
remote sensing  

Article

Canopy Fluorescence Sensing for In-Season Maize Nitrogen
Status Diagnosis

Rui Dong 1, Yuxin Miao 2,* , Xinbing Wang 3, Fei Yuan 4 and Krzysztof Kusnierek 5

����������
�������

Citation: Dong, R.; Miao, Y.; Wang,

X.; Yuan, F.; Kusnierek, K. Canopy

Fluorescence Sensing for In-Season

Maize Nitrogen Status Diagnosis.

Remote Sens. 2021, 13, 5141. https://

doi.org/10.3390/rs13245141

Academic Editors: Bruno Basso and

Ignacio A. Ciampitti

Received: 10 November 2021

Accepted: 15 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Resources and Environmental Sciences, China Agricultural University,
Beijing 100193, China; BS20183030296@cau.edu.cn

2 Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota,
St. Paul, MN 55108, USA

3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
wangxinbing@caas.cn

4 Department of Geography, Minnesota State University, Mankato, MN 56001, USA; fei.yuan@mnsu.edu
5 Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO),

Nylinna 226, 2849 Kapp, Norway; krzysztof.kusnierek@nibio.no
* Correspondence: ymiao@umn.edu

Abstract: Accurate assessment of crop nitrogen (N) status and understanding the N demand are
considered essential in precision N management. Chlorophyll fluorescence is unsusceptible to con-
founding signals from underlying bare soil and is closely related to plant photosynthetic activity.
Therefore, fluorescence sensing is considered a promising technology for monitoring crop N status,
even at an early growth stage. The objectives of this study were to evaluate the potential of using
Multiplex® 3, a proximal canopy fluorescence sensor, to detect N status variability and to quantita-
tively estimate N status indicators at four key growth stages of maize. The sensor measurements
were performed at different growth stages, and three different regression methods were compared
to estimate plant N concentration (PNC), plant N uptake (PNU), and N nutrition index (NNI). The
results indicated that the induced differences in maize plant N status were detectable as early as
the V6 growth stage. The first method based on simple regression (SR) and the Multiplex sensor
indices normalized by growing degree days (GDD) or N sufficiency index (NSI) achieved acceptable
estimation accuracy (R2 = 0.73–0.87), showing a good potential of canopy fluorescence sensing for N
status estimation. The second method using multiple linear regression (MLR), fluorescence indices
and GDDs had the lowest modeling accuracy (R2 = 0.46–0.79). The third tested method used a
non-linear regression approach in the form of random forest regression (RFR) based on multiple
sensor indices and GDDs. This approach achieved the best estimation accuracy (R2 = 0.84–0.93) and
the most accurate diagnostic result.

Keywords: fluorescence sensing; nitrogen status; multiple linear regression; machine learning;
precision nitrogen management

1. Introduction

Nitrogen (N) is one of the most important macronutrients for crop growth that strongly in-
fluences crop photosynthesis and gross primary productivity [1,2]. Inappropriate N fertilization
can reduce crop yield due to N deficiency or lead to negative environmental impacts due to N
surplus [3–5]. Therefore, it is imperative and necessary to assess the N status effectively and
understand crop N demand to guide producers to make proper N management decisions.

The methods for determining crop N status have been intensely studied and thor-
oughly discussed. The traditional laboratory wet-chemical methods to determine N
concentration in crops are based on destructive sampling and are labor-intensive and
time-consuming. To overcome these shortcomings and realize high efficiency in mod-
ern agriculture, sensing technology has shown great potential in assessing crop N status
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and providing site-specific diagnosis via real-time and non-invasive detection. Canopy
reflectance sensing has been commonly used for estimating crop N status and guiding
in-season N management. Active canopy sensors with their own light sources are not
limited by ambient lighting conditions and are very suitable for practical on-farm applica-
tions [6–9]. They have been used to estimate the N status of diverse crops, including wheat
(Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.), and as valuable tools
for site-specific N management [10–13]. However, reflectance signals are affected by soil
background, and it is challenging to estimate chlorophyll or N concentration as canopy
reflectance is also influenced by leaf area index and biomass [14]. Early detection of crop
N stress is very important for crop growers to make management decisions. However,
reflectance-based indices can only indicate the macroscopic variations in crops, such as
a decrease in biomass accumulation rate and yellowing of leaves, which are results of
long-term N stress in the plants. They cannot effectively detect physiological traits that
have already occurred in plants before visible symptoms appear [15,16]. It is known that
plant N concentration (PNC) is strongly related to plant chlorophyll concentration, which
is important for photosynthetic activity. There is a fluorescence emission phenomenon in
chlorophyll molecules in plant leaves. Thus, crop N status could also be evaluated using
fluorescence signals. As an innovation in assessing crop N status, fluorescence sensors have
the advantages of less influence from soil background and the high correlation with chloro-
phyll and N concentration [14,16–18]. In addition, being related to plant photosynthetic
activity, fluorescence spectroscopy has been considered a potentially emerging technology
for early monitoring of crop N status that would be observed before the obvious changes
in the amount of chlorophyll in the leaves [19,20].

In recent years, there has been increasing interest in the application of fluorescence
sensing in agriculture to improve N management. Two commercial devices are most
commonly used: Dualex (FORCE-A, Orsay, Paris, France) and Multiplex (FORCE-A, Orsay,
Paris, France). Compared with Dualex that features three fluorescence-based indices and
measures on a small area of leaf scale, Multiplex is a more efficient canopy sensor and
offers several fluorescence parameters. However, studies focused on the applications of
Multiplex sensors are rather scarce, especially for the evaluation of the N status of maize.
Although previous studies have revealed the relationships between Multiplex parameters
and applied N rates and determined the possibility of using Multiplex to detect N variability
in maize, they only focused on the early growth stages in greenhouses [17,21]. However,
understanding and assessing N across different growth stages under field conditions is
crucial for in-season site-specific N management applications.

Choosing appropriate N status indicators is critical for crop N monitoring. Since the
measurements are solely based on the changes of pigments in leaves, fluorescence sensing is
less susceptible to erroneous signals from bare soil; hence, it is more related to N concentration
than reflectance-based parameters, especially at early growth stages before canopy closure
or in wide-row crops [14,16,20]. Thus, many researchers have explored and verified the
ability of Multiplex to estimate PNC [22–24], plant N uptake (PNU), and N nutrition index
(NNI) [18,25], and explored the feasibility for in-season N recommendation [26–29].

Previous studies have indicated that low N diagnostic accuracy was achieved using
the NNI estimated by a direct method based on a single spectral index [30,31]. Due to the
influence of factors other than N, such as the time factor (i.e., growth stage), it might be
challenging to estimate N indicators by remote sensing [8,32,33]. Many methods have been
developed to reduce the impact of these factors and improve estimation accuracy. Some
spectral parameters were modified to establish better relationships with N indicators using
simple regression (SR) models. Among them, the application of the normalized N sufficient
index (NSI) is a very common procedure that has been used in many studies [18,32,34]. A
recent study proposed a modified approach to estimate maize PNC across growth stages
based on the use of days after sowing (DAS) [35].

In addition, other remote sensing algorithms for crop N retrieval, using empirical,
physical, and hybrid methods based on multiple parameters have been widely adopted in
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recent years. Multiple linear regression (MLR) is suitable for processing linear relationships
of complex data, and it is often used due to its simplicity and acceptable performance.
Non-linear regression methods are becoming increasingly popular in crop N monitoring
due to their reliable and robust performance, particularly when handling large amounts
of data [36–38]. Random forest regression (RFR) is one of the most widely used machine-
learning methods, which can overcome the overfitting and collinearity problems that are
prone to occur in linear approaches, and often yields higher estimation accuracies [8,39–41].

As maize is a major staple grain crop and requires large amounts of N fertilizer, it
is particularly important to assess variations of maize N status and implement precision
N management practices. Fluorescence sensing has proven to be a promising technology
for monitoring crop growth, but studies on applications of Multiplex sensors for maize
under field conditions are limited. There is a lack of reports exploring promising methods
to efficiently estimate maize N status across growth stages. Thus, the objectives of this
study were to: (1) assess the usability of the fluorescence parameters of Multiplex sensor
for detection of N variability under different N rate treatments at different growth stages;
and (2) evaluate and compare different methods (SR, MLR, and RFR models) to estimate N
status indicators (PNC, PNU and NNI) across different growing conditions.

2. Materials and Methods
2.1. Experimental Design

The field experiments were carried out in Lishu County (43◦02′–43◦46′ N, 123◦45′–
124◦53′ E), Jilin Province in Northeast China from 2017 through 2019. Detailed information
about daily mean temperature (◦C) and rainfall (mm) during the growing season of the
experimental years is shown in Figure 1. The soil type at the study site is classified as
Typic Haploboroll according to the United States Department of Agriculture (USDA)’s
soil taxonomy. A randomized complete block design with split plots including planting
density as the main plots and N rate as the subplots was set up in the experiments,
with each plot size being 9 m × 12 m = 108 m2. Spring maize cultivar Liangyu 66 was
planted at densities of 5.5, 7.0, and 8.5 plants m−2. Six N rates (0, 60, 120, 180, 240,
300 kg ha−1) were included with 1/3 of the total fertilizer applied before sowing as basal
N using ammonium sulfate and 2/3 applied at around V8-V9 stage as side-dress N using
urea. Each treatment was replicated three times. Sufficient phosphorus (90 kg ha−1 P2O5)
and potassium (90 kg ha−1 K2O) fertilizers were applied before sowing together with N
fertilizers. A wide-narrow row planting pattern was adopted with sowing spacing of
80−40 cm. The field was kept free of weeds, insects, and diseases with pesticides based on
local standard practices. Irrigation measures were conducted after sowing for the lack of
rainfall in 2018 and 2019 to ensure seedling emergence.
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2.2. Fluorescence Sensing

At the V4, V6, V8, and VT growth stages [42] in 2017, the V3 and V5 growth stages in
2018, and the V6, V8, V12, and VT growth stages in 2019, proximal sensing measurements
were made using a fluorescence sensor Multiplex® 3 (FORCE-A, Orsay, France). Multiplex
is an ultraviolet (UV)-visible portable fluorimeter involving four excitation channels (UV,
blue, green, and red) to generate fluorescence in the plant tissues and three synchronized
filtered detectors to record the fluorescence in yellow (590 nm, YF), red (665 nm, RF) and
far-red (735 nm, FRF) bands. In addition to the eleven fluorescence indices provided by
the sensor, six additional indices were calculated in this study, considering their good
performance in previous research [18,21,22,25]. These indices included simple chlorophyll
fluorescence ratio (SFR) related to leaf chlorophyll content, calculated under green (SFR_G)
or red (SFR_R) illumination, FLAV for indicating flavonols content and ANTH for indicat-
ing anthocyanin content, and N balance index (NBI) taking into account both the content
of chlorophyll and flavonols, calculated under green (NBI_G) or red (NBI_R) illumination.
A detailed overview of the fluorescence parameters used is given in Table 1.

Table 1. Description of the parameters provided by Multiplex used in this study.

Multiplex Parameter Description Excitation Formula

YF_UV UV excited yellow fluorescence UV –
RF_UV UV excited red fluorescence UV –

FRF_UV UV excited far-red fluorescence UV –
YF_B Blue excited yellow fluorescence Blue –
RF_B Blue excited red fluorescence Blue –

FRF_B Blue excited far-red fluorescence Blue –
YF_G Green excited yellow fluorescence Green –
RF_G Green excited red fluorescence Green –

FRF_G Green excited far-red fluorescence Green –
RF_R Red excited red fluorescence Red –

FRF_R Red excited far-red fluorescence Red –
SFR_G Green excited simple fluorescence ratio Green FRF_G/RF_G
SFR_R Red excited simple fluorescence ratio Red FRF_R/RF_R
FLAV Red and UV excited flavonols Red and UV Log (FRF_R/FRF_UV)
ANTH Red and green excited anthocyanins Red and Green Log (FRF_R/FRF_G)
NBI_G UV and green excited nitrogen balance index UV and Green FRF_UV/RF_G
NBI_R UV and red excited nitrogen balance index UV and Red FRF_UV/RF_R

The Multiplex sensor was placed above the maize canopy before the V8 growth stage
with a measurement mask of the sensor just touching the canopy, and on leaf scale around
the most recently fully expanded leaves at the V12 growth stage and around ear leaves at the
VT growth stage. The measurements were made manually at approximately 10 cm above
the adaxial (top) side of the leaf, on a circular surface of 50 cm2 with a diameter of 8 cm. The
measurements were not taken at a fixed time on each sensing date since the sensor is not
influenced by ambient light conditions [16]. The fluorescence data were collected from plants
located in the inner rows of each plot, and the average value was used to represent the plot.

2.3. Sampling and Measurement

At the V6, V8, and VT growth stages in 2017, and at the V6, V8, V12, and VT growth
stages in 2019, three representative plants located in the rows of each plot measured by
the Multiplex sensor were sampled at the ground level. All samples were separated into
leaves and stems except for the V6 growth stage. All leaves and stems of the three plant
samples from each plot were mixed together for N analysis. After being dried at 105 ◦C for
half an hour, the samples were then dried at 70 ◦C until they maintained a constant weight.
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The N concentrations of leaves and stems of each plot were determined using the modified
Kjeldahl method [43]. The PNC was calculated using the following formula:

PNC = (Wl × Nl + Ws × Ns)/(Wl + Ws) (1)

where Wl and Ws stand for the weights of the leaves and stems, respectively, and Nl and
Ns stand for the N concentrations of leaves and stems, respectively.

The PNU is the product of PNC and aboveground biomass (t ha−1), while the NNI
is defined as the ratio of the actual PNC to the critical N concentration (Nc), which was
calculated according to a critical N dilution curve for spring maize [44]:

Nc = 36.5 W−0.48 (2)

where W is the aboveground biomass (t ha−1). The value of Nc was set up to a constant
value of 36.5 for plants with aboveground biomass lower than 1 t ha−1, because the critical
N dilution curve cannot be applied to these plants [44].

2.4. Regression Models to Estimate N Status Indicators

The SR, MLR, and RFR methods were employed to establish general models to esti-
mate N status indicators across growth stages and years and compared in this study. Six
Multiplex indices were involved in these models, including SFR_G, SFR_R, FLAV, ANTH,
NBI_G, and NBI_R. When using SR models, these six Multiplex indices were also modi-
fied by combing with growing degree days (GDD, ◦C) for PNC and PNU estimation and
converted into NSI (SFR_GSI, SFR_RSI, FLAVSI, ANTHSI, NBI_GSI, and NBI_RSI), which
equals to the ratio of the sensor reading of a plot to the well-fertilized (300 kg N ha−1) plot
for NNI estimation, besides the raw readings. Linear, quadratic, power, exponential, and
logarithmic functions were adopted to simulate the relationships between sensing indices
and N status indicators to select the best performing functional equation for validation.

The GDD was calculated from the date of seedling emergence to the date of sensing
measurements at each growth stage using the following formula:

GDD = Σ ((Tmax − Tmin)/2 − Tbase) (3)

where Tmax, Tmin, Tbase are the daily maximum, minimum, and base temperatures, respec-
tively. Tbase was set to 10 ◦C. Detailed information on GDD of the four key growth stages
used for N status estimation is shown in Table 2.

Table 2. Growing degree days (GDD, ◦C) of different growth stages in 2017 and 2019.

Experimental Year V6 V8 V12 VT

2017 229.8 392.7 – 880.0
2019 271.1 406.8 605.1 808.1

Both the MLR and RFR models were developed based on the GDD information, and
all the six Multiplex indices were used as the input data. The scikit-learn, a Python machine
learning library [45], was used in this study to conduct the RFR analysis. A repeated
sampling method, 10-fold cross-verification, and grid search were adopted to adjust the
RFR model and find the optimal parameters.

2.5. Statistical Analysis

A total of 54 data points at each growth stage in each year was acquired. All the
Multiplex signals and indices obtained at the respective growth stages under six N rate
treatments were used to assess the performance of N variability detection. The fluorescence
data were subjected to analysis of variance (ANOVA), and a Duncan test was used to
compare the means for each treatment at the p < 0.05 significance level. Reference data
obtained from sampled plants and six Multiplex indicators (SFR_G, SFR_R, FLAV, ANTH,
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NBI_G, and NBI_R) collected from the V6 to VT growth stages in 2017 and 2019 were used
to estimate N status indicators (PNC, PNU, and NNI) using SR, MLR and RFR models
(Figure 2). About 67% (36 data points at each growth stage in each year) of the data collected
from all plots were used to train the regression models, and the remaining data (18 data
points at each growth stage in each year) were used to test the models as validation dataset.
The coefficient of determination (R2), the root mean square error (RMSE), and relative error
(RE) were used as validation metrics. In addition, the kernel density curves of the observed
and estimated values of N indicators were plotted using OriginPro 2019b (OriginLab
Corporation, Northampton, MA, USA) to further compare the accuracies. Kernel density
estimation is a popular tool for estimating the probability density function of a random
variable and visualizing the distribution of data in a non-parametric way [46]. To evaluate
the diagnostic accuracy of different regression models, NNI values were divided into
three classes, and the value within the range of < 0.95, 0.95 to 1.05, and > 1.05 indicates N
deficit, optimal, and surplus, respectively [47]. The areal agreement and Kappa statistics
were calculated [48,49]. A higher Kappa value indicates a higher diagnostic accuracy. The
Kappa values of 0.01–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–0.99 represent slight,
fair, moderate, substantial, and almost perfect agreement, respectively [48].
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3. Results
3.1. Differences in Fluorescence Parameters at Different N Rates

According to the ANOVA results of Multiplex parameters, as affected by the six N
rates at each growth stage, the effect of N fertilization treatment on most of the individual
signals was not significant whereas the opposite was true for the fluorescence indices
calculated from the individual signals (Table 3). The SFR_G, SFR_R, NBI_G, and NBI_R
increased with the increase of applied N, while decreasing trends were found for FLAV
and ANTH (Figure 3). Although the N treatment affected some fluorescence indices based
on the ratio of individual signals before the V6 stage (SFR_G and SFR_R obtained at the V3
and V4 stages, FLAV obtained at the V5 stage, NBI_G and NBI_R obtained from the V3
to V5 stages) (Table 3), in most cases these indices could only distinguish between N and
non-N treatments (Figure 3). For all indices (fluorescence ratios), except for ANTH, the
preferred distinction among the N treatments was observed starting from the V6 growth
stage (Table 3 and Figure 3). However, all the tested fluorescence indices were not sensitive
to N rates ranging from 180 to 300 kg ha−1 N at the V6 growth stage, and most of them
failed to distinguish the two high N rates (240 and 300 kg ha−1) during the V8 to VT growth
phase. Comparatively, NBI_G and NBI_R showed the best discrimination ability and could
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detect differences between 240 and 300 kg ha−1 at some of the later growth stages, followed
by SFR_G and SFR_R. The two polyphenol-related indices (ANTH and FLAV) performed
not as well as the abovementioned indices, especially for ANTH, which performed the
worst in all growth stages (Figure 3).
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Table 3. Analysis of variance (ANOVA) of Multiplex parameters at different growth stages as affected by six N rates for maize.

Multiplex
Parameter

V3
(n = 54)

V4
(n = 54)

V5
(n = 54)

V6
(n = 108)

V8
(n = 108)

V12
(n = 54)

VT
(n = 108)

YF_UV ns ns ns ns ns ns ns
RF_UV ns * ns *** *** *** ***

FRF_UV * * ns *** *** *** ***
YF_B ns ns ns ns ns *** ns
RF_B ns ns ns ns ns ns ns

FRF_B ns ns ns ns ns ns ns
YF_G ns ns ns ns ns *** **
RF_G ns ns ns ns ns ns ns

FRF_G * ns ns *** ns * ns
RF_R ns ns ns ns ns ns ns

FRF_R * ns ns ** ns ns ns
SFR_G ** ** ns *** *** *** ***
SFR_R ** ** ns *** *** *** ***
FLAV ns ns *** *** *** *** ***
ANTH ns ns ns ns *** *** ***
NBI_G ** *** *** *** *** *** ***
NBI_R ** ** *** *** *** *** ***

***: Significant at p < 0.001 level; **: Significant at p < 0.01 level; *: Significant at p < 0.05 level; ns: not significant at p < 0.05 level.

3.2. Simple Regression Analysis for Relationships between Raw Multiplex Indices and N
Status Indicators

The relationships between the Multiplex indices and maize N status indicators for
an individual year and across years at different growth stages were studied by fitting
experimental data with linear functions. The R2 values and significance levels are shown in
Table 4. Almost all of the relationships were significant at the p < 0.001 level, nonetheless,
the lowest R2 values appeared at the V6 growth stage. Most fluorescence indices acquired at
the V6 and V8 growth stages from the canopy level were more related to N status indicators
within a specific year than across the years. However, the situation at the VT growth stage
was different, with similarly high R2 values at each individual year and across the years.
Overall, most of the best-fitted linear functions were based on NBIs.

To estimate maize N status across growth stages and experimental years, SR relation-
ships between fluorescence indices and the three N indicators were developed using the
best-fitted model types (Table 5). Among them, the fluorescence indices were more related
to NNI when gathering all data under different treatments together. However, all these
functions had low R2 values ranging from 0.07 to 0.40 (Table 5).
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Table 4. The coefficients of determination (R2) for the linear relationships between Multiplex indices and N status indicators at each growth stage.

N
Indicator Year SFR_G SFR_R FLAV ANTH NBI_G NBI_R SFR_G SFR_R FLAV ANTH NBI_G NBI_R

V6 V8

PNC
(g kg−1)

2017 0.31 *** 0.38 *** 0.28 *** 0.14 * 0.62 *** 0.61 *** 0.72 *** 0.73 *** 0.73 *** 0.46 *** 0.78 *** 0.78 ***
2019 0.48 *** 0.53 *** 0.36 *** 0.15 * 0.58 *** 0.61 *** 0.69 *** 0.73 *** 0.69 *** 0.26 ** 0.71 *** 0.74 ***

Across years 0.34 *** 0.36 *** 0.25 *** 0.05 * 0.57 *** 0.60 *** 0.30 *** 0.61 *** 0.32 *** 0.06 * 0.28 *** 0.38 ***

PNU
(kg ha−1)

2017 0.43 *** 0.41 *** 0.24 ** 0.22 ** 0.48 *** 0.40 *** 0.59 *** 0.64 *** 0.78 *** 0.49 *** 0.80 *** 0.81 ***
2019 0.46 *** 0.55 *** 0.21 *** 0.12 *** 0.44 *** 0.47 *** 0.70 *** 0.75 *** 0.70 *** 0.41 *** 0.69 *** 0.73 ***

Across years 0.12 ** 0.13 ** 0.31 *** 0.38 *** 0.21 *** 0.39 *** 0.62 *** 0.64 *** 0.64 *** 0.41 *** 0.67 *** 0.73 ***

NNI
2017 0.31 *** 0.38 *** 0.28 *** 0.14 * 0.62 *** 0.61 *** 0.67 *** 0.71 *** 0.80 *** 0.49 *** 0.84 *** 0.85 ***
2019 0.48 *** 0.53 *** 0.36 *** 0.15 * 0.58 *** 0.61 *** 0.73 *** 0.78 *** 0.72 *** 0.37 *** 0.73 *** 0.77 ***

Across years 0.34 *** 0.36 *** 0.25 *** 0.05 * 0.57 *** 0.60 *** 0.56 *** 0.73 *** 0.60 *** 0.28 *** 0.59 *** 0.68 ***

V12 VT

PNC
(g kg−1)

2017 – – – – – – 0.57 *** 0.53 *** 0.71 *** 0.67 *** 0.70 *** 0.72 ***
2019 0.62 *** 0.68 *** 0.56 *** 0.49 *** 0.76 *** 0.76 *** 0.75 *** 0.69 *** 0.58 *** 0.54 *** 0.80 *** 0.82 ***

Across years – – – – – – 0.66 *** 0.61 *** 0.63 *** 0.45 *** 0.74 *** 0.75 ***

PNU
(kg ha−1)

2017 – – – – – – 0.65 *** 0.59 *** 0.80 *** 0.68 *** 0.82 *** 0.82 ***
2019 0.73 *** 0.61 *** 0.64 *** 0.60 *** 0.83 *** 0.78 *** 0.81 *** 0.69 *** 0.60 *** 0.68 *** 0.81 *** 0.83 ***

Across years – – – – – – 0.73 *** 0.65 *** 0.68 *** 0.53 *** 0.80 *** 0.80 ***

NNI
2017 – – – – – – 0.66 *** 0.61 *** 0.80 *** 0.71 *** 0.81 *** 0.82 ***
2019 0.75 *** 0.67 *** 0.65 *** 0.61*** 0.86 *** 0.82 *** 0.82 *** 0.70 *** 0.61 *** 0.68 *** 0.83 *** 0.84 ***

Across years – – – – – – 0.74 *** 0.66 *** 0.69 *** 0.53 *** 0.80 *** 0.81 ***

***: Significant at p < 0.001 level; **: Significant at p < 0.01 level; *: Significant at p < 0.05 level; –: No data.
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Table 5. The best-fitted model types and R2 values of SR relationships between N indicators and raw
Multiplex indices across growth stages and experimental years.

Raw Multiplex Index
PNC (g kg−1) PNU (kg ha−1) NNI

Model R2 Model R2 Model R2

SFR_G Q ns P 0.31 *** Q 0.31 ***
SFR_R Q 0.24 *** Q 0.12 *** Q 0.26 ***
FLAV E 0.14 *** P 0.12 *** Q 0.30 ***
ANTH E 0.09 *** E 0.07 *** Q 0.14 ***
NBI_G P 0.10 *** E 0.20 *** Q 0.38 ***
NBI_R P 0.21 *** E 0.12 *** Q 0.40 ***

***: Significant at p < 0.001 level; ns: Not significant at p < 0.05 level; Q, E and P stand for quadratic, exponential
and power models, respectively.

3.3. General Models for Estimating N status Indicators
3.3.1. Simple Regression Models Based on Normalized Multiplex Indices

Multiplex indices were modified to develop models that can be used across growth
stages and years. To estimate PNC and PNU that generally vary significantly with growth
stages, GDD that introduce the information about the age of the plants was used together
with Multiplex indices. As NNI is a ratio and relatively stable across growth stages and
years, the NSI values of each raw Multiplex index were calculated to estimate NNI. The R2

values of the SR models based on the normalized indices fitted with quadratic or power
functions were significantly enhanced compared with the models based on raw indices,
although the degree of change was different (Tables 5 and 6). The greatest improvement
was found in the relationships with PNC, with the highest increased R2 values (from
0.09–0.24 to 0.73–0.85). In contrast, small changes to R2 were found in the NNI results (from
0.14–0.40 to 0.38–0.68). Modified NBIs were the indices most related to PNU and NNI,
while the modified SFRs and the two polyphenol indicators showed the best correlations
with PNC.

Table 6. Best-performing fitted model types and R2 values of simple regression models between N indicators and normalized
Multiplex indices across years and growth stages.

PNC (g kg−1) PNU (kg ha−1) NNI

Modified
Multiplex Index Model R2 Modified

Multiplex Index Model R2 Modified
Multiplex Index Model R2

SFR_G/GDD Q 0.83 *** SFR_G×GDD Q 0.70 *** SFR_GSI Q 0.46 ***
SFR_R/GDD Q 0.85 *** SFR_R×GDD Q 0.66 *** SFR_RSI Q 0.46 ***
FLAV×GDD P 0.83 *** FLAV/GDD P 0.79 *** FLAVSI Q 0.61 ***
ANTH×GDD P 0.84 *** ANTH/GDD P 0.63 *** ANTHSI P 0.38 ***
NBI_G/GDD Q 0.73 *** NBI_G×GDD Q 0.84 *** NBI_GSI Q 0.65 ***
NBI_R/GDD Q 0.79 *** NBI_R×GDD Q 0.81 *** NBI_RSI Q 0.68 ***

***: Significant at p < 0.001 level; Q and P stand for quadratic and power models, respectively.

3.3.2. Multiple Linear Regression and Random Forest Regression Models

The six Multiplex indices for each growth stage were combined to estimate the three N
status indicators using the MLR and RFR methods with the addition of the corresponding
GDD information. Although the MLR models were based on many fluorescence indices,
they did not explain more variabilities of the three N indicators than the SR models built
on the modified Multiplex indices (Tables 6 and 7). The most promising general models for
estimating N status indicators across years and growth stages were simulated using the
non-linear RFR method, which showed the highest R2 values (0.96–0.99) (Table 7).
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Table 7. R2 values and coefficients of variables in multiple linear regression (MLR) models and relative importance (Gini
coefficients) of estimated variables in random forest regression (RFR) models for estimating N status indicators across years
and growth stages.

N Status
Indicator GDD SFR_G SFR_R FLAV ANTH NBI_G NBI_R Constant R2

MLR
PNC (g kg−1) −0.0300 7.498 −0.334 −21.448 106.555 −19.254 31.548 −9.085 0.76 ***

PNU (kg ha−1) 0.127 23.646 −4.027 −90.184 −109.662 −6.879 8.226 8.243 0.77 ***
NNI 0.0000137 0.311 −0.0670 −0.811 2.045 −0.432 0.831 −0.320 0.41 ***

RFR
PNC (g kg−1) 0.770 0.0087 0.135 0.0106 0.00686 0.0322 0.0374 – 0.99 ***

PNU (kg ha−1) 0.471 0.318 0.061 0.028 0.016 0.024 0.082 – 0.97 ***
NNI 0.255 0.164 0.107 0.021 0.015 0.158 0.281 – 0.96 ***

***: Significant at p < 0.001 level.

The detailed information of the MLR and RFR models is presented in Table 7. In
the MLR models, the GDD had a smaller impact on N status indicators with obviously
lower coefficients compared with fluorescence variables. In contrast, a large fraction of the
variation explained using the RFR model was due to the addition of GDD. In particular,
GDD ranked first in the estimations of PNC and PNU and ranked second in the estimation
of NNI (Table 7).

3.3.3. Validation of the Regression Models

The performance of the SR models based on the modified Multiplex indices, MLR,
and RFR models was validated using an independent dataset. In general, the SR models
outperformed the MLR models for the estimations of all N status indicators (Table 8 and
Figure 4a–f). The lower R2 (0.46 to 0.79), larger RMSE (0.19 to 17.77), and RE (24.04% to
38.85%) along with larger dispersion of the sample points in the scatter plots indicated
that the combination of multiple fluorescence indices and GDD incorporated in the MLR
method did not perform well in estimating the three maize N status indicators across years
and growth stages. Additionally, the most evident difference in the density curves between
the estimated and observed N status indicators further confirmed the poor performance of
MLR models (Figure 5). The MLR model for NNI estimation produced the lowest areal
agreement, with no significant Kappa values (Table 9).

The RFR method demonstrated the absolute superiority to retrieve maize N status
quantitatively when incorporating Multiplex indices and GDD into the algorithm (Figure 4).
Although the improvement in R2, RMSE, and RE for PNU estimation using the RFR model
was not significant compared with using the SR model based on the best-performing
modified index (NBI_G×GDD), the better-distributed points in the scatter plot and the
resultant closer linear fitting line to 1:1 line implied higher accuracy. The RFR method
generated the most similar distribution of the estimated N indicators to that of the observed
N indicators as shown by the kernel density curves (Figure 5). What’s more, according to
the N status diagnosis results using NNI calculated with modified NBI_R and RFR model
in Table 9, both methods achieved high areal agreements (0.72 and 0.77 respectively) and
Kappa values over 0.40. The RFR model performed the best, with the highest accuracy in
the diagnosis of N nutrition status.
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Table 8. Validation results of the simple regression models based on the modified Multiplex indices for estimating N status indicators across years and growth stages.

PNC (g kg−1) PNU (kg ha−1) NNI

Modified
Multiplex Index R2 RMSE RE Modified

Multiplex Index R2 RMSE RE Modified
Multiplex Index R2 RMSE RE

SFR_G/GDD 0.82 *** 4.31 20.89% SFR_G×GDD 0.71 *** 20.95 45.79% SFR_GSI 0.59 *** 0.17 20.88%
SFR_R/GDD 0.84 *** 4.11 19.88% SFR_R×GDD 0.64 *** 23.09 50.48% SFR_RSI 0.56 *** 0.17 21.74%
FLAV×GDD 0.87 *** 3.68 17.84% FLAV/GDD 0.79 *** 17.52 38.30% FLAVSI 0.68 *** 0.15 18.60%
ANTH×GDD 0.83 *** 4.20 20.36% ANTH/GDD 0.62 *** 23.80 52.03% ANTHSI 0.37 *** 0.21 25.88%
NBI_G/GDD 0.76 *** 4.99 24.18% NBI_G×GDD 0.86 *** 14.21 31.06% NBI_GSI 0.71 *** 0.14 17.64%
NBI_R/GDD 0.82 *** 4.29 20.77% NBI_R×GDD 0.85 *** 15.16 33.15% NBI_RSI 0.73 *** 0.14 17.03%

***: Significant at p < 0.001 level.



Remote Sens. 2021, 13, 5141 13 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 

Figure 4. Validation results for estimating N status indicators across years and growth stages using simple regression (SR) 
models based on the best performed normalized Multiplex indices (a–c), multiple linear regression (MLR) models (d–f) 
and random forest regression (RFR) models (g–i). ***: Significant at p < 0.001 level. 

(a) (b) 

Figure 4. Validation results for estimating N status indicators across years and growth stages using simple regression (SR)
models based on the best performed normalized Multiplex indices (a–c), multiple linear regression (MLR) models (d–f) and
random forest regression (RFR) models (g–i). ***: Significant at p < 0.001 level.

Table 9. Areal agreement and Kappa statistics of the diagnostic results based on the estimated NNI
derived from the best-performing modified Multiplex index (NBI_RSI), multiple linear regression
(MLR) model and random forest regression (RFR) model across years and growth stages.

NBI_RSI MLR RFR

Areal agreement 0.72 0.59 0.77
Kappa statistics 0.45 *** 0.06 ns 0.55 ***

***: Significant at p < 0.001 level; ns: Not significant at p < 0.05 level.
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4. Discussion
4.1. Detection of N Variability in Maize Using Fluorescence Parameters

To determine if active canopy fluorescence sensing can detect N rate differences in
maize plants at early growth period for making N management decisions, the sensing
measurements were conducted before the V8 growth stage and as early as the V3 growth
stage. Besides, the V12 and VT growth stages were also included in this study, because some
remedial management actions could be taken. Most of the individual fluorescence signals
in this study failed to distinguish the difference among different N supplies, whether in
the early or later period of the maize growth process (Table 3). This is inconsistent with the
reported results of maize from V2 to V6 stages in an earlier publication [21]. However, the
additional straw treatment (straw was incorporated into the soil before sowing) without N
fertilizer in their research might have played a major role in causing significant differences
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in maize N status. This could be reflected by the significantly higher mean values of
another Multiplex index calculated from an individual signal, fluorescence excitation ratio
anthocyanin relative index (FERARI, Log (5000/FRF_R)) under the treatment of straw
incorporation. Nevertheless, Tremblay et al. pointed out that the fluorescence ratios as
a result of the combinations of independent signals were potentially useful to interpret
crop N status [16]. This statement has been supported by many studies [17,23,25,50], and
the results of this study confirmed the above-mentioned conclusion that the combined
Multiplex indices based on the ratios of individual fluorescence signals could estimate
maize N status effectively (Table 3 and Figure 3).

Although most Multiplex indices were significantly affected by N treatment from the
V3 to V5 growth stages, they only enabled the distinction of low N rates (especially for
0 kg ha−1 N rate) in this study area (Table 3 and Figure 3). This is because maize plants do
not require extensive N in the early growing period. The limited plant N demand can be
met by a low N supply, which would delay the measurable reduction of pigments related
to N [32]. What’s more, because of the important interference within the measuring height
range of 20 cm from the ground [17], the occurrence of weeds may also affect the Multiplex
sensing of some crops with low plant height at the seeding stage.

The perfect distinction among the N treatments using the Multiplex indices was
observed from the V6 growth stage (Figure 3). However, they all failed to differentiate N
treatments ranging from 180 to 300 kg ha−1 at this starting period (V6). From this stage,
maize plants began to absorb more nutrients. This outcome could probably be attributed
to the fact that plants located in the plots with relatively abundant basal N supply had
not yet fully responded to N shortages, especially in newly expanded leaves monitored by
the sensor at the canopy level due to N transfer from lower leaves to upper-level leaves.
This period is slightly different from the one identified by Longchamps and Khosla, who
reported the perfect performance of NBI excited by green and red wavelengths, beginning
from the V7 growth stage based on pot tests conducted in a greenhouse [17]. Different
experimental conditions may have resulted in this delayed response. Maize plants grown
in the field would suffer from more environmental stresses which may trigger an additional
fluorescence emission. In most cases, the Multiplex indices could not discriminate N rates
between 240 and 300 kg ha−1 during the growing season (Figure 3). Similar insensitivity of
Multiplex sensor to high N rates also occurred in other studies [22,25]. Simulated by a crop
model (CERES-Maize) based on field experiments and historical weather information, the
long-term economic optimal N rate in this study site was found to be 198 ± 35 kg ha−1 [51].
However, after reaching the optimal N level, little excessive N was accumulated by luxury
N uptake, and the N concentration in maize plants did not change significantly [35]. This
led to the indistinctive variation of the fluorescence indices under the two high N rates.

FLAV and ANTH changed inversely with the N rate due to polyphenols accumula-
tion in leaf epidermis under lower N availability, which was opposite to the increasing
trend of SFRs related to chlorophyll content [52,53]. Overall, the two indices displayed
weaker N differentiation ability (especially ANTH). The sensitivity of polyphenols to plant
physiological states, such as the occurrence of senescence, and other stresses caused by low
temperature and light intensity may be a reasonable explanation [54–56]. Influenced by
both chlorophylls and flavonoids, NBI is independent of leaf mass per area and has a wide
response range as a result of the inverse changes of SFR and FLAV, which makes it a more
robust and reliable indicator of N status [22,34].

4.2. Development of General Models to Estimate Maize N Status Indicators

The six Multiplex indices were further used to evaluate maize N status quantitatively
from the V6 to VT growth stages in view of their preferred detection of N variability during
this period. Maize plant starts to absorb greater amounts of N from the V6 growth stage at
the beginning of rapid stem elongation. Sufficient N supply before the V8 growth stage is
essential to guarantee yield [57]. Therefore, at the V6 to V8 growth stages, it is early enough
to estimate N status indicators to make N recommendations. Moreover, assessment of
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N during the rest of the vegetative growth phase would provide a valuable indication of
expected yield and grain quality. Thus, continuous monitoring of crop N during all growth
phases could be of important meaning [58]. Two later growth stages were also included in
maize N status evaluation in this study.

4.2.1. Limitations for Developing General Models

Successful establishment of reliable relationships between sensor readings and plant N
status indicators, especially across site-years and growth stages, may be affected by various
factors such as experimental and environmental variables [32,33]. Multiplex indices were
less related to N status indicators with lower R2 values at the V6 growth stage, compared
with other growth stages. This might have resulted from the relatively poor capacity in
N variation differentiation of these fluorescence indices within the range of 180 to 300 kg
ha−1 at this growth period discussed above. Most of the direct linear relationships within
each year were quite good and significant at the p < 0.001 level (Table 4), indicating the
applicability and potential of the tested fluorometric sensor for estimating N-related crop
indicators in a single environment.

Inconsistent variations in most of the Multiplex indices and N status indicators re-
sulted in evidently lower R2 values at the V6 and V8 growth stages. Changes in these
variables were small at the VT growth stage, leading to similarly high R2 values for individ-
ual years and across years. When using data collected from all growth stages across the two
years, the results of the SR models based on single raw Multiplex indices were unsatisfac-
tory. The major challenges of developing crop stress detection algorithms throughout the
season and across spaces have been summarized by Pinter et al. [59]. Recently, Berger et al.
also pointed out the necessity to take the time factor into account [8]. As environmental
conditions (such as temperature) change over time, they might be the key determinants of
fluorescence emission by influencing pigment contents in leaves [60,61].

The superiority of NBI as a reliable and robust indicator for crop N status assessment
has been demonstrated in previous studies [18,22,23,25]. In this study, the high sensitivity
for detecting N variations and the high R2 in the SR linear relationships related to NBIs
also strongly supported this conclusion. It has been suggested that a single fluorescence
index may not always be enough to yield good N status estimates over the entire crop
growth period in different years, while combining indices and spectral mixing analysis
is a potential way to overcome this limitation [62,63]. Considering the similar or better
performance of some other fluorescence indices in several cases (Table 4, Table 6, and Table
8), data fusion methods may perform better and should be further explored.

4.2.2. Comparison of Different Regression Models

To reduce the influence of different years and growth stages on the general model,
GDD was adopted to identify temporal changes in our study. With the advantages of
simple structure and few input parameters, the SR method was prioritized in this study,
due to its popularity and ease of use. As revealed by previous studies [35,47], PNC showed
a significant decreasing trend while PNU showed a significant increasing trend as maize
growth. However, the values of Multiplex indices were relatively stable at different growth
stages. The GDD is a good indicator of crop growth and development during the growing
period. In addition, the crops may display changed physiological status and influence
the relationships between crop N status and sensing parameters in different years even
at the same growth phase [64,65], partly due to weather conditions [32]. The combination
of GDD using multiplication or division method could help to increase the variation of
Multiplex indicators at different growth stages just like the PNC and PNU, and help
to identify the seasonal variation at the same time. Therefore, satisfactory results were
observed when estimating PNC and PNU using the SR models (Tables 6 and 8). The GDD
information may not be needed for seasonally stable N indicators, such as NNI, which had
good correlations with Multiplex indices across years and growth stages (Tables 4 and 5).
Another normalization method, the calculation of NSI, was suggested to be useful for
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reducing the influence of external factors and maintaining the stability of sensing indices
throughout the season and across years [18,66,67]. The NSI normalization was therefore
employed in the establishment of SR models for NNI estimation. In general, significant
improvements of estimation power were achieved for all three N status indicators using
the SR models by modifying the sensing indices. Nevertheless, some PNU values were
apparently overfitted (Figure 4b), and the accuracy of the validation results was not
satisfactory as the density curves of the estimated values differed greatly from those of the
observed values (Figure 5).

Hence, the MLR and RFR methods based on data fusion were further explored for N
assessment. For the developed MLR models, GDD showed a minor role in the functions
with significantly lower coefficients among all variables (Table 7). In addition, although
multiple variables were combined, the MLR models performed the worst and had the least
accurate estimation of N status indicators, and failed to diagnose N status (Table 9). In this
study, fluorescence indices accounted for most of the input variables (six out of seven). In
this case, collinearity was more likely to occur, and, therefore, the estimation ability was
lower. Although GDD led to a simple changing trend over time, it concealed the impacts
of other factors, and the MLR models failed to capture the resulting variability. These may
lead to non-linear relationships between each N status indicator and the combination of
these sensing indices and GDD, which is not suitable to be simulated by MLR functions.

As an attractive and powerful machine learning method, RFR model has strong capa-
bilities in processing large numbers of input variables and exploring complex relationships
between spectral signatures and crop N status indicators using non-linear regression algo-
rithms. Thus, it is easy to understand the optimal accuracy in maize N status estimation
achieved by the RFR models (Table 7, Table 9 and Figure 4). Furthermore, the higher im-
portance of GDD among all the variables in the RFR models further verified the potential
of introducing GDD to characterize crop N status under various environmental conditions
at different times, as stated in previous studies [32,68,69]. Nevertheless, compared with SR
models based on the modified fluorescence indices, the improvements of R2, RMSE, and
RE in the validation results using the RFR modeling were not very remarkable (Figure 4).
However, obvious better distributions of the points that were closer to the 1:1 line were
found in the scatter plots based on the validation results of all three N indicators using the
RFR method (Figure 4), and the density curves of the observed N status values estimated
by RFR models were most similar to those of the observed N status values, although
with some discrepancies (Figure 5). However, it should be noted that a relatively small
dataset was used for model testing (n = 126) and training (n = 252). The RFR algorithm
has been proven to be efficient in processing massive data [39,70]. Therefore, higher RFR
model validation accuracy and Kappa value might be achieved when using a larger dataset.
Furthermore, NNI seemed to be most difficult to be estimated well with the lowest accuracy.
This was true for all three modeling approaches (Figure 4). Although ranked second in
NNI estimation, the importance of GDD was not remarkably different from other sensing
variables (Table 7). More input variables may need to be included to improve the prediction
of NNI as well as other N status indicators.

5. Conclusions

This study examined and verified that the fluorescence sensor Multiplex is a promising
tool for N variability detection and N nutritional status estimation in maize. The Multiplex
indices (ratios of signals from separate detectors) were more suitable to distinguish plants
under different N treatments than the data from the individual detectors. Moreover,
the optimal N status monitoring capacity was achieved as early as the V6 growth stage.
Normalizing the fluorescence indices by GDD was an efficient method to reduce the
influence of different years and growth stages. The MLR models did not estimate PNC,
PNU, and NNI well across years and growth stages through data fusion of Multiplex
indices and GDD, while the SR models based on modified fluorescence indices provided
acceptable validation results. In contrast, the non-linear RFR approach showed the most
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reliable and robust performance and achieved the best estimation power. More research
is needed to further improve the RFR models using a larger set of input variables as well
as more sampling points for maize N status estimation across diverse conditions using
fluorescence sensing technologies.
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