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Abstract: In this paper, we demonstrate the estimation capabilities of landslide reactivation based on
various SAR (Synthetic Aperture Radar) methods: Cloude-Pottier decomposition of Sentinel-1 dual
polarimetry data, MT-InSAR (Multi-temporal Interferometric Synthetic Aperture Radar) techniques,
and cloud computing of backscattering time series. The object of the study is the landslide in the east
of Russia that took place on 11 December 2018 on the Bureya River. H-α-A polarimetric decomposition
of C-band radar images not detected significant transformations of scattering mechanisms for the
surface of the rupture, whereas L-band radar data show changes in scattering mechanisms before and
after the main landslide. The assessment of ground displacements along the surface of the rupture in
the 2019–2021 snowless periods was carried out using MT-InSAR methods. These displacements were
40 mm/year along the line of sight. The SBAS-InSAR results have allowed us to reveal displacements
of great area in 2020 and 2021 snowless periods that were 30–40 mm/year along the line-of-sight. In
general, the results obtained by MT-InSAR methods showed, on the one hand, the continuation of
displacements along the surface of the rupture and on the other hand, some stabilization of the rate
of landslide processes.

Keywords: remote sensing; multitemporal monitoring; SAR backscattering; polarimetric decomposition;
Small baseline subsets (SBAS); Persistent Scatterer Interferometry (PSI); landslide; displacement

1. Introduction

Earth surface remote sensing methods and technologies, as well as ways to access these
data, are being intensively developed now [1,2]. Study and monitoring of catastrophic
natural processes are among the most relevant applications of these methods. These
methods are successfully applied, for example, for the monitoring of seismically hazardous
areas to identify earthquake precursors by analyzing anomalous variations in ionospheric
parameters [3], recorded, including by signals from satellite navigation systems [4,5], by
analyzing changes in lineament systems revealed during satellite images processing [6]
and variations in thermal fields [7], etc. The efficiency of dangerous phenomena forecasting
increases greatly when integrating satellite data analysis results with the approaches based,
for example, on the application of geomechanical models [8,9] or seismic entropy [10]
methods, etc. Remote sensing data are also applied to monitor wildfires [11,12] and their
consequences [13], typhoons [14], and other natural disasters.

To register anomalous natural processes, it is promising to use radar remote sensing
methods. The main advantage of such methods is their all-day, all-weather capabilities of
imaging. Radar interferometry and polarimetry methods using synthetic aperture radar
(SAR) data are now important tools for displacement estimation and change detection
of the earth’s surface structure due to various natural reasons. Publicly available data of
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the Sentinel missions and cloud platforms provide for prompt data acquisition and fast
processing [1,2].

SAR interferometry methods [15] as a tool for detection of small-scale displacements
of the earth’s surface have been long and successfully applied for remote sensing of the
Earth. Among the numerous examples of the application of radar interferometry methods,
we can mention the monitoring of cryogenic processes in permafrost and seasonally frozen
soils [16], land subsidence due to anthropogenic activities [17,18], etc. Many efforts are
dedicated to landslide detection and mapping [19–22], monitoring and modeling [23–27],
hazard and risk assessment [28], deformation rate variation detection [29], and season
trends [30].

Using SAR interferometry methods to control ground movements is one of the main
components of early warning systems applied to landslides. Activation of landslide pro-
cesses and landslide failure can be detected several days or weeks before the event [31,32].
A number of works have shown that Sentinel-1 satellites can be used for continuous and
systematic tracking of ground deformation phenomena on a regional scale [33], as well as
for predicting slope failures [34].

Differential SAR interferometry (DInSAR) is an effective and widely used instrument
for detecting changes in the state of the earth’s surface. The phases difference measurement
between two complex radar observations of the same area, taken from slightly different
sensor positions is a basic principle of the DInSAR technique [35–37]. The evolution of the
DInSAR methodology are algorithms that use time series of observations, based on such
methods as Persistent Scatterer Interferometry (PSI) and Small baseline subsets (SBAS-
InSAR [38–41]. Being capable to analyze multiple interferograms, the MT-InSAR methods
allow us to essentially decrease limiting effects of such phenomena as random atmospheric
inhomogeneity and SAR backscattering decorrelation.

Apart from radar interferometry ones, polarimetry methods are used for landslide
studies, e.g., [42–46]. These methods are based on radar backscattering decompositions
with various polarization states through the transform of scattering or coherence matri-
ces [47–49].

The methods of radar interferometry and polarimetry were used also when studying
landslides in Russia [22], including those on the Bureya River [50–53] and near the city of
Sochi [54,55].

It should be noted, that the climatic changes that take place may lead to increasing
landslide events, including those in areas where active permafrost is present. Thus, there is
a need for regular monitoring of such phenomena and the development of remote sensing
methods based on available satellite data.

The aim of this work is the capabilities estimation of combined application of incoher-
ent analysis of multitemporal series of C-band radar data based on cloud computations,
Cloude–Pottier polarimetric decomposition and state-of-the-art MT-InSAR methods to
detect ground displacements for the case study of the Bureya River landslide. One of
the main tasks of the study is the development of a method for assessing deformations
using SAR data available to most researchers: Sentinel-1 and ALOS-1/2 PALSAR-1/2 radar
scattering intensity images on various cloud computing platforms, including Google Earth
Engine, as well as time series of Sentinel-1 interferometric and polarimetric data.

2. Materials and Methods
2.1. Study Area

The object of the study is a large landslide that occurred on 11 December 2018 in the
Far East of Russia (Khabarovsk Krai) on the left bank of the Bureya River from the slope
opposite the mouth of its right tributary, the Sredny Sandar River. The location of the
Bureya landslide (50◦34′ N, 131◦29′ E) is given in Figure 1. The peculiarities of the Bureya
landslide are its occurrence in winter at a temperature of about –30 ◦C and the formation of
a water-ice tsunami. The wave of that tsunami spread along the waterways of the Bureya
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and Sredny Sandar rivers for several kilometers, destroying the coastal forest on its way.
Most of the sliding masses filled the Bureya River.
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Figure 1. The location of the Bureya River landslide.

Although the area where the Bureya landslide occurred is hard-to-reach and uninhab-
ited (the distance to the nearest settlement is about 70 km), the event caused a massive
public response. The landslide massif completely blocked the Bureya River, which in fact
has been the Bureyskoe Reservoir since 2009. The river is the main source for energy
production by large Bureyskaya Hydropower Station, located 80 km downstream. The
landslide also created a risk of flooding upstream settlements. Thus, blasting operations
for water channels were carried out, in January–February 2019. Then the channel was
expanded naturally by spring floods and the gradual erosion by the river current.

The geological and geographical analysis of the landslide, assessment of its character-
istics, possible mechanisms of its formation and slope failure were carried out in [56–58]
based on in-situ studies. The total volume of displaced rocks at all formation stages was
estimated at 25 million m3. The Bureya landslide created a 50–70 m high and up to 550 m
wide dam on the river. According to the classification [59], it can be referred to as the
type “fall”.

Landslides quite often take place where they have already occurred, as a result of
reactivation [60]. In June 2019, during an expedition to the Bureya landslide, it was
discovered that the main scarp and the landslide body underwent a transformation due to
the activity of various exogenous processes [56]. Activation of those processes is probably
due to the thawing of permafrost. During the expedition in July 2020, organized by the
Russian Geographical Society, a geological and geomorphological survey of the landslide
area was carried out [61]. The survey showed that various exogenous processes carried
on within the landslide circus and its vicinities. During the period of fieldwork in the
western section of the landslide scarp, repeated collapses of large blocks of rock in the
form of rockfalls were noted, especially after intense rainfalls. The intensive development
of erosion processes within the landslide circus with the formation of ravines up to five
meters deep was also revealed.

Figure 2 shows two photos of the landslide zone taken on 25 December 2019 [56] and
in June 2019 [62] after the channel creation as a result of blasting and flood erosion.
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Figure 2. The landslide: (a) 25 December 2019 [56], (b) June 2019 [62].

The Bureya River crosses the relatively low mountains of the Bureya area [57]. The
absolute elevations of the adjoining dome–shaped watershed heights reach 600–640 m. The
cross-section of the Bureya River valley, which had, before the creation of the reservoir,
an elevation (at the site of the landslide formation) of 187 m above sea level, within the
territory of interest is characterized by a trapezoidal shape with a steep left southern slope
and a gentler right northern side. The full Bureyskoe Reservoir level is 256 m above sea
level. The reservoir level on 11 December 2018 was 253 m. Because the landslide mass
fell into the reservoir, this led to up to a 60 m high overwash, which completely destroyed
the taiga on the opposite bank of the river valley in a strip of up to 550 m. The overwash
extended to 3.6 km up the Sredny Sandar River valley, located opposite the slope failure
zone, destroying the taiga in a strip up to 300 m wide. Upstream of the Bureya River, the
overwash is traced at a distance of 7 km, and downstream—at a distance of 4 km, which
is consistent with the north–north–east direction of the displacement of sliding masses,
oriented more upstream [57].

Figure 3 presents 1 m–resolution panchromatic images (0.62–0.79 µm spectral band)
taken by Geoton-L1 optical sensor aboard the Russian Resurs-P No. 2 satellite on 2 May
2019 and 25 September 2019. These images demonstrate the erosion of the channel created
through blasting during the time between these two images, as well as the clearing of the
ice cover and the erosion of the channel in the Sredny Sandar River. The difference in width
in the narrow part of the cleared channel of the Bureya River exceeds 100 m.

As we can see from Figure 3, the size of a hollow after the landslide is in the plane of
the horizon along the sliding line 600–700 m (length), and 400–500 m across.

Hence, it seems relevant to study the zone of the Bureya landslide from the point of
view of its possible relapse.
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Figure 3. Landslide panchromatic images taken by Geoton-L1 optic sensor aboard the Resurs-P No. 2 satellite: (a) 2 May
2019, (b) 25 September 2019.

2.2. Data and Methods

The Google Earth Engine platform [63] was used for the analysis of Sentinel-1B C-band
backscattering variations. The radar acquired images at a descending orbit with a heading
angle of 192◦ and an incidence angle of 36.4◦.

As mentioned above, PSI and SBAS-InSAR methods, based on time series processing
of radar images, are widely used to study landslides using SAR [64–68]. Methods based
on the analysis of interferometric coherence [22] and polarimetry [47–49] are also used.
However, unfortunately, the use of full polarimetric analysis is currently inaccessible due
to the lack of data obtained from fully polarimetric radars [22]. Thus, because of the
limited data set, an analysis of the consequences of the landslide was undertaken using
various methods:

• Analyzing the results of cloud computing of backscattering time series allowing for
sensing geometry and relief features;

• Cloude–Pottier decomposition of Sentinel-1 dual polarimetry data;
• PSI and SBAS-InSAR with Sentinel-1 data.

MT-InSAR (PSI and SBAS) methods and Cloude–Pottier polarimetric decomposition
are used to analyze Sentinel-1B dual (VV and VH) polarimetry data. Open access im-
ages [69] were obtained in the IW interferometric mode, with a swath of 250 km at a spatial
resolution of 5 m × 14 m. In order to eliminate the effect of snow cover on interfero-
metric measurements, we used images obtained during a snowless period from May to
mid-October. Polarimetric and interferometric data were processed using the SARScape
software package.

Let us present a brief overview of polarimetric [47–49] and interferometric [35–41]
methods. Polarimetric measurements are available from polarimetric radars which transmit
both vertically (V) and horizontally (H) polarized waves and receive co-polarized (VV and
HH) and cross-polarized (VH and HV) backscattered fields. The result can be summarized
in a matrix:

[S] =
[

SHH SHV
SVH SVV

]
,

which is referred to as the scattering matrix or Sinclair matrix. The elements of this matrix
are the complex scattering amplitudes, which describe the polarization states of a radar
backscattering. Note, that the first subscript of the elements refers to the polarization of the
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scattered wave while the second subscript refers to the polarization of the incident wave.
The basis of polarimetry is the dependence of the polarization state of a radar signal on the
physical mechanism of backscattering. Various scattering matrix transformations allow
us to reveal these mechanisms and, thereby, to identify different earth’s cover types that
appear in radar image data. SAR can also operate in dual polarization (dual-pol) mode, for
example, Sentinel-1A/B. It employs a single polarization transmission (V) and dual (V and
H) coherent reception. The dual-pol mode provides two complex scattering amplitudes,
SVV and SVH:

[S] =
[

SVV
SVH

]
The Freeman–Durden and Cloude–Pottier decompositions are most widely used for

polarimetric analysis. The polarimetric decomposition methods divide the backscattered
field into a sum of several basic components with different scattering mechanisms. In
the Freeman–Durden decomposition [47], a covariance matrix is represented as a con-
tribution of three scattering mechanisms, i.e., surface (single bounce) scattering, double
bounce dihedral scattering, and volume scattering. This decomposition refers to incoherent
decomposition, which uses coherency or covariance matrices. The Cloude–Pottier (en-
tropy/alpha/anisotropy) decomposition [48] is an eigenvalue/eigenvector decomposition,
where entropy (H), anisotropy (A), and alpha angle (α) parameters are introduced. Entropy
is a measure of the randomness of scattering. Anisotropy can be defined as a normalized
difference between the appearance probabilities of scattering components. The parameter
α is an indicator of a type of scattering. Using the Cloude–Pottier decomposition in the
H-α plane, one can determine nine scattering mechanisms. A dual-polarized version of the
entropy/alpha decomposition method is developed by Cloude in [49].

Satellite radar interferometry (InSAR) is a powerful remote sensing technique able to
measure surface deformations and displacements with millimeter accuracy.

Classical differential radar interferometry (DInSAR) is based on measurements of
phase differences (interferograms) of signals that are proportional to the difference in the
distances from the satellite to the earth’s surface from close points of two orbits of successive
satellite radar flights [15,35–37]. The main DInSAR limitation is the lack of coherence
between images obtained when sensing from quite separated orbits (spatial decorrelation),
or in the case of significant changes in the time between surveys (temporal decorrelation).

The development of the DInSAR method is the persistent scatterer method [38] and
the small baseline subset method [39], based on the analysis of multi-temporal series of
images and combined with their modifications under the general name of Multi-temporal
InSAR (MT-InSAR). The Persistent Scatterer Interferometry (PSI) method allows us to
calculate the time behavior of point persistent scatterers with a quite intensive and stable
reflected signal. A multitude of interferometric phase relationships is calculated for these
discrete scatterers with respect to one reference image. These phase relationships allow
us to evaluate deformation magnitude and velocity at certain time intervals. The Small
BAseline Subset (SBAS) approach involves the use of a series of data with small spatial (less
than a threshold value) baselines, at the time of surveys, and short time intervals between
surveys. Deformations for distributed objects (set of pixels) can be assessed at relatively
small coherence values than for PSI.

An application of radar data time-series to generate multiple interferograms allows
us to more accurately (compared to DInSAR) evaluate the deformations with help from
discrete persistent scatterers (PS) or distributed scatterers (SBAS). The processing and anal-
ysis of dozens of interferograms can significantly reduce the influence of the atmosphere,
inaccuracies in the reference digital elevation model (DEM), and orbital errors.

Geometric Parameters

Results of radar sensing depend on survey geometry and object geometry. Radar
interferometry allows us to measure only one-dimensional vLOS velocities of an object along
the line of sight (LOS), i.e., satellite side-looking direction that is orthogonal to the satellite’s
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flight. In fact, the landslide velocity is a vector and consists of the eastern vE, northern vN ,
and vertical vZ components. The projections of these vectors in the LOS direction depend
on the satellite geometry shown in Figure 4. In this figure θ is the incidence angle (the angle
between the vertical direction and the radar LOS); r̂ is the LOS unit vector pointing from
the ground to the radar; α is the angle between the satellite heading and north direction; ϕ
is the slope angle; γ is the aspect angle; û is the (opposite) steepest slope unit vector, along
the downward/upward steepest slope direction, assumed positive upward.
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The velocity vector projection onto the direction of r̂ vector to the radar operating in
the right side-looking mode is as follows [37]:

vLOS = −vE sin θ sin
(

α− 3π

2

)
− vN sin θ cos

(
α− 3π

2

)
+ vZ cos θ (1)

The argument in brackets
(
α− 3π

2
)

is an azimuth look direction.
This expression is valid for both ascending and descending orbits; however, in the

latter case, the more descriptive equation is:

vLOS = −vE sin θ sin
(

α +
π

2

)
− vN sin θ cos

(
α +

π

2

)
+ vZ cos θ (2)

The Equations (1) and (2) are reduced to the following:

vLOS = −vE sin θ cos α + vN sin θ cos α + vZ cos θ (3)

From Equations (1)–(3) it follows that in a general case, to determine the total velocity
vector, three independent orbits with their own sensors are required. In the case of land-
slides with a known direction of movement, only one equation is needed to determine the
movement velocity [70].

vslope =
vLOS
cos β

(4)

where β is the angle between the steepest slope direction and the LOS. The value of cos β is
determined by the product of r̂ and û unit vectors.

cos β = sin θ cos α sin γ cos ϕ− sin θ sin α cos γ cos ϕ + cos θ sin ϕ= sin θ cos ϕ sin(γ− α) + cos θ sin ϕ, (5)

From (5) it follows that if the heading angle is equal to the aspect of the slope or their
difference equal to π (the satellite movement and the projection of the landslide movement
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on the horizontal plane are parallel or antiparallel), the value of cos β is determined only
by θ and ϕ angles.

3. Results and Discussion
3.1. Backscattering

A digital elevation model based on TerraSAR-X/TanDEM-X data obtained after the
landslide (28 September 2020), was created for the analysis of possible ground movements
in the landslide zone. A 3D visualization of this model (5 m resolution) is given in Figure 5a.
For the comparison, Figure 5b presents a 30 m-resolution 3D DEM [71] based on Shuttle
Radar Topography Mission data (SRTM, 11–22 February 2000). The red lines show the
boundaries of the failed slope. In Figure 5b the river level during the SRTM mission was
60 m lower than the current level that was formed when the Bureyskoye Reservoir was
filled in 2009 due to the construction of the Bureyskaya Hydropower Station dam.
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Figure 5. 3D DEM visualization: (a) TerraSAR-X/TanDEM-X (September 28, 2020); (b) SRTM 1 Arc Sec Global.

Figure 6a shows the lines drawn through the surface of rupture, superimposed on
the Sentinel-2 image of 21 June 2021. Figure 6b shows the elevation profiles from DEM
SRTM (red line) and TerraSAR-X/TanDEM-X (black line). Measurements in the graph in
Figure 6b are shown from west to east along the yellow line in Figure 6a. Figure 6c presents
the Sentinel-1B backscattering coefficient measured along this profile in 2018–2021. Similar
results for the red line from Figure 6a are given in Figure 6d,e measured from north to
south. The backscattering coefficient data were obtained using Google Earth Engine [63].
The 10 m-resolution S1_GRD collection was used for computations. In each time interval
(from May to October of each year), the data were averaged and stored as a single image,
which was used to construct the profile. In total, there were at least 25 Sentinel-1 images in
each time interval.

As we can see from Figure 6b,d, the depth of the displaced mass reached 140–150 m.
After the failure, the slope steepness of the main scarp was about 70◦ and approximately
20◦–25◦ in the middle part of the surface of rupture. The slope steepness of the eastern
scarp was about 22◦, while the western scarp in the upper part is close to sheer and its
steepness exceeds 70◦.
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Figure 6. (a) Sentinel-2 image with the lines along which the elevation profiles and the backscattering
coefficient are shown; (b,d)—elevation profiles; (c,e)—backscattering coefficient along the profiles.

Sentinel-1 backscattering coefficient measurement results, given in Figure 6c,e, allow
us to assess the values averaged for the 2018 summer months (before the landslide event)
and for 2019–2021 (after the event). The Sentinel-1B SAR acquiring images at a descending
orbit with a heading angle of 192◦ from the north in the right-side looking observation
mode, directed mainly to the west, with an incidence angle of 36.6◦. For the western slope,
after a landslide, both foreshortening and layover are observed, when the radar beam
first reaches the upper part of the slope, since the slope angle, in this case, is greater than
the incidence angle (Figure 6b). Reflection from a steep slope results in a maximum in
the scattered signal, and this maximum is stable over time (Figure 6c). In contrast to the
western flank, in the eastern flank, before failure, there was a slope facing the incident
radiation (Figure 6b), which led to the maximum signal level in 2018 (red curve). The
destruction of most parts of the slope did not cause this maximum decrease. Note, that
backscattering from the surface not affected by the landslide remained stable. Variations of
the scattered signal in the surface of the rupture after the slope failure in different years
behave in a rather similar way (within 2–3 dB) and do not allow drawing a conclusion
about interannual changes.

For clarity, Figure 7 also shows RGB composite image obtained using Google Earth
Engine computing platform [63] from Sentinel-1B cross-polarized C-band radar data aver-
aged over 2018, 2019, and 2020 (90 images in total). In the RGB image, red (R) represents
the averaged values of radar backscatter in 2018, green (G) those for 2019, and blue (B) for
2020 (see inset). The qualitative interpretation is as follows. Red predominates in areas
where backscattering decreased in 2019 and 2020 compared to 2018, i.e., in this case, there
was a forest. Cyan, which is the result of mixing green and blue, shows an increase in
backscattering in 2019–2020, i.e., landslide masses that filled the Bureya River. We can see
red, cyan, and white colors on the surface of the rupture which is evidence of the compli-
cated structure of that surface. Moreover, this qualitative interpretation indicates different
mechanisms of backscattering transformation and small fragments remaining unchanged.
Polarimetry and interferometry methods will be used further for the qualitative assessment
of the surface of the rupture state and dynamics.
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3.2. Polarimetric Decomposition

Earlier in [53], the authors estimated changes in the physical mechanisms of radar
backscattering using fully polarimetric data of ALOS-2 PALSAR-2 SAR. The key attribute
of the landslide zone was the mechanism of transformation of the dominant backscattering
before and after the event. The polarimetric images of the landslide area were processed
using the Freeman–Durden and Cloude–Pottier decompositions. The results obtained using
the Freeman–Durden method [47] are shown in Figure 8a,b as color images representing
different contributions of a double-bounce (Pd, red color), volume (Pv, green color) and a
surface (Ps, blue color) scattering components. A red dashed line highlights the surface of
the rupture, a pink solid line delineates landslide masses in the river. The black dash-dot
line shows the part of the opposite shore where the forest was washed away by a tsunami
wave. The site before the event was represented by forest cover with a relevant dominance
of the volumetric scattering component (84.1%). After the landslide, despite the absence of
trees, the volume scattering decreased by 13% but remained dominant. Such an effect was
interpreted by the presence of chaotically oriented, as well as randomly located in space,
scatterers (small-scale elevation inhomogeneities, piles of trees), acting like volumetric
inhomogeneities. An increase of more than 13% in surface scattering means the appearance
of rough surfaces with irregularities of the order of the wavelength after the event. Figure 9
shows the result of the H-α-A polarimetric decomposition technique applied to the same
ALOS-2 PALSAR-2 polarimetric data set for the surface of the rupture, as described above.

It is interesting that the upper (right) part of the point cloud, falling into zones 2 and
5, and characterizing the volumetric scattering, practically did not change. This can be
explained by the fact that after the landslide many fallen trees remained, and there was
a large amount of soil and fragments of rock, which determined the nature of multiple
scattering, similar to the crowns of trees in a forest. Further, from Figure 9 it follows that
after the landslide, as expected, the fraction (zone 6) of surface scattering increased.
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Figure 9. H-α decomposition results: red color before the event, blue color after the event.

The comparison of Freeman–Durden and Cloude–Pottier decompositions have shown
their general agreement, however, some regions showed significant differences due to the
specifics of the basic model assumptions. Overall, it was shown that before the landslide
(28 November 2018), there were three main mechanisms of radar signal scattering in the
landslide area: single surface scattering, volumetric scattering, and double scattering. After
the landslide (12 December 2018), the single scattering component increased in this area,
which is typical for a reflecting surface without vegetation, so the landslide zone can be
confidently recognized.

Like with the results obtained using completely polarimetric ALOS-2 PALSAR-2 data,
we use the H-α-A polarimetric decomposition technique to analyze backscatter mechanism
variations after the landslide in 2019–2020 based on dual-polarization Sentinel-1 data.
In Figure 10a,b for comparison, the results of H-α-A polarimetric decomposition data
are presented in pairs for the entire surface of the rupture for 15 May and 31 August
2019, as well as for 15 May 2019 and 15 August 2020. It can be seen that the scattering
mechanisms remained practically unchanged, which is consistent with the similarity of the
amplitude profiles along the surface of the rupture for the snowless periods of 2019–2021.
This generally reflects the fact that the change in inhomogeneities in the surface of the
rupture retains the overall roughness for the C-band due to the roughness of the rock and,
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apparently, is associated with the insufficient ability of the combination of polarizations
VV and VH (HH and HV) to distinguish between scattering mechanisms [72].
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Figure 10. Comparison the Cloude–Pottier decomposition results of Sentinel-1 data for the sur-
face of the rupture: (a) between 15 May 2019 and 31 August 2019, (b) between 15 May 2019 and
25 August 2020.

3.3. PSI and SBAS-InSAR

To assess possible landslide reactivation using multitemporal C-band Sentinel-1B
data we used PSI and SBAS-InSAR methods. To exclude a possible impact of snow on
differential interferometry results [73], SAR data for 3 May–6 October 2019 (14 scenes), 9
May–12 October 2020 (13 scenes) and 4 May–25 September 2021 (12 scenes) were used;
39 co-polarized (VV) images in total.

Figure 11a presents spatial segmentation of PS distribution superimposed on the
Sentinel-2 (1 June 2021) image: right Bureya River bank, landslide body in the river and
surface of the rupture. The given data show that the greatest PS number (blue color in
Figure 11a) was on the right Bureya River’s bank and along the shores of the Sredny Sandar
River where the tsunami wave had passed in the area of the destroyed forest.
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Figure 11. Segmentation of persistent scatterers in the landslide zone (a) and time plot of their mean displacement (b).

A small number of PSs is observed in the surface of the rupture (red color in Figure 11a).
This may indicate a small number of natural point scatterers and/or permanent ground
movements in the surface of the rupture, the displacement velocities of which exceed the
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velocities that can be discovered by the PSI method. The latter assumption is confirmed
by the low coherence of interferometric pairs with a time baseline greater than 12 days.
In particular, the application of the MAI InSAR method [74] showed no interferometric
coherence at long time intervals (more than 12–24 days), and at 12–24 day time baselines,
the shifts were indistinguishable. The PSs within the surface of the rupture are located at a
distance from its flanks and, apparently, make a translatory movement in the longitudinal
direction of the landslide.

Figure 11b presents the displacement values for three PS segments highlighted with
blue, yellow (landslide body in the river), and red colors, respectively. A digital elevation
model (DEM) obtained from TerraSAR-X/TanDEM-X radar images on 28 September 2020
was used as a reference. The spatial baseline was 130.3 m, 2π ambiguity in height—45.7 m.

With a general negative displacement of all PSs in a given area of the terrain, a high
rate of displacement from the radar along LOS was observed for PSs in the surface of the
rupture, reaching 40 mm/year.

We assume that PSs were moving along the direction of the fastest landsliding with
the values ϕ ≈ 22º and γ ≈ 20º obtained from DEM. Thus, from (4) and (5) equations we
obtain cos β = 0.23. Note, that due to the proximity of the direction of the fastest sliding to
the “south-north” line, the value of cos β turned out to be less than the threshold value of
0.3, stated in [75] to eliminate anomalous situations. Using this threshold value, we obtain
the following:

vslope =
vLOS
cos β

= 3.33vLOS = 133 mm/year

Thus, the PSI method shows that after the landslide, there was a noticeable displace-
ment velocity of discrete PS along the surface of the rupture.

PSI assessment for a snowless period of 2019–2021 has shown that there were few
persistent scatterers on the surface of the rupture (16 PSs were grouped in the center), so
the reliability of the results with their use may raise some doubts. For a more detailed
analysis of the situation, the deformations were calculated using the SBAS-InSAR method
(Figure 12) according to Sentinel-1B data separately for snowless periods of time in 2019,
2020, and 2021.

Distributed scatterers’ location and velocity (mm/year) of displacement over the
surface with a coherence of more than 0.2 calculated using the SBAS-InSAR method are
given in Figure 12. The right part of this figure presents the temporal and spatial baseline
distributions of the radar interferograms from the Sentinel-1B data sets; the green squares
represent the valid acquisitions, the red one marks the selected super master image of the
small baseline subset and the solid lines connects interferometric pairs for SBAS-InSAR.
The results show a general increase of the area of regions with a coherence of more than
0.2 over time for snowless periods in 2019, 2020, and 2021. This indicates a decrease in
surface changes and significant deformations along the surface the rupture in the period
under consideration. The spatial distribution of the areas of the largest (red-and-yellow)
displacements along the LOS has changed. In 2019, the displacements were closer to the
center; in 2020 and 2021, deformations are noted at the edge of the lateral eastern edge of
slope failure. Max displacement velocity reduced from 40 mm/year in 2019 (red color in
Figure 12a) down to 30 mm/year in 2020–2021 (yellowish-red in Figure 12b,c).
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In general, the obtained SBAS-InSAR results show, on the one hand, continuing
displacements along the surface of the rupture, on the other hand, some stabilization
(decrease) in the rate of landsliding processes. Distributed scatterers, as noted, are located
on the eastern slope of the surface of the rupture. From the DEM analysis, it follows that for
this slope, the following estimates for the geometric parameters can be taken approximately:
ϕ ≈ 22º and γ ≈ 250º. Therefore, it follows from the Equations (4) and (5):

vslope =
vLOS
cos β

= 1.3vLOS = 52 mm/year

Comparison with PSI velocities shows that the displacement movement velocity
along the main slope was 2.5-fold higher than the displacement movement velocity along
the lateral eastern slope, determined by the SBAS-InSAR method. Since the difference
in displacement velocities was observed on different slopes, we can suppose that this
difference is because of the structures of each of the slopes. This assumption is supported
by the fact that persistent (point) scatterers are observed only on the main slope and
distributed (areal) scatterers are observed on the eastern slope.

4. Conclusions

The capabilities of PSI and SBAS-InSAR methods, polarimetric decomposition tech-
niques, and SAR backscattering multitemporal series estimation have been demonstrated
for the case study of the landslide reactivation on the Bureya River in Russia. Freely avail-
able Sentinel-1B SAR interferometric data for 2019–2021 snowless periods were used [67].
Multitemporal series of backscattering data have been analyzed with help of cloud com-
puting [61] taking into account radar sensing geometry and relief elevation.

It is shown that the spatial variations of the backscattered signal in the surface of
the rupture in different years behave in a rather similar way (within 2–3 dB) and do not
allow make a conclusion about interannual changes. The results of polarimetric analysis
over the entire surface of the rupture based on dual polarization C-band data showed
that the scattering mechanisms remained practically unchanged. This is consistent with
the similarity of the amplitude profiles along the surface of the ruptures for the snowless
periods of 2019–2021. Overall, both results show that the change in the inhomogeneities
in the surface of the rupture retains the overall roughness comparable with the C-band
wavelength. Apparently, this is also due to the insufficient ability of the combination of
VV and VH polarizations to distinguish scattering mechanisms [72]. At the same time,
a qualitative interpretation of false-color composites formed from year-averaged SAR
backscattering images indicates different mechanisms of backscattering transformation
and small fragments without changes.

A quantitative assessment of the total changes for the snowless periods of 2019, 2020
and 2021, carried out using the PSI method, showed an overall negative displacement of
all PSs for the studied area. A high rate of displacement along the radar LOS is observed
for persistent scatterers in the surface of the rupture, reaching 40 mm/year. At the same
time, the difference in the magnitude of the displacements of the main group of persistent
scatterers on the opposite bank and PS in the surface of the rupture in 2021 reached 20 mm.

The results of the Small baseline subsets (SBAS-InSAR) method made it possible to
identify the overall increase in the area of regions with a coherence of more than 0.2 in the
period from 2019 to 2021. This indicates a decrease in the processes of surface changes and
the absence of significant deformations in this area of the surface of the rupture during the
period under consideration. The spatial distribution of the regions of greatest displacement
along the LOS changed. It was found that in 2019 the displacements were closer to the
center, and in 2020 and 2021, deformations at the edge of the lateral eastern edge of slope
failure were revealed. Max displacement velocity reduced from 40 mm/year in 2019 down
to 30 mm/year in 2020–2021. PSI method results have shown that the displacement velocity
along the main slope exceeded the displacement velocity along the eastern slope 2.5-fold
determined by the SBAS-InSAR method.
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Thus, the studies carried out have demonstrated the effectiveness of the combined
application of MT-InSAR methods for identifying the processes of landslide reactivation. At
the same time, the PSI method allows one to estimate the total displacements of individual
persistent scatterers over several years in snowless periods of time, and the SBAS-InSAR
method allows one to obtain estimates of displacements over large areas, but at short
time intervals.
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