechanisms was
adopted to enhance feature extraction
and matching performance.

Zhao et al. [80] Hybrid methods

Using Kovesi corner point extraction
and line segment detection methods
based on phase congruency and local
direction.

Compared to other edge extraction
methods, this method extracted more
equivalent line segments.

Xu et al. [81] Hybrid methods

A new contour segment representation
method based on local histogram of
maximal edge orientation and defined
angles is proposed, and the Fréchet
distance is defined as the weighting
parameter of combined histograms to
enhance the descriptive ability.

The proposed method can effectively
reduce the impacts of radiation distortion
and is superior to some current popular
multi-source image matching methods.
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3.2.1. Methods to Improve SIFT or Harris Operator

SIFT and Harris are relatively mature and complete image registration methods.
Therefore, researchers have improved on both methods directly, considering MMRS image
registration. In [28], the authors combined the advantages of SIFT and Harris to propose
a coarse to fine MMRS image registration. First, SIFT was used to automatically find the
CPs between the images to roughly match the reference and sensed images. Then, the
affine transformation model was utilized to detect the transformation. Next, the algorithm
applied Harris detector to perform fine registration on the coarsely matched image while
processing the local deformation in the image. Then, a set of dense feature points from
the input image were found. After that, the wavelet pyramid was used to search for the
corresponding connection points of these feature points. Simultaneously, the error in
matching was eliminated by the global consistency check method. Finally, the input image
was corrected by piecewise linear transformations and the triangular irregular network
(TIN). In [35], the authors proposed a registration method, called Uniform Robust SIFT (UR-
SIFT), suitable for a variety of optical multi-source remote sensing images with illumination,
rotation and up to five times the scale difference. A symmetric SIFT [82] algorithm adapted
to multimodal invariance was widely used in MMRS image registration. However, in
the process of descriptor merging, this algorithm led to many other combinations to be
merged into the same final descriptor, which greatly reduced the registration accuracy. In
order to address the above problems, Hossain et al. [69] proposed an improved symmetric
SIFT method. The overall direction difference between the given images was estimated
by analysing the initial matching set, and the estimated value was used to rotate and
normalize the descriptor in the second step. This way of normalization has not caused area
reversal. Hence, the descriptor merging step in symmetric SIFT can be skipped to obtain
excellent matching accuracy.

Fan et al. [5] proposed a novel spatial consensus matching (SCM) algorithm, which
used improved SIFT and K-nearest neighbors (KNN) to obtain an initial set of matching
features and utilized spatial consistency constraints (the low distortion constraint was used)
for refinement. The algorithm obtained matching features by gradually adding features that
are spatially consistent with the currently obtained matching features. Finally, RANSAC
was used to estimate the transformation parameters from spatially consistent matching
features. In [70], a new algorithm for improving feature extraction and feature matching
was introduced. The Harris operator was utilized to extract the CPs of the reference image,
and the Canny operator was used to extract the edge features of the reference and sensed
images, while processed by the dilation algorithm to retain useful edge information. Finally,
the improved shape context descriptor was applied to match the image by comparing the
edge feature distribution in the defined circular template.

Xiang et al. [12] proposed a SIFT-like algorithm (OS-SIFT) in order to achieve high-
resolution optical-to-SAR image registration. Experimental results on simulated images
and multiple high-resolution satellite images showed that the algorithm was excellent in
registration performance and accuracy. Two different operators were introduced in this
algorithm, multi-scale ratio of exponentially weighted averages (ROEWA) [83] and multi-
scale Sobel, to calculate the consistent gradient of SAR and optical images to demonstrate
robustness to noise. Then, two Harris scale spaces were constructed for SAR and optical
images, and a location refinement method based on key point spatial information was
proposed. That is, key points of different scales belonging to the same corner point should
have similar structural properties, which means they were in a straight line. Finally, orienta-
tion restrictions and multiple image blocks were used to construct GLOH-like descriptors,
which contained more structural information and produced more stable registration results.
In successive research, Xiang et al. proposed a dense registration algorithm that combines
robust features and optical flow, namely OS-flow [84]. First, this algorithm extracted two
dense feature descriptors for each pixel in the optical and SAR images, i.e., the optical
GLOH descriptor and the SAR GLOH descriptor. Using dense descriptors instead of bright-
ness values can satisfy the assumption of brightness constancy. Then, the global and local
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methods were constructed. The global method estimated the flow graph by optimizing the
objective function, and the local method iteratively estimated the flow vector in the local
neighborhood. Finally, a coarse-to-fine matching strategy was adopted to handle large
displacements and improve efficiency. In [85], the authors proposed a subpixel registration
method that combined robust features and 3-D PC (phase correlation). Robust features
captured the inherent properties of two images and retained their structural information.
3-D PC used image cubes as a substitute for the two original images, which estimated
the 2-D translation by locating the peak in the spatial domain or directly in the Fourier
domain. In addition, in order to improve the accuracy of 3-D PC, a constrained energy
minimization algorithm was introduced, which was used to find the Dirac delta function
after the inverse Fourier transform, as well as fast sample consistency fitting to estimate
the phase difference after high-order singular value decomposition of the PC matrix.

3.2.2. Methods to Improve Feature Descriptor

Designing a robust and effective descriptor for MMRS images has become the most
popular improvement method nowadays. In order to avoid the lack of correlation of
gradients caused by nonlinear intensity differences, Aguilera et al. [71] proposed the edge-
oriented histogram (EOH) descriptor to merge the spatial information of the contour from
each key point without using the gradient information. The descriptor contained the
information of the contour near each feature point to describe the shape and contour of
the image. Finally, a large number of multispectral image pairs were used to evaluate the
proposed method.

Local self-similarity (LSS) [86] is a local feature descriptor that captures the internal ge-
ometric structure of the image based on a grid of log-polar coordinates, which is insensitive
to color and intensity changes. Therefore, in [72], the authors used SR-SIFT with scale limi-
tation to first detect key points, then they combined Harris and LSS descriptors to establish
a piecewise linear transformation to achieve reliable registration of multi-spectral remote
sensing images. However, the motivation for this method is to minimize the impact of the
low distinguishability of the LSS descriptor. In general, a good descriptor should be robust
and distinctive. In order to satisfy the above properties, Sedaghat et al. [73] proposed an
advanced version of the self-similarity descriptor, which has high distinguishability, called
distinctive order based self-similarity (DOBSS) descriptor. First, the UR-SIFT proposed
by the author’s previous work was used to extract a set of uniform and dense features.
Second, the authors adopted a correlation value-based direction assignment method to
construct descriptors, and at the same time utilized correlation values to group pixels
in a local area to improve the separability of the descriptors. Finally, all the log-polar
coordinate calculation descriptors were connected to form the final descriptor. Experiments
showed that the DOBSS descriptor has better recall, precision and positioning accuracy.
Based on the internal self-similarity of images, Ye et al. [74] introduced a shape descriptor
of dense local self-similarity (DLSS). First, this method selected a template window on
the image and divided the window into spatial regions, called “cells” containing pixels.
Then, it extracts and normalizes the LSS descriptor of each cell and passes through a dense
overlapping network that covers the template window. The LSS descriptors collected by
all the cells in the grid were combined to construct a DLSS. Finally, the normalized cross-
correlation of DLSS descriptors was used to define a similarity measure (called DLSC), and
a template matching strategy was utilized to detect the correspondence between images.
Based on DLSS and inspired by the Spearman’s rank correlation coefficient in statistics,
Xiong et al. [75] proposed rank-based local self-similarity (RLSS) to describe the local shape
of an image in a distinguishable manner. The rank value was used as a substitute for the
correlation value to indicate the relative relationship of the correlation value. In addition,
similar to the scheme of Ye et al., this descriptor was integrated into a dense sampling grid
to obtain a dense RLSS descriptor (DRLSS), which further improved distinguishability of
feature descriptors.
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Another popular approach is to use PC to describe the detected key points in the
frequency domain and design efficient descriptors. Cui et al. [76] proposed a multi-
scale phase-congruency descriptor (MS-PC), which captured the shape and structural
characteristics of an image to compensate for the sensitivity of traditional descriptors to
radiation differences. First, the extreme values were detected in the DOG space, the log-
Gabor wavelet was used to construct the phase congruency map, and the MS-PC feature
vector was established. Finally, the Euclidean distance was introduced as the matching
metric to obtain the final reliable matching point pair. Ye et al. [4] were inspired by medical
image processing and combined the PC describing structural features with the histogram
of gradient directions (HOG) as a feature descriptor, called HOPC. The author first detected
the CPs through the block-based Harris operator, at the same time sorted the Harris values
in each block from large to small and selected the first k points as interest points. Then,
they defined a similarity measure named according to the NCC of the HOPC descriptor
and used the fast template matching scheme to match the control points. Mismatches were
eliminated by the global constraints in the projection transformation model, and ultimately
estimated by a piecewise linear model to achieve precise registration. The authors verified
the robustness and accuracy of the proposed method on multiple sets of MMRS images.
In [15], Liu et al. proposed a method of registering infrared and visible images, namely
maximum stable phase congruency (MSPC), which combined affine invariant region
extraction and image structural features. They used moment ranking analysis to detect
feature points and extracted structural features by merging phase congruency images in
multiple orientations. After obtaining the neighborhood centered on the feature point
through the log-Gabor filter response, the maximum stable extreme value region (MSER)
was used to determine the affine invariant region of the feature point. Finally, the orientated
phase congruency was constructed from these regions to describe the structural features,
and registration was achieved according to the correspondence of the descriptors.

3.2.3. Hybrid Methods

Traditional methods are often unsatisfactory in extracting reliable matching point
pairs, so they cannot generate robust descriptors to estimate geometric transformations
accurately. Based on the feature-based registration method, researchers have improved
both feature point extraction and feature description to achieve MMRS image registration
that is more adaptable to nonlinear intensity differences.

For solving the problem of local invariant features being sensitive to the radiation
difference between multi-sensor images, Ye et al. [77] proposed a local invariant feature that
was robust to geometric distortion and radiation changes. It consisted of a feature detector
named MMPC-lap and a feature descriptor named local histogram of orientated phase
congruency (LHOPC). Inspired by Harris-Laplace, MMPC-lap combined the minimum
moment of phase congruency with LOG, used the MMPC to detect key points, and then
utilized LOG for scale location. Once a set of key points was detected, the phase congruency
magnitudes and orientations were applied to construct the descriptor according to the
spatial arrangement of DAISY [87]. In addition to adapting to geometric distortions such as
scale and rotation, this method also solved the radiation differences caused by spectral and
time changes between MMRS images. Compared to Gaussian smoothing (GS), nonlinear
diffusion [88,89] can better preserve edge features and details while suppressing noise. At
the same time, previous experiments also show that uniformly distributed Harris corners
are more reliable in the matching process. Thus, Fan et al. [78] proposed an UND-Harris
detector that introduced nonlinear diffusion, feature ratio and block strategy. Secondly,
the phase congruency structure descriptor (PCSD) was inspired by the LSS descriptor and
was built on the PC structure image of each extracted point in the form of PC sequential
grouping. Experimental results on different SAR and optical image pairs showed the
effectiveness of this method, which can obtain better registration results and improve
registration accuracy.
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The greatest challenge for the registration of infrared and visible images is the
grayscale difference between the two images, but they both retain obvious contour edges.
Therefore, morphological methods can be used to retain the grayscale edges of the image
and improve the similarity. Consequently, Zeng et al. [37] proposed an infrared-to-visible
image registration method based on morphological gradient and C-SIFT. First, the rough
edges of the image were extracted by grayscale morphology. Using structural elements
as a template, the authors retrieved the maximum (minimum) gray value of the template
size in the image to obtain the morphologically dilated (eroded) image; thereby obtaining
the gray morphological gradient image, which contained the rough edges in the image.
In C-SIFT, DOG was used to extract feature points to ensure scale invariance, and the
centroid method was used to obtain the main directions of feature points. In addition,
BRIEF feature descriptors with fast calculation speed and strong gray invariance were
introduced, and Hamming distance was utilized as a similarity measure to match feature
points. Through in-depth research on phase congruency, Li et al. [79] proposed a radiation
insensitive image registration method based on phase congruency (PC) and a maximum
index image (MIM), which was called radiation variation insensitive feature transform
(RIFT). First, the precise edge map, i.e., the PC map, was used to obtain the minimum
moment map corner features and the maximum moment map edge features, to obtain a
large number of repeatable features. Then, the algorithm employed the MIM based on the
log-Gabor convolution sequence to describe the feature and constructed multiple MIMs to
realize the rotation invariance by analyzing the internal influence of the rotation on the
MIM value. The authors verified the reliability and accuracy of RIFT in the registration
process through multiple qualitative and quantitative comparisons.

LSD [90] is a line segment detection algorithm, which can obtain high-precision line
segment detection results in a short time. The LSD line detection algorithm first calculates
the gradient size and direction of all points in the image, and then takes the adjacent points
with small gradient direction changes as a connected domain. Subsequently, according to
the rectangular degree of each domain, we need to decide whether to disconnect it to form a
plurality of domains with a larger rectangular degree. Finally, all the generated domains are
improved and filtered, and the domains that meet the conditions are retained as the final
straight line detection result. The advantage of this algorithm is that the detection speed is
fast, there is no need for parameter adjustment, and the error control method is used to
improve the accuracy of straight-line detection. Sui et al. [13] proposed an iterative process
combining line segment extraction and line intersection matching based online segment
extraction, and integrated Voronoi polygons into spectral point matching (SPM) to obtain
the correspondences between line intersections. At the same time, an iterative strategy of
“re-extraction” and “re-matching” mechanisms was adopted to enhance feature extraction
and matching performance. Zhao et al. [80] used Kovesi corner point extraction and line
segment detection methods based on phase congruency and local direction. Compared to
other edge extraction methods, this method extracted more equivalent line segments. Then,
a new multi-modal robust line segment descriptor (MRLSD) was proposed, which was
calculated by using line segment information located in a circular feature region. Based on
this, the MRLSD matching method was presented. Xu et al. [81] proposed a combination of
feature descriptors called “Angle Histogram and Maximum Edge Orientation Distribution”
(HAED). First, they used the angle and edge direction distribution to extract the image
information to generate contour segment features and capture the local and global textures
respectively. Second, similarity was calculated using the Fréchet distance metric between
the curves, which is the weight parameter of the histogram of each contour segment.
Finally, the precise bilateral matching rules were used to match the corresponding contour
segments. This method can effectively reduce the influence of radiation distortion and is
better than current popular multi-source image matching methods.
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3.3. Review of Combined Area-Based and Feature-Based Methods

Template matching and feature-based methods have their own advantages and dis-
advantages in MMRS image registration. By extracting reliable matches between two
images and finding the corresponding relationship between them, they can handle rotation,
translation, scale difference and geometric distortion. The robust similarity measure can
effectively eliminate the nonlinear radiation difference caused by multiple sensors. Based
on the above reasons, the researchers combined these two types of methods to achieve
more accurate matching. Table 3 shows a summary of the improvements on integrated
algorithms in MMRS image registration.

Table 3. Analysis of integrated method improvements.

Author Method Category Method Improvement Conclusion

Gong et al. [3]
Combined area-based
and feature-based
methods

A novel coarse-to-fine scheme for
automatic image registration.

In coarse registration (pre-registration),
the scale histogram was used to remove
the outliers detected by SIFT. Due to the
robustness of MI to noise and its
adaptability to different image intensity
values, adopted it to refine the
pre-registration results in the
multiresolution framework.

Ye et al. [72]
Combined area-based
and feature-based
methods

A local descriptor-based registration
method for multispectral remote
sensing images.

Pre-registration used SR-SIFT and
projection transformation to eliminate the
obvious rotation and scale differences
between the reference and sensed images.
Then the second stage uses LSS as a new
similarity measure.

Xiong et al. [91]
Combined area-based
and feature-based
methods

Coarse registration based on
intersections of straight lines and fine
registration based on MI from
separated patches.

Using the stable and consistent edge
information of the optical and SAR
images, the registration accuracy is
improved.

Zhang et al. [92]
Combined area-based
and feature-based
methods

Using the feature-based SAR-SIFT
algorithm to complete the coarse
registration, and then utilize the
area-based ROEWA-HOG method to
complete the fine registration.

Achieve high-precision automatic
registration of the hybrid model.

Gong et al. [3] proposed a novel coarse-to-fine scheme for automatic image registration.
In coarse registration (pre-registration), the scale histogram was used to remove the outliers
detected by SIFT. The dense clusters in the histogram were the true scale differences
between the images. Key point pairs that contribute to the cluster were considered to
be correct matches, and those far from the cluster were considered incorrect matches
and removed. Due to the robustness of MI to noise and its adaptability to different
image intensity values, the authors adopted it to refine the pre-registration results in the
multiresolution framework. Finally, the improved Marquardt–Levenberg search strategy
was developed to find the global optimum. In [72], the authors put forward a local
descriptor-based registration method for multispectral remote sensing images. In the
first stage, pre-registration used SR-SIFT and projection transformation to eliminate the
obvious rotation and scale differences between the reference and sensed images. In the
second stage, first a set of evenly distributed interest points were extracted from the
pre-registered image based on the block-Harris method. Then, through the bidirectional
matching technique, LSS was used as a new similarity measure for connection point
detection (named LSCC). Finally, the pre-registered image was corrected using a piecewise
linear model. Experimental results showed that three pairs of multispectral remote sensing
image pairs with significant nonlinear intensity differences and geometric distortions from
different sensors could achieve reliable registration accuracy.
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As mentioned earlier, the edge information is relatively stable and consistent in optical
and SAR images, and the line intersection point as a matching primitive is a great choice.
Thus, Xiong et al. [91] proposed coarse registration based on intersections of straight lines
and fine registration based on MI from separated patches. Zhang et al. [92] used optical
and SAR images as the reference image and the sensed image respectively. They first
used the feature-based SAR-SIFT algorithm to complete the coarse registration, and then
utilized the area-based ROEWA-HOG method to complete the fine registration to achieve
high-precision automatic registration of the hybrid model.

3.4. Review of Deep Learning-Based Methods

Existing methods of using deep learning to solve the MMRS image registration prob-
lem can be roughly divided into three categories. First, deep learning algorithms (such as
CNN and GAN) are integrated into the existing MMRS image registration method to gen-
erate high-level and deep features. Second, generating an end-to-end network framework
based on a Siamese network for MMRS image registration, and third, using deep learning
to eliminate the difference between modalities, and then combining traditional methods for
image registration. Table 4 summarizes improvements on deep learning-based algorithms
for MMRS image registration.

Table 4. Analysis of deep learning-based method improvements.

Author Method Category Method Improvement Conclusion

Ye et al. [93]
Methods to improve
CNN and GAN
algorithms

Using CNN to extract the middle and
high-level features of an image and
combined them with the low-level
features extracted by SIFT.

Features of CNN and SIFT were
incorporated into the PSO-SIFT
algorithm for registration.

Ma et al. [94]
Methods to improve
CNN and GAN
algorithms

Using VGG-16 to approximate spatial
relationships and proposed a new point
matching strategy based on spatial
relationships and combined the local
feature-based methods.

Due to the powerful feature extraction
capabilities of CNN and the
consideration of spatial relationships, the
matching results are robust and accurate.

Yang et al. [95]
Methods to improve
CNN and GAN
algorithms

Adopting a pre-trained VGG network to
generate multi-scale descriptors through
high-level convolution information
features.

Optimize the registration details by
increasing the number of feature points.

Quan et al. [96]
Methods to improve
CNN and GAN
algorithms

Applying GAN for MMRS images data
augmentation, which could immensely
enhance the accuracy and robust of
registration process.

A dual-channel deep network and
CNN can save the spatial information
of the image.

Merkle et al. [97]
Methods to improve
CNN and GAN
algorithms

A GAN-based method for dealing with
optical and SAR image registration.

The generator in GAN accurately and
reliably retained the geometric structure
of the optical image, opening up new
possibilities for MMRS.

Hughes et al. [98] Methods to improve
Siamese network

A specific pseudo-Siamese network to
register the optical and SAR images.

The two convolutional streams of this
network are identical and independent,
and there is no parameter sharing to
process the different intensity
information of the two images.

Zhang et al. [99] Methods to improve
Siamese network

A fully convolutional Siamese network,
which used an end-to-end training
process. It built a general framework for
MMRS image registration based on
depth features.

Sharing parameters between the two
branches to solve the problem of lack of
data sets.
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Table 4. Cont.

Author Method Category Method Improvement Conclusion

Merkle
et al. [100]

Methods to improve
Siamese network

By training the Siamese network to learn
the spatial transformation between
optical and SAR images.

The effectiveness of this approach for the
generation of reliable and robust
matching points between optical and
SAR images had been demonstrated by
experiment.

He et al. [101] Methods to improve
Siamese network

A novel multi-scale remote sensing
image registration deep network, which
includes the following three steps: corner
detection based on s-Harris, a search
strategy based on Gaussian pyramid
coupled quadtree. Finally, global to local
quadratic polynomial constraints and
RANSAC were utilized to remove
mismatches.

This algorithm can realize the scale
comparison of multi-scale conjugate
patches, make the matching evenly
distributed, and obtain satisfactory
matching accuracy. The most important
thing is to avoid the influence of complex
background changes on the
registration results.

Zhang et al. [102] Others Extending the image visual attribute
transfer method to pre-process an image.

Eliminate the intensity differences
between the multi-modal image pairs,
and make the color, texture and other
characteristics consistent in a similar
structural area.

Wang et al. [103] Others

A remote sensing image registration
framework based on deep learning,
which directly learns the mapping
function between image patch pairs and
their matching labels through closed-loop
information.

A self-learning method was introduced
to avoid a few image data and can learn
the mapping function from itself without
relying on other data. At the same time,
the application of transfer learning
further improves the registration
accuracy and reduces training costs.

Zampieri
et al. [104] Others Designing a neural network with a

specific scale to learn image features.
Complete the alignment between remote
sensing images and maps

3.4.1. Methods to Improve CNN and GAN Algorithms

Ye et al. [93] used CNN to extract the middle and high-level features of an image
and combined them with the low-level features extracted by SIFT. Since the PSO-SIFT
algorithm achieved advanced performance in remote sensing image registration, features
of CNN and SIFT were incorporated into the PSO-SIFT algorithm for registration. Visual
Geometry Group (VGG) is a commonly used high-level image feature extraction network.
Ma et al. [94] used VGG-16 to approximate spatial relationships and proposed a new
point matching strategy based on spatial relationships and combined the local feature-
based methods. Due to the powerful feature extraction capability of CNN, the traditional
matching method is stable and effective. Considering the spatial relationship, the matching
result is more robust and accurate. In [95], the authors adopted a pre-trained VGG network
to generate multi-scale descriptors through high-level convolution information features
and utilized the gradually expanding dynamic inlier selection to optimize the registration
details by increasing the number of feature points.

Quan et al. [96] applied GAN for MMRS images data augmentation, which could
immensely enhance the accuracy and robust of registration process. The author used
a dual-channel deep network as a matching network, which helped to extract different
features of optical and SAR images. CNN was introduced as a feature extractor to save
the spatial information of the image. Through multiple constraints, such as associative
constraints and geometric constraints to delete incorrect matching points. Experimental
results showed that this method was superior to traditional methods and had a great
registration performance for optical and SAR images. Merkle et al. [97] proposed a GAN-
based method for dealing with optical and SAR image registration. First, a pseudo-SAR
image was generated from the optical image by training a GAN-based network, so that
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the two images had similar intensity information. Subsequently, the area-based method
and the feature-based method were introduced to match the pseudo-SAR with the real
SAR image. The experimental results validated the necessity of this method, especially the
generator in GAN. It accurately and reliably retained the geometric structure of the optical
image, opening up new possibilities for MMRS.

3.4.2. Methods to Improve Siamese Network

The methods of using deep learning to solve MMRS image registration problems are
mostly based on Siamese networks. These methods are usually trained to learn the features
and differences between multi-modal image pairs. It is then used to measure the similarity
between these image pairs.

Hughes et al. [98] produced a specific pseudo-Siamese network to register the op-
tical and SAR images. The two convolutional streams of this network are identical and
independent, and there is no parameter sharing to process the different intensity infor-
mation of the two images. Finally, the fully connected layer is used to fuse the different
features learned by the two branches. While Zhang et al. [99] shared parameters between
the two branches to solve the problem of lack of data sets. The author proposed a fully
convolutional Siamese network, which used an end-to-end training process. It built a
general framework for MMRS image registration based on depth features, which used
the image block selected by the Harris detector to input the network, and finally obtained
the similarity between the sub-image and the remote sensing image. Merkle et al. [100]
trained the Siamese network to learn the spatial transformation between optical and SAR
images. First, the features of the two images were extracted through CNN, and then the
dot product layer [105] was produced to measure the similarity. The point with the highest
final response value was regarded as the matching point. The effectiveness of this approach
for the generation of reliable and robust matching points between optical and SAR images
had been demonstrated by experiment. He et al. [101] proposed a novel multi-scale remote
sensing image registration deep network, which includes the following three steps: corner
detection based on s-Harris, a search strategy based on Gaussian pyramid coupled quadtree
to narrow the search space and realize multi-scale comparison of conjugate patches. Finally,
global to local quadratic polynomial constraints and RANSAC were utilized to remove
mismatches. The visualization results showed that this method can make the matching
evenly distributed and obtain satisfacting matching accuracy. The most important thing
was to avoid the influence of complex background changes on the registration results.

3.4.3. Others

In [102], the authors extended the image visual attribute transfer method to pre-process
an image in order to eliminate the intensity differences between the multi-modal image
pairs, and make the color, texture and other characteristics consistent in a similar struc-
tural area. Then, it used traditional local feature-based algorithms for image registration.
Wang et al. [103] proposed a remote sensing image registration framework based on deep
learning, which directly learns the mapping function between image patch pairs and their
matching labels through closed-loop information. A self-learning method was introduced
to avoid a few image data and can learn the mapping function from itself without relying
on other data. At the same time, the application of transfer learning further improves
the registration accuracy and reduces training costs. Zampieri et al. [104] completed the
alignment between remote sensing images and maps by designing a neural network with a
specific scale to learn image features.

3.5. Multi-Modal Image Registration Methods in Other Fields

In other related fields, image processing methods such as photogrammetry, medical
imaging, and computer vision have their characteristics and innovations. Some cutting-
edge image processing methods will help researchers achieve new breakthroughs. Table 5
summarizes image registration algorithms in other fields.
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Table 5. Analysis of image registration algorithms in other fields.

Author Method Category Method Improvement Conclusion

Tombari
et al. [106]

Multimodal
registration of
photogrammetric
images

The local maximum feature of the
Contextual Self-dissimilarity (CSD)
operator is detected through the
non-maximum suppression (NMS) stage,
which is called the Maximal
Self-Dissimilarity interest point
detector (MSD).

MSD is taking the lead for
photogrammetric based multimodal
registration.

Sedghi et al. [107]
Multimodal
registration of
medical images

Building a five-layer neural network to
learn a similarity metric that can measure
the level of registration and using Powell’s
method to optimize the learned metric in
an iterative manner.

The results demonstrate the feasibility
of learning a useful deep metric from
substantially misaligned training data,
and results are significantly better than
from Mutual Information.

Wang et al. [108]
Multimodal
registration of
medical images

A content-adaptive weakly-supervised
deep learning framework is constructed for
multi-modal retinal image registration. The
framework is composed of three neural
networks for blood vessel segmentation,
feature detection and description, and
outlier elimination.

This method is superior to other
learning-based methods, achieved the
highest success rate and Dice
coefficient, and has significant
robustness in poor quality images.

Huang
et al. [109]

Multimodal
registration of
medical images

An end-to-end network architecture
composed of affine transformation and
deformable transformation is proposed.

Double consistency constraints and a
new loss function based on prior
knowledge have been developed to
achieve accurate and efficient
multi-contrast MR image registration.

Jhan et al. [110]

Multimodal
registration of
computer vision
images

A new N-SURF matching method for
multi-spectral camera (MSCs) image
registration and a general tool for image
registration of various MSCs.

This method has good accuracy and
can obtain more the number of correct
matches (CMs) that are evenly
distributed, which has the advantages
of accuracy and efficiency.

Zhou et al. [111]

Multimodal
registration of
computer vision
images

A potential generation model for
cross-weather image alignment based on
intensity constancy and image manifold
characteristics.

Experimental results demonstrate that
this approach can significantly
outperform the state-of-the-art
methods.

Maximal Self-dissimilarity (MSD) [106] is taking the lead for photogrammetric based
multimodal registration. The features detected through the Non-Maxima Suppression
(NMS) stage are local maxima of the Contextual Self-dissimilarity (CSD) operator, herein
the detector will be referred to as Maximal Self-Dissimilarity interest point detector (MSD).

In the field of medical image processing, multi-modal image registration is more
mature and advanced. Its main methods can also be divided into similarity measurement
problems, which are intensity-based, and control point pair extraction based on features.
Using deep learning strategies to solve the above problems has become a new trend. In
terms of learning similarity measures, Sedghi et al. [107] built a five-layer neural network
to learn a similarity metric that can measure the level of registration to estimate the
model parameters in the matching of 3D-US and MR abdominal scans. Then, Powell’s
method is used to optimize the learned metric in an iterative manner. Wang et al. [108]
constructed a content-adaptive weakly supervised deep learning framework for multi-
modal retinal image registration, which is composed of three neural networks for blood
vessel segmentation, feature detection and description, and outlier elimination. This
method is superior to other learning-based methods, achieved the highest success rate and
Dice coefficient, and has significant robustness for poor quality images. Huang et al. [109]
proposed a novel unsupervised learning-based framework. This is an end-to-end network
architecture composed of affine and deformable transformations. In addition, double
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consistency constraints and a new loss function based on prior knowledge have been
developed to achieve accurate and efficient multi-contrast MR image registration.

For cross-spectral image matching in computer vision, Jhan et al. [110] proposed
a new N-SURF matching method for multi-spectral camera (MSCs) image registration.
This method has good accuracy and can obtain more correct matches (CMs) that are
evenly distributed. Based on the N-SURF and EPT models, the authors developed a
general tool for image registration of various MSCs, which can quickly and accurately
co-register a large number of MS images, has the advantages of accuracy and efficiency,
and does not require prior knowledge on sensor calibration. For cross-temporal image
matching, Zhou et al. [111] were inspired by the GAN method and proposed a potential
generation model for cross-weather image alignment. Based on intensity constancy and
image manifold characteristics, this method describes the image registration task as a
constrained deformation flow estimation problem with a potential encoding process.

4. Experiments

In this section, we select 8 representative methods and 2 assessment metrics to conduct
experiments, which can provide an objective performance reference for different MMRS
image registration methods and hence support relative engineering with credible evidence.
The experiments are conducted on a computer with 2.5 GHz Intel Core CPU, 16 GB memory,
and MATLAB codes. The codes of the 8 representative image registration methods are all
publicly available.

We test the 8 representative methods on the 6 MMRS image pairs from CoFSM (CoFSM:
https://skyearth.org/publication/project/CoFSM/ (accessed on 10 December 2021)),
which consist of modality pairs, namely, depth-optical, optical-optical (cross-temporal),
infrared-optical, map-optical, day-night and SAR-optical. The six pairs of original images
selected in the database are shown in Figure 5.

Figure 5. Selected original image pairs from the database, which covers six multi-modal pairs in the field of remote sensing.

Figure 6 shows the performances of 8 methods on six pairs of MMRS images. It is easy
to find that the traditional single-mode image registration algorithm is inferior to some
recently popular improved algorithms in terms of registration performance. SIFT [33,34],
SAR-SIFT [112] and PSO-SIFT (SIFT, SAR-SIFT and PSO-SOFT available at https://github.
com/ZeLianWen/Image-Registration (accessed on 10 December 2021)) [113] are all based
on the image gradient to extract features and construct feature descriptors, which are
very sensitive to the strong radiation difference of MMRS images. The core idea of
SURF (Available at https://www.mathworks.com/matlabcentral/fileexchange/28300-
opensurf-including-image-warp/?ivk_sa=1024320u (accessed on 10 December 2021)) [38]

https://skyearth.org/publication/project/CoFSM/
https://github.com/ZeLianWen/Image-Registration
https://github.com/ZeLianWen/Image-Registration
https://www.mathworks.com/matlabcentral/fileexchange/28300-opensurf-including-image-warp/?ivk_sa=1024320u
https://www.mathworks.com/matlabcentral/fileexchange/28300-opensurf-including-image-warp/?ivk_sa=1024320u
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is similar to SIFT, which is an accelerated version of the SIFT algorithm, and the registra-
tion performance is also not good enough. In contrast, HOPC [4], CFOG (Available at
https://github.com/yeyuanxin110/CFOG (accessed on 10 December 2021)) [63], RIFT [79]
(Available at http://www.escience.cn/people/lijiayuan/index.html (accessed on 10 De-
cember 2021)) and RIFT-LAF [114] (Available at https://github.com/StaRainJ/LAF (ac-
cessed on 10 December 2021)) methods, which lead the development of MMRS image
registration, show better registration performance.
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Figure 6. The matching results of 8 methods on typical multi-modal image pairs in the remote sensing research field. (No
matching result indicates that the method is not applicable to this multi-modal image pair).

In addition, we select two frequently used assessment metrics, namely the correct
match ratio (CMR) and root mean square error (RMSE), to evaluate the performances of
the different MMRS image registration methods. Tables 6–8 report the results of the two
metrics and run times using the 8 representative methods on the 6 image pairs. In each
table, we use ‘/’ to indicate that this method cannot be applicable to multimodal image
pairs, so there is no data information.

https://github.com/yeyuanxin110/CFOG
https://github.com/yeyuanxin110/CFOG
http://www.escience.cn/people/lijiayuan/index.html
https://github.com/StaRainJ/LAF
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Table 6. CMR at different MMRS image pairs.

Method
Image Pairs

Depth-Opti. Opti-Opti. IR-Opti. Map-Opti. Night-Day SAR-Opti.

SIFT 7/122 15/83 6/103 35/146 6/37 /

SURF 42/830 81/1025 23/943 65/375 / 20/1297

SAR-SIFT 4/43 25/127 / / 4/20 /

PSO-SIFT 4/137 12/113 7/64 16/124 5/49 /

RIFT 258/1152 285/956 319/800 554/1351 238/958 596/1520

RIFT-LAF 607/1152 496/956 283/800 410/1351 387/958 897/1520

HOPC 89/219 8/186 128/230 174/498 153/202 286/328

CFOG 98/258 213/956 135/319 193/554 168/238 303/596

Table 7. RMSE or Precision at different MMRS image pairs.

Method
Image Pairs

Depth-Opti. Opti-Opti. IR-Opti. Map-Opti. Night-Day SAR-Opti.

SIFT 0.44 0.52 0.49 0.58 0.22 /

SURF 0.34 0.14 0.24 0.20 / 0.21

SAR-SIFT 0.12 0.62 / / 0.06 /

PSO-SIFT 0.35 0.64 0.55 0.56 0.63 /

RIFT 0.64 0.63 0.64 0.70 0.68 0.66

RIFT-LAF 0.30 0.36 0.53 0.59 0.38 0.40

HOPC / / / / / /

CFOG / / / / / /

Table 8. Operation times at different MMRS image pairs.

Method
Image Pairs

Depth-Opti. Opti-Opti. IR-Opti. Map-Opti. Night-Day SAR-Opti.

SIFT 13.69 14.04 8.39 12.90 11.44 /

SURF 2.69 2.24 2.15 1.69 / 2.55

SAR-SIFT 15.02 12.59 / / 11.66 /

PSO-SIFT 12.91 12.86 9.17 10.28 9.34 /

RIFT 10.93 9,31 8.32 13.04 9.63 11.03

RIFT-LAF 11.04 9.41 8.65 13.25 9.87 11.31

HOPC 61.65 61.50 40.24 55.60 62.69 62.99

CFOG 10.93 4.29 1.30 3.95 2.73 2.47

From the results, we can see that the performance of classic descriptors (SIFT, SURF, etc.)
is not perfect for most multimodal image pairs, and the number of CM of these methods
is significantly less than the improved algorithm based on multimodality. Especially for
SAR-optical image pairs, due to the significant non-linear intensity difference between the
two modalities and the presence of SAR image speckle noise, both have a great impact
on the registration results of the classic method. In our experiments, both RIFT and
RIFT-based LAF matching algorithms have shown satisfactory performance. However, it
should be noted that the RIFT algorithm used in the experiment does not consider rotation
invariance. First, it needs to be unified with the geographic registration technology used
by other methods. Second, when the rotation invariance is considered in the model, the
computation time is very long. The HOPC algorithm based on structural similarity achieves
good performance on multi-modal image pairs, but it performs poorly on cross-temporal
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(optical-optical) image pairs. As a multi-modal image template matching framework,
CFOG has excellent performance in matching performance and computational efficiency.

5. Challenges and Future Directions

Through the review of the most cutting-edge MMRS image registration method in
the previous section, current research has largely solved the nonlinear radiation distortion
caused by modal differences and the geometric distortions caused by various factors.
However, there are still several issues that need further consideration:

1. There is insufficient data for different modal conditions in the field of remote sensing,
and there is no complete and comprehensive database containing all types of MMRS
image pairs. Therefore, for deep learning methods that are developing rapidly and
showing great progress, most of the work uses this technology for feature detection
and feature description. The lack of training and test data greatly limits its application
in MMRS image registration.

2. With the development of remote sensing technology, images from different sensors
will have higher resolution. The details within high-resolution images are complex,
the amount of data is large, and the local geometric deformation caused by the
undulation of the terrain cannot be ignored. This results in a significant challenge for
image registration.

3. By comparing existing methods on MMRS image registration, we found that there
are many registration strategies for optical-to-SAR and infrared-to-visible. However,
learning-based methods can only learn the characteristics and differences between spe-
cific multi-modal image pairs. In the future, how to fuse and learn the data between
multi-modalities should become the focus. For example, rather than eliminating the
modal difference between two images, the registration method should be suitable for
remote sensing images with multiple modalities.

4. Area-based methods still face the impact of overlapping block regions and low com-
putational efficiency on the registration performance, whereas feature-based methods
face the challenge of nonlinear intensity differences.

In future research, equipping the MMRS image database and improving the registra-
tion performance through deep learning will become more mainstream. Of course, the
improvement and fusion of traditional methods can also further improve the registration
accuracy, and better integrate image registration into other imaging applications. Further-
more, future research trends will focus on such as solving the problem of multi-modal
image pair registration at the same time through data fusion and so on. As for multi-modal
high-resolution remote sensing images, how to improve the registration accuracy under
significant geometric deformation and global radiation difference will be a tough challenge.

6. Conclusions

In recent years, MMRS image registration has attracted widespread attention given
its important imaging applications, such as image fusion and target recognition [115].
Thus, this article comprehensively investigates existing MMRS image registration methods,
which can be divided into three categories: area-based, feature-based and deep learning-
based. Through a brief introduction to the major methods and theoretical frameworks,
this paper provides a basis for further research to improve the performance of MMRS
image registration. The latest research results are classified according to image registration
methods, providing future research ideas for people in related fields. In addition, we
use 8 representative methods to perform experimental evaluation on 6 common multi-
modal remote sensing image pairs, and visually demonstrate the performance of different
methods for MMRS image registration.
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