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Abstract: Image super-resolution (SR) technology aims to recover high-resolution images from
low-resolution originals, and it is of great significance for the high-quality interpretation of remote
sensing images. However, most present SR-reconstruction approaches suffer from network training
difficulties and the challenge of increasing computational complexity with increasing numbers of
network layers. This indicates that these approaches are not suitable for application scenarios with
limited computing resources. Furthermore, the complex spatial distributions and rich details of
remote sensing images increase the difficulty of their reconstruction. In this paper, we propose the
pyramid information distillation attention network (PIDAN) to solve these issues. Specifically, we
propose the pyramid information distillation attention block (PIDAB), which has been developed
as a building block in the PIDAN. The key components of the PIDAB are the pyramid information
distillation (PID) module and the hybrid attention mechanism (HAM) module. Firstly, the PID
module uses feature distillation with parallel multi-receptive field convolutions to extract short-
and long-path feature information, which allows the network to obtain more non-redundant image
features. Then, the HAM module enhances the sensitivity of the network to high-frequency image
information. Extensive validation experiments show that when compared with other advanced
CNN-based approaches, the PIDAN achieves a better balance between image SR performance and
model size.

Keywords: attention mechanism; feature distillation; remote sensing; super-resolution

1. Introduction

High-resolution (HR) remote sensing imagery can provide rich and detailed infor-
mation about ground features and this has led to it being widely used in various tasks,
including urban surveillance, forestry inspection, disaster monitoring, and military object
detection [1]. However, it is difficult to guarantee the clarity of remote sensing images
because it can be restricted by the imaging hardware, transmission conditions, and other
factors. Considering the high cost and time-consuming research cycle of hardware sensors,
the development of a practical and inexpensive algorithm for HR imaging technology in
the field of remote sensing is in great demand.

Single-image super-resolution (SISR) [2] aims to obtain an HR image from its corre-
sponding low-resolution (LR) counterpart by using the intrinsic relationships between the
pixels in an image. Traditional SISR methods can be roughly divided into three main cate-
gories: Interpolation- [3,4], reconstruction- [5,6], and example learning-based methods [7,8].
However, these approaches are not suitable for image SR tasks in the remote sensing field
because of their limited ability to capture detailed features and the loss of a large amount
of high-frequency information (edges and contours) in the reconstruction process.

With the flourishing development of deep convolutional neural networks (DCNNs)
and big-data technology, promising results have been obtained in computer vision tasks.
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Because of their end-to-end training strategy and powerful feature-reconstruction abil-
ity, DCNNs have been extensively applied in the domain of SR reconstruction in recent
years [9–14]. Dong et al. [9] successfully introduced a CNN into the SR reconstruction
task using a simple three-layer neural network, and they demonstrated that CNNs can
directly learn end-to-end nonlinear mappings from LR images to their corresponding HR
counterparts, achieving good results without the need for the manual features required by
traditional methods. Kim et al. [10] proposed a 20-layer network for predicting residual
images, and they verified that the SR model performance improves significantly when
the number of structure layers is increased. Furthermore, Lim et al. [11] expanded the
network to 69 layers by stacking more residual blocks, and this uses more features from
each convolution layer to restore the image. Zhang et al. [12] designed a network using
more than 400 layers, and this achieved obvious improvements for SISR by embedding a
channel attention mechanism (CAM) [15] module into the residual block. Inspired by [9],
Zeng et al. [14] employed two autoencoders to automatically extract hidden representations
in LR and HR image patches. These methods have obtained promising results in SISR tasks
however, there are still some limitations among CNN-based methods for the task of remote
sensing SR reconstruction.

Firstly, the depth of the CNNs is important for image SR however, deeper networks
are more difficult to train and require much greater computing resources. Moreover, this
may result in the SR effect becoming saturated or even degraded, which illustrates that it
is crucial to design a rational and efficient network that has a good balance between SR
quality and model complexity.

Secondly, remote sensing images are more complex in terms of the spatial distribution
of features and are richer in detailed information than natural images; moreover, the
objects in remote sensing images have a relatively wide range of scales, which results in a
requirement for the model to have a high restoration ability in high-frequency regions [16].
However, most existing CNN-based methods ignore the differing importance of different
spatial areas, and this hinders the recovery of high-frequency information.

Thirdly, as the depth of a CNN increases, the feature information obtained in the
different convolutional layers will be hierarchical in different receptive fields. Traditionally,
a small-sized convolution kernel can extract low-frequency information, but this is not
sufficient for the extraction of more detailed information. The work of [17] shows that
applying convolutional layers with different receptive fields in the same layer can ensure
the acquisition of low-frequency and high-frequency details of the source image. Therefore,
the selection of suitable of receptive field and better utilization of hierarchical features
should be considered when designing an SR network.

To address the urgent issues noted above, we propose a novel remote sensing SR
image reconstruction network called a pyramid information distillation attention network
(PIDAN), which includes a carefully designed pyramid information distillation attention
block (PIDAB) that was inspired by information distillation networks (IDNs) [18]. An IDN
reduces the network parameters by compressing the dimensions of its feature map, which
increases the speed of processing while guaranteeing the restoration results. However, the
ability of an IDN to differentially exploit different locations and channel features is still
insufficient [19], which limits the further improvement of SR performance. Considering
this, the PIDAB adopts a strategy of feature distillation, and its structure combines a
pyramid convolution block and an attention mechanism.

A PIDAN consists of a shallow feature-extraction part, several PIDABs, and a re-
construction part. Each PIDAB is a single deep feature-extraction unit, and this contains
a pyramid information distillation (PID) module, a hybrid attention mechanism (HAM)
module, and a single channel compression (CC) unit. The PID can extract both deep and
shallow features, and the HAM can restore high-frequency detailed information. The PID
module utilizes an enhancement unit (EU) and a pyramid convolution channel split (PCCS)
operation to gradually integrate the local short- and long-path features for reconstruction.
The EU can be divided into two levels according to the inference order. In the first level, we
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use a shallow convolution network to obtain local short-path features. After the first level,
the PCCS extracts the refined features by using convolution layers with different receptive
fields in parallel. Then, a split operation is placed after each convolution layer, and this
divides the feature channel into two parts: One for further enhancement in the second
level to obtain long-path features, and another to represent reserved short-path features. In
the second level of the EU, the HAM utilizes the short-path feature information by fusing
a CAM and a spatial attention mechanism (SAM). Specifically, unlike the structure of a
convolutional block attention module (CBAM) [20], in which the spatial feature descriptors
are generated along the channel axis, our CAM and SAM are parallel branches that operate
on the input features simultaneously. Finally, the CC unit is used for achieving a reduction
of the channel dimensionality by taking advantage of a 1 × 1 convolution layer, as used in
an IDN.

In summary, the main contributions of this work are as follows:

(1) Inspired by IDNs, we constructed an effective and convenient end-to-end trainable
architecture, PIDAN, which is designed for SR reconstruction of remote sensing
images. Our PIDAN structure consists of a shallow feature-extraction part, stacked
PIDABs, and a reconstruction part. Compared with an IDN, a PIDAN recovers more
high-frequency information.

(2) Specifically, we propose the PIDAB, which is composed of a PID module, a HAM module,
and a single CC unit. Firstly, the PID module uses an EU and a PCCS operation to
gradually integrate the local short- and long-path features for reconstruction. Secondly,
the HAM utilizes the short-path feature information by fusing a CAM and SAM in
parallel. Finally, the CC unit is used for achieving channel dimensionality reduction.

(3) We compared our PIDAN with other advanced SISR approaches using remote
sensing datasets. The extensive experimental results demonstrate that the PIDAN
achieves a better balance between SR performance and model complexity than the
other approaches.

The remainder of this paper is organized as follows. Section 2 introduces previous
works on CNN-based SR reconstruction algorithms and attention mechanism methods.
Section 3 presents a detailed description of the PIDAN, Section 4 presents a verification of
its effectiveness by experimental comparisons, and Section 5 concludes our work.

2. Related Works
2.1. CNN-Based SR Methods

The basic principle of SR methods based on deep learning technology is to establish a
nonlinear end-to-end mapping relationship between an input and output through a multi-
layer CNN. Dong et al. [9] were the first to apply a CNN to the image SR task, producing a
system named SRCNN. This uses a bicubic interpolation operation to enlarge an LR image
to the target size, then it fits the nonlinear mapping using three convolution layers before
finally outputting an HR image. The SRCNN system provides great improvement in the SR
quality when compared with traditional algorithms, but its training speed is very low. Soon
after this, Dong et al. [21] reported the Faster-SRCNN, which increases the speed of SRCNN
by adding a deconvolution layer. Inspired by [9], Zeng et al. [14] developed a data-driven
model named, coupled deep autoencoder (CDA), which automatically learns the intrinsic
representations of LR and HR image patches by employing two autoencoders. Shi et al. [22]
investigated how to directly input an LR image into the network and developed the efficient
sub-pixel convolutional neural network (ESPCN), which reduces the computational effort
of the network by enlarging the image through the sub-pixel convolution layer, and this
improves the training speed exponentially. The network structures of the above algorithms
are simple and easy to implement. However, due to the use of a large convolution kernel,
even a shallow network requires the calculation of a large number of parameters. Training
is therefore difficult when the network is deepened and widened, and the SR reconstruction
is thus not effective.
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To reduce the difficulty of model training, Kim et al. [10] deepened the network to
20 layers using a residual-learning strategy [23]; their experimental results demonstrated
that the deeper the network, the better the SR effect. Then, Kim et al. [24] proposed a
deeply recursive convolutional network (DRCN), which applies recursive supervision
to make the deep network easier to train. Based on DRCN, Tai et al. [25] developed a
deep recursive residual network (DRRN), which introduces recursive learning into the
residual branch, and this deepens the network without increasing computational effort
and speeds up the convergence. Lai et al. proposed the deep Laplacian super-resolution
network (LapSRN) [26], which predicts the sub-band residuals in a coarse-to-fine fashion.
Tong et al. [27] employed the dense connected convolutional networks, which allows
the reuse of feature maps from preceding layers, and alleviates the gradient vanishing
problem by facilitating the information flow in the network. Zhang et al. [28] proposed
a deep residual dense network (RDN), which combines the residual skip structure with
the dense connections, and this fully utilizes the hierarchical features. Lim et al. [11] built
an enhanced deep SR network (EDSR), which constructs a deeper CNN by stacking more
residual blocks, and this takes more features from each convolution layer to restore the
image. The EDSR expanded the network to 69 layers and won the NTIRE 2017 SR challenge.
Yu et al. [29] proposed a wide activation SR (WDSR) network, which shows that simply
expanding features before the rectified linear unit (ReLU) activation results in obvious
improvements for SISR. Based on EDSR, Zhang et al. [12] built a deep residual channel
attention network (RCAN) with more than 400 layers, and this achieves promising results
by embedding the channel attention [15] module into the residual block. It is noteworthy
that while increasing the network’s depth may improve the SR effect, it also increases
the computational complexity and memory consumption of the network, which makes it
difficult to apply these methods to lightweight scenarios such as mobile terminals.

Considering this issue, many researchers have focused on finding a better balance
between SR performance and model complexity when designing a CNN. Ahn et al. [30] pro-
posed a cascading residual network (CARN), which was designed to be a high-performing
SR model that implements a cascading mechanism to fuse multi-layer feature information.
The IDN, which is a concise but effective SR network, was proposed by Hui et al. [18],
and this uses a distillation module to gradually extract a large number of valid features.
Profiting from this information distillation strategy, IDN achieves good performance at
a moderate size. However, IDN treats different channel and spatial areas equally in LR
feature space, and this restricts its feature representation ability.

2.2. Attention Mechanisms

For human perception, attention usually refers to the human visual system focusing
on salient regions and adaptively processing visual information. Recently, many visual
recognition tasks have tended to embed attention modules with networks to improve their
performance. Hu et al. [15] proposed the squeeze-and-excitation network (SENet), which
captures feature relationships by explicitly modeling interdependencies between channels.
This ranked first in the ILSVRC 2017 classification competition. Motivated by SENet,
Woo et al. [20] created the CBAM, which includes a SAM that can adaptively allocate
weights in different spatial locations. Using the classical non-local means method [31],
Wang et al. [32] developed a non-local (NL) block that can be plugged into a neural network.
This uses a self-attention mechanism to directly model long-range dependencies instead of
adopting multiple convolutions to obtain feature information with a larger receptive field.
The NL block can thus provide rich semantic information for a network. Cao et al. [33]
developed a global context block, which combines the simplified NL block and the squeeze-
and-excitation (SE) block of SENet to reduce the computational effort while making full
use of global contextual information.

Recently, several works have focused on introducing attention mechanisms to the
SISR task. Inspired by SENet [15], Zhang et al. [12] produced the RCAN, which enhances
the representation ability by using the channel attention mechanism to differentially treat
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the feature channels in each layer so that the reconstructed image contains more texture
information. Zhang et al. [34] built a very deep residual non-local attention network, which
includes residual local and non-local attention blocks as the basic building modules. This
improves the local and non-local information learning ability using the hierarchical features.
Anwar et al. [35] proposed a densely residual Laplacian network, which replaces the CAM
with a proposed Laplacian module to learn features at multiple sub-band frequencies.
Guo et al. [36] proposed a novel image SR approach named the multi-view aware attention
network. This applies locally and globally aware attention to unequally deal with LR
images. Dai et al. [37] proposed a deep second-order attention network, in which a
second-order channel attention mechanism captures feature inter-dependencies by using
second-order feature statistics. Hui et al. [38] proposed a contrast-aware channel attention
mechanism, and this is particularly suited to low-level vision tasks such as image SR
and image enhancement. Zhao et al. [39] proposed a pixel attention mechanism, which
generates three-dimensional attention maps instead of a one-dimensional vector or a two-
dimensional map, and this achieves better SR results with fewer additional parameters.
Wang et al. [40] built a spatial pyramid pooling attention module via integrating the
channel-wise and multi-scale spatial information, which is beneficial for capturing spatial
context cues and then establishing the accurate mapping from low-dimension space to
high-dimension space.

Considering that the previous promising results have benefited from the introduc-
tion of an attention mechanism, we propose PIDAN, which also includes an attention
mechanism, to focus on extracting high-frequency details from images.

3. Methodology

In this section, we will describe PIDAN in detail. An overall graphical depiction of
PIDAN is shown in Figure 1. Firstly, we will give an overview of the proposed network
architecture. After this, we will present each module of the PIDAB in detail. Finally, we
will give the loss function used in the training process. Here, we denote an initial LR input
image and an SR output image as ILR and ISR, respectively.

Figure 1. Overview of the PIDAN network structure.

3.1. Network Architecture

As shown in Figure 1, the PIDAN approach consists of a shallow feature-extraction
part, a deep feature-extraction part (stacked PIDABs), and a reconstruction part. As with
the operation of an IDN, the shallow features F0 are extracted from the LR input via two
convolutional layers:

F0 = HSF(ILR), (1)

where HSF(·) denotes two convolutional layers with a kernel size of 3 × 3 to extract C
initial feature maps. The resulting F0 contributes to the next deep feature-extraction part
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using the PIDABs. Moreover, the proposed PIDAB can be regarded as a basic component
for residual feature extraction. The operation of the n-th PIDAB can be defined as:

Fb,n = HPIDAB,n(Fb,n−1), (2)

where HPIDAB,n(·) denotes the function of the n-th PIDAB, and Fb,n−1 and Fb,n are the
inputs and outputs of the n-th PIDAB, respectively.

After obtaining the deep features of the LR images, an up-sampling operation aims
to project these features into the HR space. Previous approaches, such as EDSR [11],
RCAN [12], and the information multi-distillation network (IMDN) [38] have shown that
a sub-pixel [22] convolution operation can reserve more parameters and achieve a better
SR effect than other up-sampling approaches. Considering this, we used a transition layer
with a 3 × 3 kernel and a sub-pixel convolution layer as our reconstruction part. This
operator can be expressed as:

Fup = Hsubpixel(HA(Fb,N)), (3)

where HA(·) denotes a convolutional layer with a convolution kernel size of 3 × 3,
Hsubpixel(·) denotes a sub-pixel convolution, Fb,N is the output of the last PIDAB, and
Fup is the upscaled feature maps.

Finally, using the idea of global residual learning [23], the output of the PIDAN ISR is
estimated by combining the up-sampled image Fup with the interpolated image using an
element-wise summation. This can be formulated as:

ISR = Fup + Hbicubic(ILR), (4)

where Hbicubic(·) denotes the bicubic interpolation operation.

3.2. PIDAB

In this section, we will present a description of the overall structure using a PIDAB.
Figure 2 compares the PIDAB with the original IDB in an IDN. As noted, the PIDAB was
developed using a PID module, a HAM module, and a CC unit. The PID module can
extract both deep and shallow features, and the HAM module can restore high-frequency
detailed information.

Figure 2. Illustrations of (a) original IDB structure of an IDN and (b) the PIDAB structure in a PIDAN.
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3.2.1. PID Module

As shown in Figure 2b, the PID module consists of two parts: An EU and a PCCS com-
ponent. The EU can be roughly divided into two modules, the upper shallow convolution
network and the lower shallow convolution network. Each module has three cascaded
convolutional layers with a convolution kernel size of 3 × 3; each of these is followed by a
leaky rectified linear unit (LReLU) activation function, which is omitted here. We label the
feature map dimensions of the i-th layer as Mi (i = 1, · · · , 6), and the relationship among
the upper three convolutions can be formulated as:

M3 −M1 = M1 −M2 = m, (5)

where m denotes the difference between the first layer and second layer or between the first
layer and third layer. Simultaneously, the relationship among the lower three convolution
layers can be described as:

M4 −M5 = M6 −M4 = m, (6)

where M4 = M3. Supposing the input of this module is Fb,n−1, we have:

Pn
1 = Ca(Fb,n−1), (7)

where Fb,n−1 denotes the output of the (n − 1)-th PIDAB (which is also the input of the n-th
PIDAB), Ca(·) denotes the upper shallow convolution network in the enhancement unit,
and Pn

1 denotes the output of the upper shallow convolution network in the n-th PIDAB.
As shown in Figure 2a, in the original IDN, the output of the upper cascaded convo-

lutional layers is split into two parts: One for further enhancement in the lower shallow
convolution network to obtain the long-path features, and another to represent reserved
short-path features via concatenation with the input of the current block. In PIDAN,
to obtain more non-redundant and extensive feature information, a feature-purification
component with parallel structures was designed.

The convolutional layers in the CNN can extract local features from a source image by
automatically learning convolutional kernel weights during the training process. There-
fore, choosing an appropriate size of convolution kernel is crucial for feature extraction.
Traditionally, a small-sized convolution kernel can extract low-frequency information, but
this is not sufficient for the extraction of more detailed information. Considering this, the
PCCS component is proposed to extract the features of multiple receptive fields. In the
pyramid structure, the size of the convolution kernel of each parallel branch is different,
which allows the network to perceive a wider range of hierarchical features. As presented
in Figure 3, the PCCS component is built from three parallel feature-purification branches
and two feature-fusion operations.

Figure 3. Structure of PCCS component.
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For a PCCS component, assuming that the given input feature map is Pn
1 ∈ RC×W×H ,

the pyramid convolution layer operation is applied to the extraction of refined features
with different kernel sizes. The split operation is performed after each feature-refinement
branch, and this can split the channel into two parts. The process can be formulated as:

Fn
distilled_1, Fn

remaining_1 = Split(CL3
1(Pn

1 )), (8)

Fn
distilled_2, Fn

remaining_2 = Split(CL5
2(Pn

1 )), (9)

Fn
distilled_3, Fn

remianing_3 = Split(CL7
3(Pn

1 )), (10)

where: CLk
j (·) denotes the j-th convolution layer (including an LReLU activation unit) with

a convolution kernel size of k × k; Split(·) denotes a channel-splitting operation similar to
that used in an IDN; and Fn

distilled_j denotes the j-th distilled features; Fn
remaining_j denotes

the j-th coarse features that will be further processed by the lower shallow convolution
network in the n-th PIDAB, specifically, the number of channels of Fn

distilled_j is defined as
C
s , therefore the number of channels of Fn

remianing_j is set to
(

c− C
s

)
.

All the distilled features and remaining features are then respectively added together:

Fn
distilled = Fn

distilled_1 + Fn
distilled_2 + Fn

distilled_3, (11)

Fn
remaining = Fn

remaining_1 + Fn
remaining_2 + Fn

remianing_3. (12)

Then, as shown in Figure 2b, Fn
distilled will be concatenated with the input of the current

PIDAB to obtain the retained short-path features:

Rn = fconcat(Fn
distilled, Fb,n−1), (13)

where fconcat(·) denotes the concatenation operator, and Rn denotes partially retained local
short-path information. We take Fn

remaining as the input of the lower shallow convolution
network, which obtains the long-path feature information:

Pn
2 = Cb(Fn

remaining), (14)

where Pn
2 and Cb(·) denote the output and cascaded convolution layer operations of the

lower shallow convolution network, respectively. As shown in Figure 2a, in the initial
IDB structure of an IDN, the reserved local short-path information and the long-path
information are summed before the CC unit. In PIDAN, to fully utilize the local short-path
feature information, we embed an attention mechanism module to enable the network
to focus on more useful high-frequency feature information and improve the SR effect.
Therefore, before the CC unit, the fusion of short-path and long-path feature information
can be formulated as:

Pn = Pn
2 + HAM(Rn), (15)

where HAM(·) denotes the hybrid attention mechanism operation, which will be illustrated
in detail in the next subsection.

3.2.2. HAM Module

In an IDN, the information distillation module is used to gradually extract a large
number of valid features, and the intention of the channel-split operation is to combine
short- and long-path hierarchical information. However, an IDN treats different channels
and spatial areas equally in LR feature space, which restricts the feature representation
ability of the network. Moreover, if sufficient features are not extracted in the short path,
information learned later will also become inadequate. Considering that an attention
mechanism can make a network pay more attention to high-frequency information, which
is beneficial for the SR reconstruction task, we further utilize the extracted short-path
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features by fusing a CAM and SAM to construct a HAM, which makes the split operation
yield better performance. Specifically, unlike the structure of a CBAM [20], in which the
spatial feature descriptors are generated along the channel axis, our SAM and CAM are
parallel branches that operate on the input features simultaneously. In this way, our HAM
makes maximum use of the attention mechanism through self-optimization and mutual
optimization of the channel and spatial attention during the gradient back-propagation
process. The formula of the HAM is:

HAMF(F) = CAM(F) ⊗ SAMF(F) + F, (16)

where: F denotes the input of the HAM; and CAM(·), SAM(·), and HAM(·) respectively
denote the CAM, SAM, and HAM functions. Here ⊗ denotes element-wise multiplication
between the CAM and SAM functions. Like an RCAN, short-skip connections are added
to enable the network to directly learn more complex high-frequency information while
improving the ease of model training. The structure of the HAM is presented in Figure 4.

Figure 4. Overview of the HAM.

Channel Attention Mechanism

The high performance of CNNs for feature extraction has been demonstrated however,
the standard convolution kernel treats different channels equally and is restricted by its
convolutional calculation being translation invariant. This makes it difficult for the network
to use contextual information to effectively learn features. A previous report has shown
that the attention mechanism can help capture channel correlations between features [15].
In PIDAN, by following RCAN [12], we consider channel-wise information by using the
global pooling average operation, which can transform the information in the global space
into channel descriptors.

Suppose the input features F have C channels with size H×W (as shown in Figure 4).
The global average pooling operation is adopted to obtain the channel descriptor (one-
dimensional feature vector) of each feature map:

GAP(C, 1, 1) =
1

H ×W

H

∑
i=1

W

∑
j=1

F(C, H, W). (17)

After the pooling operation, we use a similar perceptron network as that used in a
CBAM [20] to fully learn the nonlinear interactions between different channels. Specifi-
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cally, we replace ReLU with LReLU activation. The calculation process of the CAM can
be described:

CAM(F) = Sigmoid[W1×1
U (LReLU(W1×1

D (GAP(F))))]⊗ F, (18)

where: W1×1
D and W1×1

U denote the weight matrices of two convolution layers with a
kernel size of 1 × 1, in which the channel dimensions of the features are defined as C/r
and C, respectively; SIGMOID[·] and LReLU(·) denote the sigmoid and LReLU functions,
respectively; and ⊗ denotes element-wise multiplication.

Spatial Attention Mechanism

Generally, the LR images have rich low-frequency information and valuable high-
frequency information components. The difference between low-frequency information
and high-frequency information is that the former is generally flat, while the latter is
usually filled with edges, textures, and details in certain areas. Compared to low-frequency
information, high-frequency information is usually more difficult to restore in the image
SR task. Moreover, remote sensing images are more complex in their spatial distribution
and richer in detailed information than natural images, which means that the designed SR
network needs to show adequate perception of the high-frequency information regions.
However, existing CNN-based algorithms usually ignore the variability of different spatial
locations, and this tends to weaken the weight of high-frequency information. Considering
this, in PIDAN, the SAM is designed to emphasize the attention to high-frequency areas,
thus improving the accuracy of the SR algorithm.

As shown in Figure 4, we produce two efficient two-dimensional spatial feature
descriptors by performing average-pooling and max-pooling operations:

AvgPool(1, H, W) =
1
C

C

∑
k=1

F(C, H, W), (19)

MaxPool(1, H, W) = max
k={1,··· ,k,··· ,C}

F(C, H, W). (20)

These two spatial feature descriptors are then concatenated and convolved by a
standard convolution layer, producing the spatial attention map. The calculation process
of the SAM can be described as:

SAM(F) = Sigmoid[W7×7
C (Concat(AvgPool(F), MaxPool(F)))], (21)

where: Concat(·) denotes the feature-map concatenation operation; W7×7
C (·) denotes the

weight matrix of a convolution layer with a kernel size of 7 × 7, which reduces the channel
dimensions of the spatial feature maps to one; Sigmoid[·] denotes the sigmoid function;
and ⊗ denotes element-wise multiplication.

3.2.3. CC Unit

We realize the channel dimensionality reduction by taking advantage of a 1 × 1
convolution layer. Thus, the compression unit can be expressed as:

Fb,n = W1×1
CU (Pn), (22)

where: Pn denotes the result of the fusion of short- and long-path feature information in
the n-th PIDAB; Fb,n denotes the output of the n-th PIDAB; and W1×1

CU ⊗ denotes the weight
matrix of a convolution layer with a kernel size of 1 × 1, which compresses the number of
channels of features to be consistent with the input of the n-th PIDAB.

Table 1 presents the network structure parameter settings of a PIDAB. It should be
noted that: C is defined as 64 in line with an IDN; in the PID module, we set m as 16, and
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we define s as 4; and in the HAM module, the reduction ratio r is set as 16, consistent with
an RCAN.

Table 1. PIDAB block parameter settings.

Structure Component Layer Input Output

M1 Conv3 × 3 H ×W × 64 H ×W × 48
M2 Conv3 × 3 H ×W × 48 H ×W × 32
M3 Conv3 × 3 H ×W × 32 H ×W × 64

PCCS

Conv3 × 3 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Conv5 × 5 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Conv7 × 7 H ×W × 64 H ×W × 64
Split H ×W × 64 H ×W × 48, H ×W × 16

Sum H ×W × 48, H ×W × 48, H
×W × 48 H ×W × 48

Sum H ×W × 16, H ×W × 16, H
×W × 16 H ×W × 16

Concat H ×W × 64, H ×W × 16 H ×W × 80

HAM

GAP H ×W × 80 1 × 1 × 80
Conv1 × 1 1 × 1 × 80 1 × 1 × 5
Conv1 × 1 1 × 1 × 5 1 × 1 × 80
Multiple H ×W × 80, 1 × 1 × 80 H ×W × 80

AvgPool H ×W × 80 H ×W × 1
MaxPool H ×W × 80 H ×W × 1
Concat H ×W × 1, H ×W × 1 H ×W × 2

Conv7 × 7 H ×W × 2 H ×W × 1
Multiple H ×W × 80, H ×W × 1 H ×W × 80

Sum H ×W × 80, H ×W × 80, H
×W × 80 H ×W × 80

M4 Conv3 × 3 H ×W × 48 H ×W × 64
M5 Conv3 × 3 H ×W × 64 H ×W × 48
M6 Conv3 × 3 H ×W × 48 H ×W × 80

Sum H ×W × 80, H ×W × 80 H ×W × 80

CC unit Conv1 × 1 H ×W × 80 H ×W × 64

3.3. Loss Function

In our approach, the gradient is updated by minimizing the difference between the
reconstruction result and the real image. The loss function is one of the key factors affecting
the performance of the network, and there are two commonly used loss functions in
CNN-based SR algorithms, namely the L1 norm [11,18] and L2 norm [27]. Compared to
the L2 norm, the L1 norm loss function tends to perceive more high-frequency detailed
information and results in higher-quality test metrics. In line with the IDN approach [18],
the minimum loss function was formulated as:

L(Θ) =
1
N

N
Σ

i=1
‖HPIDAN(Yi; Θ)− Xi‖1, (23)

where: N denotes the number of input images; HPIDAN(·) denotes the PIDAN network
reconstruction process; Yi denotes the reconstructed image; Θ = {Wi,bi}, which denote the
weight and bias parameters that the network needs to learn; Xi denotes the corresponding
HR image; and ‖·‖1 denotes the L1 norm.
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4. Experiments and Results

In this section, firstly, we demonstrate the experimental settings, including datasets,
evaluation metrics, and training implementation details. Then, we report the experimental
results and correlation analysis.

4.1. Settings
4.1.1. Dataset Settings

Following the previous work [41], we used the recently popular Aerial Image Dataset
(AID) [42] for training. We augmented our training dataset using horizontal flipping,
vertical flipping, and 90◦ rotation strategies. During the tests, to evaluate the trained
SR model, we used two available remote sensing image datasets, namely, the NWPU
VHR-10 [43] dataset and the Cars Overhead With Context (COWC) [44] dataset. In our
experiments, the AID, NWPU VHR-10, and COWC datasets consisted of 10,000, 650, and
3000 images, respectively. Specifically, for the fast validation of the convergence speed of
SR models, we constructed a new data set called FastTest10, which consists of 10 randomly
selected samples from the NWPU VHR-10 dataset. The LR images were obtained by
downsampling the corresponding HR label samples through bicubic interpolation with
×2, ×3, and ×4 scale factors. Some examples from each of these remote sensing datasets
are shown in Figure 5.

Figure 5. Examples of images in the three remote sensing datasets. In order, the top–bottom lines show samples from the
AID, NWPU VHR-10, and COWC datasets.

4.1.2. Evaluation Metrics

We adopted the average peak signal-to-noise ratio (PSNR) [45] and structural similarity
(SSIM) [46] as the SR reconstruction evaluation metrics. The PSNR measures the quality of
an image by calculating the difference in pixel values between the reconstructed image and
original HR image. The PSNR indicator mainly judges the similarity of the images from the
perspective of the signal, and it is not completely consistent with human visual perception.
Therefore, the SSIM was adopted because it models image distortion as a combination of
three factors—luminance, contrast, and structure—so as to estimate the degree of similarity
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between two images from the perspective of overall image composition. Larger PSNR and
SSIM values indicate a better SR image reconstruction result that is closer to the original
image. Following the previous work in this field [9], SR is only performed on the luminance
(Y) channel of the transformed YCbCr space.

4.1.3. Implementation Details

All experiments adopted the deep-learning framework PyTorch, and four Nvidia
GTX-2080Ti GPUs were used to train all CNN models. The SR network was optimized
with Adam [47] by setting β1 = 0.9, β2 = 0.999, and ε = 10−8. We set the initial learning
rate to 10−4, and this was decreased by a factor of 10 after every 500 epochs. The training
for PIDAN was iterated for 1500 epochs in total. The batch size was set to 16. Patches
with a size of 48 × 48 were randomly cropped from LR images as the input of the model,
and the corresponding input HR label images were divided into 96 × 96, 144 × 144, and
192 × 192 sizes according to upscaling factors of ×2, ×3, and ×4, respectively.

4.2. Results and Analysis
4.2.1. Comparison with Other Approaches

We compared our PIDAN with the bicubic interpolation, SRCNN [9], very deep super
resolution (VDSR) [10], LapSRN [26], DRCN [24], pixel attention network (PAN) [39],
DRRN [25], WDSR [29], CARN [30], residual feature distillation network (RFDN) [48],
IDN [18], and IMDN [38] approaches. Specifically, for a fair comparison, the number
of PIDABs was set to four in line with the IDN approach. Table 2 shows quantitative
comparisons using the NWPU VHR-10 and COWC datasets. The best performances are
indicated in bold, and the second-best performances are indicated with an underline. Our
PIDAN performed better than all other approaches in most datasets with upscaling factors
of ×2, ×3, and ×4.

Table 2. Quantitative evaluation of PIDAN and other advanced SISR approaches. Bold indicates the optimal performance,
and an underline indicates the second-best performance.

NWPU VHR-10 COWC
Method PSNR/SSIM PSNR/SSIM

×2 ×3 ×4 ×2 ×3 ×4

Bicubic 32.76031/0.8991 29.90444/0.8167 28.28280/0.7524 32.87844/0.9180 29.53540/0.8384 27.72172/0.7725
SRCNN 34.03260/0.9136 30.97869/0.8400 29.20195/0.7793 35.05635/0.9341 31.14172/0.8661 28.99814/0.8058
VDSR 34.46067/0.9196 31.46934/0.8517 29.62497/0.7931 35.81885/0.9401 31.89712/0.8788 29.62051/0.8220

LapSRN 34.24569/0.9169 31.26756/0.8468 29.67748/0.7942 35.48608/0.9375 31.62203/0.8741 29.70046/0.8236
DRCN 34.36621/0.9181 31.31746/0.8476 29.51012/0.7887 35.65558/0.9387 31.67424/0.8751 29.46399/0.8180
PAN 34.48577/0.9199 31.53275/0.8529 29.75737/0.7967 35.86121/0.9403 31.98120/0.8800 29.80853/0.8262

DRRN 34.57956/0.9213 31.59945/0.8548 29.85024/0.8002 36.01337/0.9417 32.08846/0.8820 29.85881/0.8272
WDSR 34.56984/0.9210 31.65636/0.8558 29.87613/0.8003 36.01360/0.9416 32.17758/0.8832 30.00641/0.8305
CARN 34.54988/0.9208 31.59971/0.8545 29.83102/0.7990 35.97727/0.9413 32.07578/0.8817 29.93067/0.8289
RFDN 34.55302/0.9207 31.61688/0.8548 29.81638/0.7984 35.99849/0.9413 32.14530/0.8826 29.91353/0.8285
IDN 34.56317/0.9210 31.61978/0.8550 29.83245/0.7989 35.99732/0.9415 32.12127/0.8823 29.92513/0.8286

IMDN 34.55570/0.9207 31.62651/0.8549 29.81952/0.7984 36.02204/0.9415 32.17454/0.8829 29.95087/0.8291
PIDAN 34.59635/0.9215 31.66433/0.8559 29.87914/0.8005 36.09257/0.9423 32.23239/0.8840 30.00399/0.8303

We take the NWPU VHR-10 dataset as an example. Compared with other SISR
approaches, the PIDAN produces superior PSNR and SSIM values. Under the SR upscaling
factor of ×2, the PSNR of the PIDAN is 0.01679 dB higher than that obtained with the
second-best DRRN method and 0.03318 dB higher than that of the basic IDN; the SSIM of
the PIDAN is 0.0002 higher than that obtained with the second-best DRRN method and
0.0005 higher than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the
PIDAN is 0.00797 dB higher than that of the second-best WDSR method and 0.04455 dB
than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of the second-best
WDSR method and 0.0009 higher than that of the IDN. Under the SR upscaling factor of×4,
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the PSNR of the PIDAN is 0.00301 dB higher than that of the second-best WDSR method
and 0.04669 dB than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of
the WDSR method and 0.0006 higher than that of the IDN.

We take the NWPU VHR-10 dataset as an example. Compared with other SISR
approaches, the PIDAN produces superior PSNR and SSIM values. Under the SR upscaling
factor of ×2, the PSNR of the PIDAN is 0.01679 dB higher than that obtained with the
second-best DRRN method and 0.03318 dB higher than that of the basic IDN; the SSIM of
the PIDAN is 0.0002 higher than that obtained with the second-best DRRN method and
0.0005 higher than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the
PIDAN is 0.00797 dB higher than that of the second-best WDSR method and 0.04455 dB
than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of the second-best
WDSR method and 0.0009 higher than that of the IDN. Under the SR upscaling factor of×4,
the PSNR of the PIDAN is 0.00301 dB higher than that of the second-best WDSR method
and 0.04669 dB than that of the IDN; the SSIM of the PIDAN is 0.0002 higher than that of
the WDSR method and 0.0006 higher than that of the IDN.

Next, we consider the COWC dataset as an example. Under the SR upscaling factor of
×2, the PSNR of the PIDAN is 0.07053 dB higher than that obtained with the second-best
IMDN method and 0.09525 dB higher than that of the basic IDN; the SSIM of the PIDAN is
0.0006 higher than that obtained with the second-best DRRN method and 0.0008 higher
than that of the IDN. Under the SR upscaling factor of ×3, the PSNR of the PIDAN is
0.05481 dB higher than that of the second-best WDSR method and 0.11112 dB higher than
that of the IDN; the SSIM of the PIDAN is 0.0008 higher than that of the second-best WDSR
method and 0.0017 higher than that of the IDN. Under the SR upscaling factor of ×4,
the PSNR and SSIM of the PIDAN are both second-best, and the PSNR of the PIDAN is
0.00242 dB lower than that of the optimal WDSR method and 0.07886 dB higher than that
of the IDN; the SSIM of the PIDAN is 0.0002 lower than that of the optimal WDSR method
and 0.0017 higher than that of the IDN.

Figure 6 shows a comparison of the PSNR values between the PIDAN and DRRN,
WDSR, CARN, RFDN, IDN, and IMDN networks using the FastTest10 dataset in the epoch
range of 0 to 100. Compared to the other methods, the PIDAN converges faster and
achieves better accuracy.

4.2.2. Model Size Analyses

We compared the model sizes of our PIDAN with other DCNN-based approaches.
The results of an upscaling factor of ×2 SR on the COWC test set are shown in Figure 7.
The x axis denotes the SR model size, with M indicating the number of parameters in
millions, and the y axis denoting the average PSNR score. It can be concluded that our
proposed PIDAN achieves an optimal PSNR score with a model parameter that is less
than one-third of that of DRRN. This finding demonstrates that our PIDAN is relatively
lightweight while ensuring a promising SR reconstruction performance.

4.2.3. Visual Effect Comparison

In addition to the comparison of the objective indicators, we also conducted evalu-
ations in terms of the visual results. Figure 8 presents a visual comparison between the
PIDAN and other advanced approaches using image samples from the COWC test sets
with three upscaling factors, ×2, ×3, and ×4. Specifically, in each case, we enlarged a small
rectangle area for a clearer presentation and comparison. As can be seen, the images recon-
structed by the bicubic interpolation algorithm are the most blurred. Figure 8a shows that
the PIDAN obtains more promising results with fewer jaggies and ringing artifacts, and
meanwhile reconstructs clearer image contours than the compared advanced approaches.
In Figure 8b, the reconstructed vehicle result obtained using PIDAN restores sharper edge
details and maintains the maximum structural integrity with less distortion. Figure 8c
shows that the PIDAN can reconstruct the parallel lines more completely and precisely
than the other approaches. The PIDAN also obtains the highest quantitative analysis values
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when compared with the other advanced SISR approaches. These visual results indicate
that our model recovers feature information with rich high-frequency details, producing
better SR results.

Figure 6. Performance curves for PIDAN and other methods using the FastTest10 dataset with scale factors of (a) ×2,
(b) ×3, and (c) ×4.

Figure 7. Comparison of model parameters and mean PSNR values of different DCNN-based methods.



Remote Sens. 2021, 13, 5143 16 of 21

Figure 8. Cont.
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Figure 8. Visual comparison of SR results using samples from the COWC dataset with (a) upscaling factor ×2, (b) upscaling factor ×3,
and (c) upscaling factor ×4.

4.2.4. Analysis of PIDAB

The PIDAB is the most critical aspect of the PIDAN. To demonstrate the necessity of the
PCCS operation and the HAM in the PIDAB, we carried out a set of ablation experiments
on the NWPU VHR-10 and COWC datasets. As shown in Table 3, when we removed
PCCS and HAM, the PSNR scores on the two datasets were 34.55616 and 35.99601 dB,
respectively. When we added the PCCS component, the PSNR scores were 34.58637 and
36.03984 dB; when we added the HAM module, the PSNR scores were 34.57436 and
36.03683 dB, respectively. With the addition of both PCCS and HAM, the PSNR scores
for images from the NWPU VHR-10 and COWC datasets were 34.59635 and 36.09257 dB,
respectively. We can conclude from Table 3 that the network structure with both PCCS and
HAM yields optimal SR reconstruction results.

Table 3. Results of ablation study of PCCS and HAM. Bold indicates optimal performance.

Scale PCCS HAM
NWPU VHR-10 COWC

PSNR/SSIM PSNR/SSIM

×2

× × 34.55616/0.9209 35.99601/0.9415
√ × 34.58637/0.9214 36.03984/0.9419
× √ 34.57436/0.9211 36.03683/0.9417
√ √ 34.59635/0.9215 36.09257/0.9422

The PCCS uses three convolution layers with different kernel sizes in parallel to obtain
more non-redundant and extensive feature information from an image. Table 3 indicates that
the PCCS component leads to performance gains (e.g., 0.03021 dB on NWPU VHR-10 and
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0.04383 dB on COWC). This is mainly due to the PCCS, which makes the network flexible in
processing feature information at different scales. Furthermore, we explored the influence of
different convolution kernel settings in the PCCS components on the SR performance. Table 4
shows the experimental results of different convolution kernel settings with an upscaling
factor of ×2. Broadly, the models with multiple convolutional kernels achieve better results
than those with only a single convolutional kernel, and our PCCS obtains the best results
owing to its three parallel progressive feature-purification branches.

Table 4. Results of comparison experiments using different convolution kernel settings in the PID
component. Bold indicates optimal performance.

Scale
Kernel Size NWPU VHR-10 COWC

3 5 7 PSNR/SSIM PSNR/SSIM

×2

× × × 34.55616/0.9209 35.99601/0.9415
√ × × 34.57641/0.9212 36.02632/0.9418
× √ × 34.57483/0.9212 36.01945/0.9418
× × √ 34.57012/0.9212 36.02009/0.9418
√ √ × 34.57821/0.9212 36.02750/0.9418
√ × √ 34.58540/0.9213 36.03357/0.9419
× √ √ 34.58416/0.9214 36.02602/0.9419
√ √ √ 34.58637/0.9214 36.03984/0.9419

HAM generates more balanced attention information by adopting a structure that has
both channel and spatial attention mechanisms in parallel. Table 3 indicates that the PCCS
component leads to performance gains (e.g., 0.01820 dB on NWPU VHR-10 and 0.04082 dB
on COWC). To further verify the effectiveness of the proposed HAM, we compared HAM
with the SE block [15] and CBAM [20]. The SE block comprises a gating mechanism that
obtains a completely new feature map by multiplying the obtained feature map with the
response of each channel. Compared to the SE block, CBAM includes both channel and
spatial attention mechanisms, which requires the network to be able to understand which
parts of the feature map should have higher responses at the spatial level. Our HAM also
includes channel and spatial attention mechanisms however, CBAM connects them serially
while HAM accesses these two parts in parallel and combines them with the input feature
map in a residual structure. As can be seen from Table 5, the addition of attention modules
can improve the performance to different degrees. The effects of the dual attention modules
are better than that of the SE block, which only adopts a CAM. Moreover, compared with
CBAM, our HAM component leads to performance gains (e.g., 0.01000 dB on NWPU
VHR-10 and 0.00662 dB on COWC). This finding illustrates that connecting a SAM and
CAM in parallel is more effective for feature discrimination. These comparisons show that
HAM in our PIDAB is advanced and effective.

Table 5. Results of comparison experiments using different attention modules. Bold indicates
optimal performance.

Scale Approach NWPU VHR-10 COWC
PSNR/SSIM PSNR/SSIM

×2

/ 34.55616/0.9209 35.99601/0.9415
SE block 34.56088/0.9209 36.02749/0.9416
CBAM 34.56436/0.9211 36.03021/0.9416
HAM 34.57436/0.9211 36.03683/0.9417

4.2.5. Effect of Number of PIDABs

In this subsection, we report the results of adjusting the depth of the network by
simply increasing the number of PIDAB. Specifically, numbers of PIDABs ranging from 4
to 20 were used. Figure 9 shows the performance with different numbers of PIDABs using
the FastTest10 dataset in the epoch range 0 to 100. When simply increasing the value of N
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to 20, the improvement increases, and a gain of approximately 0.08 dB is achieved when
compared to the basic network (N = 4) with a scaling factor of ×2, which demonstrates
that the PIDAN can achieve a higher average PSNR with a larger number of PIDABs.

Figure 9. Performance curve for PIDAN with different numbers of PIDABs using the FastTest10
dataset with a scale factor of ×2.

5. Conclusions

To achieve SR reconstruction of remote sensing images more efficiently, based on the
IDN, we proposed a convenient but very effective approach named pyramid information
distillation attention network (PIDAN). The main contribution of our work is the pyramid
information distillation attention block (PIDAB), which is constructed as the building block
of the deep feature-extraction part of the proposed PIDAN. To obtain more extensive and
non-redundant image features, the PIDAB includes a pyramid information distillation
module, which introduces a pyramid convolution channel split to allow the network to
perceive a wider range of hierarchical features and reduce output feature maps, decreasing
the model parameters. In addition, we proposed a hybrid attention mechanism module
to further improve the restoration ability for high-frequency information. The results of
extensive experiments demonstrated that the PIDAN outperforms other comparable deep
CNN-based approaches and could maintain a good trade-off between the factors that affect
practical application, including objective evaluation, visual quality, and model size. In
future, we will further explore this approach in other computer vision tasks in remote
sensing scenarios, such as object detection and recognition.
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