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Abstract: Earth’s ecosystems are extremely valuable to humanity, playing a key role ecologically,
economically, and socially. Wildfires constitute a significant threat to the environment, especially in
vulnerable ecosystems, such as those that are commonly found in the Mediterranean. Due to their
strong impact on the environment, they provide a crucial factor in managing ecosystems behavior,
causing dramatic modifications to land surface processes dynamics leading to land degradation.
The soil erosion phenomenon downgrades soil quality in ecosystems and reduces land productivity.
Thus, it is imperative to implement advanced erosion prediction models to assess fire effects on soil
characteristics. This study focuses on examining the wildfire case that burned 30 km2 in Malesina
of Central Greece in 2014. The added value of remote sensing today, such as the high accuracy of
satellite data, has contributed to visualizing the burned area concerning the severity of the event.
Additional data from local weather stations were used to quantify soil loss on a seasonal basis
using RUSLE modeling before and after the wildfire. Results of this study revealed that there is a
remarkable variety of high soil loss values, especially in winter periods. More particularly, there
was a 30% soil loss rise one year after the wildfire, while five years after the event, an almost double
reduction was observed. In specific areas with high soil erosion values, infrastructure works were
carried out validating the applied methodology. The approach adopted in this study underlines the
significance of using remote sensing and geoinformation techniques to assess the post-fire effects of
identifying vulnerable areas based on soil erosion parameters on a local scale.

Keywords: post-wildfire soil erosion; RUSLE (revised universal soil loss equation); burn severity;
NBR (normalized burn ratio); earth observation; Copernicus images; GIS (geographic information
systems); Central Greece

1. Introduction

Soil erosion constitutes one of the greatest global environmental threats. It occurs in
the form of sheet, rill, and gully erosion and downgrades soil condition, water quality,
species habitats, and the provision of ecosystem services [1]. A decrease in soil productivity
threatens not only the balance but also the security of food production, which could lead to
further financial consequences and might have a negative effect on people’s life [2]. The
main causes of soil erosion, such as tillage and rill erosion, are caused due to rainfalls and
wind [3]. However, the study of wildfires resulting in soil erosion phenomena increasingly
attracts scientific interest due to their adverse effects on soil [4]. Furthermore, in some
particular ecosystems, wildfires are suggested to be the single most crucial cause of land
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change [5]. Apart from the risk to lives and existing infrastructure, wildfires cause land
and ecosystem degradation [6].

According to De Santis and Chuvieco [7], burn severity constitutes a key factor in
evaluating post-fire incidents based on remote sensing data. Specifically, burn severity
provides the basis in identifying fire effects in ecosystems with emphasis on the procedure
of the examined ecosystem recovery. In this study, burn severity analysis demonstrates the
evaluation of the burned area regarding the fire effects on the environment [8]. The energy
generation due to the fuels flaming and combustion causes alterations in soil properties
during a fire incident [5]. Vegetation and forest litter draining by fire enhances the exposure
of the underlying soil matter to erosion, causing substantial changes to the physical and
chemical soil properties [4].

It is estimated that more than half percent of the major ecosystems that produce food
and feed all over the world have already been degraded. Thus, it is doubtful whether it
could cover the requisite demand of the next decades [2]. To quantify the impact of soil
loss and to develop effective measures for land conservation, many soil erosion models
have been employed in assessing the risk of soil loss. That has been achieved through the
use of common physical parameters found to be important from observational experience
or multivariable statistical analysis such as slope, precipitation, vegetation cover, and soil
erodibility [9]. Among multiple different models developed, the Water Erosion Predic-
tion Project (WEPP), the universal soil loss equation (USLE) [10], and its revised version
(RUSLE) [11]. These techniques demonstrate the most widely used empirical models in
soil erosion research [1,4,9] through the estimation of long-term average rates, based on
geomorphological (topography, land cover) and climatological (rainfall) features [6].

Even though RUSLE applications usually estimate soil loss at annual timescales, there
are factors such as vegetation growth and rainfalls that are temporally variable. Therefore,
to obtain a higher accuracy of soil erosion vulnerability assessment, it is important to
implement the survey at smaller temporal scales, such as examining it from the aspect of
season [12]. For instance, soil erosion risk considerably increases when a season of heavy
rainfall coincides with low vegetation cover [13,14].

Over the last 30 years, the Mediterranean region has been vulnerable to climate change,
particularly due to its sensitivity to drought and rising temperatures. Areas that belong to
that region, such as Greece, Southern Italy, Southern France, and Spain, are facing great
ecological disasters every year, especially due to wildfires and intense heatwaves. Under
the prism of the climate crisis, the identification of the spatial impact of these wildfires is
crucial operationally to identify vulnerable areas related to soil loss for different timescale
assessments after a wildfire event. It is worth to be mentioned that some publications
have analyzed the implementation of RUSLE after a fire event at different spatiotemporal
scales [15–18].

Taking into consideration all the above, the major purpose and novelty of this work
was to better understand and to explore synergistically the NBR and RUSLE methodologies
before and after the wildfire event at three different periods of time. More specifically, the
NBR index was calculated before and after the wildfire in order to delineate the boundaries
of the total affected area. The following step was the implementation of the RUSLE
parameters in the GIS software within the boundaries of the estimated area regarding the
outputs from the NBR data sets. As a pilot area for the verification of the methodology’s
implementation, the affected area of Mazi, Malesina, was used. This is located in Central
Greece, where extended areas of forest and agricultural land were burned. Furthermore,
the soil loss rates that were calculated within the boundaries of burn severity zones mainly
consist of agricultural regions combined with significant areas of natural vegetation. In
addition, the high soil erosion areas derived from the applied methodology highlighted
vulnerable areas in places where engineering works were constructed six years after the
wildfire event.
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2. Materials and Methods
2.1. Study Area

The study area (from 23◦11′35” E, 38◦34′24′′ N to 23◦20′2′′ E, 38◦38′2′′ N) (Figure 1) is
located close to settlements Mazi, Malesina, and Martino, in the region of Central Greece
and belongs to the Municipality of Lokroi. Its eastern part is surrounded by the North
Euboean Gulf, while the burned area covers about 30 km2.
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Figure 1. Location of the study area.

Regarding the geology of the study area, it is composed of Alpine rocks of the sub-
pelagic zone (ophiolites) and post-Alpine formations. The ophiolites institutionalize the
geological background and the ruptured ditches, which arose from the neotectonics activity
of the faults and were covered by newer sediments of the Pleocene-Quaternary age. These
sediments consist of sand, clay, and cohesive gravel [19]. The climate of the study area is
Mediterranean, with heavy rainfall from October to March, while the prevailing winds are
north and northwest. The driest months are July and August, while the months with the
highest rainfall are December, January, and February [20]. The largest part of the wider
region consists mostly of sclerophyllous vegetation, olive groves, and agricultural land,
such as cultivation and natural grasslands. The examined area is characterized by varied
topography combining different types of physical and geographical characteristics, such
as the drainage network, which ends in the coastal area. As it is replicated in Figure 2,
terrain elevation values do not exceed 450 m while the mean elevation is about 170 m.
Vector hydrographic data for the study site were digitized from the Hellenic Military
Geographical Service (HMGS) topographical sheet map 1:50,000 scale, including layers of
streams, containing more than 30 features within the study area [21].

Within the boundaries of the burned area, the primary sector seems to dominate to a
large extent, as the agricultural areas occupy quite large regions, such as complex farming
systems, agricultural land, non-irrigable arable land, and olive trees. According to Figure 3,
the major land cover consists of non-irrigable land (35%), nature conservation lands or
national parks (30%), crown lands and reserves (16%), and others including intensive
agriculture, horticulture, mining, and reservoirs (19%).

On 26 June 2014, a fire broke out in Mazi of Malesina, which burned more than 28 km2

of agroforestry areas. Initially, the fire burned a forestry area in Mazi, and then due to
adverse weather conditions, under the territory of strong winds and the existence of quite
high temperatures, it spread to a pine-covered area. The fire was contained and brought
under control on Sunday, 29 June, predominantly composed of trees established through
regeneration, in the same location where another wildfire had occurred in the past.
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Figure 3. Land cover of the burned area according to Corine Land Cover 2012 [23].

2.2. Data

The first step was the delineation of the exact location related to the burned area
(Figure 4) in order to assess the severity of the fire and to produce the final soil erosion
products. For that purpose, Earth observation satellite images were acquired considering
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the general footprint of the study area and the time of the wildfire event. Originally,
the methodology of Miller and Thode [24] was used to accurately locate the burned
area through the production of the burn severity index, where atmospherically corrected
Landsat 8 images before and immediately after the fire were processed and analyzed.
Furthermore, to produce the necessary factors of the RUSLE model, several data sets were
acquired and analyzed. The implementation of this method was based on rainfall, soil, land
cover, and topographical data. Rainfall data were obtained from five meteorological stations
through the Meteo website of the Environmental Institute of the National Observatory
of Athens (NOA) [20], covering a time before and after the fire, as well as more than five
years after the wildfire event. In addition, some additional Earth observation data were
obtained for soil loss assessment, acquired one year before the fire, one year after, and
several years later, aiming to produce results regarding soil properties of the study area.
Therefore, additional imagery was used, consisting of four Landsat 8 and two Sentinel-
2A images, provided by the geoportal of United States Geological Survey (USGS) [25]
and the European Union’s “Copernicus” [26] program, respectively. Landsat 8 imagery
was acquired in order to cover the time period of the wildfire event before the Sentinel-2
release date.
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Figure 4. Infrared color Landsat 8 images before (left) and after (right) the fire event.

An important step was the information related to soil data, which was requested and
provided by the European Soil Data Centre (ESDAC) of the Joint Research Centre (JRC) [27].
In addition, the topography was calculated from digital elevation model (DEM) with 5 m
spatial resolution, which was derived from the Geospatial Data INSPIRE Geoportal of the
“Hellenic Cadastre” [22]. The data were used to represent the topographical data of the
RUSLE applied methodology. Moreover, to obtain the land use and/or land cover data of
the study area, the Corine database was imported and processed for the years 2012 and
2018 [23]. It is worth to be mentioned that the land use and/or land cover data set was
provided freely through the Copernicus website.

The following step was the integration of the homogenized and processed data into a
GIS environment, where all the data sets were arranged in thematic layers, as presented in
Table 1.
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Table 1. Data sets used in the revised universal soil loss equation (RUSLE) model.

Factors Data Sets Data Source Spatial Scale Temporal Scale Primary Format

Rainfall erosivity
(R)

Rainfall
measurements by

stations

National
Observatory of
Athens (NOA)

- Daily, 2012–2020 Vector (points)

Cover
management (C)

Sentinel-2 and
Landsat-8 images Copernicus, USGS 10 m (Sentinel-2A)

30 m (Landsat 8)

2012–2013,
2014–2015,
2019–2020

Raster (grid)

Soil erodibility (K) Soil types

“European Soil
Database-Soil

Erodibility
(K-Factor) High

Resolution dataset
for Europe”

(ESDAC/JRC)

500 m 2014 Vector (polygons)

Slope length and
steepness (LS) DEM Hellenic Cadastre 5 m - Raster (grid)

Support practice
(P) Land cover Corine 100 m 2012, 2018 Vector (polygons)

2.3. Burn Severity Index

Burn Severity Index, as its name implies, is strongly related to fires regarding the
spectral behavior of vegetation. Reflectance in the shortwave-infrared (SWIR), which is
sensitive to soil and vegetation water content, increases after the fire, while in the near-
infrared (NIR), there is a decrease in the reflectance due to the reduction in chlorophyll
content of healthy vegetation [24,28]. In addition, the normalized burn ratio (NBR) has
been developed to identify burned areas by combining near-infrared (NIR) and shortwave-
infrared (SWIR) spectral areas [29,30]:

NBR =
NIR− SWIR
NIR + SWIR

(1)

In this context, the NBR creation was based on Landsat 8 imagery in order to identify
burned areas regarding the fire event in 2014 (Figure 5). Hence, the spectral bands 7 and 5
from Landsat 8 images were developed for the index implementation, corresponding to
the spectral regions NIR and SWIR, respectively.

Subsequently, the differenced NBR (dNBR) provides an established and reliable tool
for easier separation between burned and unburned vegetation, as well as for estimating
the severity of the fire [31,32] and is calculated by removing the post-fire NBR image from
the pre-fire NBR image [33]. The differenced index replicates the resulting comparison
between the Landsat pre-fire NBR image and the post-fire NBR image so as to detect
possible alterations since the fire event [34]. To perform a proper assessment of the dNBR
index, the post-fire NBR image is required to have been obtained immediately after the
cessation of fire activity [34] since the index is less effective if a period of time has elapsed
during which vegetation regeneration processes have taken place.

To calculate the difference of the NBR index (dNBR), the following Equation is used:

dNBR = PrefireNBR − PostfireNBR (2)

This index is used for the extraction of high accuracy burned area boundaries and the
classification of specific categories so as to evaluate the severity of the fire. High dNBR
values indicate high severity damage, while areas with negative dNBR values are more
likely to indicate increased vegetation productivity after a fire incident, as mentioned in
Table 2.
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Table 2. Burn severity based on dNBR values classified according to the USGS FireEffects Monitoring
and Inventory Protocol (FireMON) program [35].

Burn Severity dNBR

Unburned −0.1 to +0.09
Low Severity 0.1 to 0.26

Moderate-Low Severity 0.27 to 0.43
Moderate-High Severity 0.44 to 0.65

High Severity ≥0.66

2.4. Revised Universal Soil Loss Equation (RUSLE)

According to the literature, a wide variety of methodologies have been proposed
for soil erosion assessment, with the most frequently used the RUSLE [6,36–38]. The
RUSLE method [11] is a variant of the USLE method, first published in 1965 [39] for
estimating average annual soil erosion values. During the evolution of satellites, data,
and recent scientific results, the USLE method improved, and a revised version of this
model (RUSLE) adopted integrating its ability to predict erosion by incorporating updated
information made available through research over the last 40 years [11,40,41]. The revision
and improvement of the USLE model factors created the RUSLE method, which was first
published in 1991 [42]. The derived methodology was developed as an empirical equation
for estimating soil loss caused by surface and rill erosion. Since then, RUSLE has been
applied by a number of researchers at various scales and in a wide range of climates around
the world [37,43–45].

More analytically, the RUSLE method is based on factors that determine soil erosion
rates, according to the following Equation [11]:

A = R × K × LS × C × P (3)

where A is the soil loss, R is the rainfall erosivity factor, K is the soil erodibility factor, LS
is the slope length and steepness factor, C is the cover management factor, and P is the
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support practice factor. These factors play a crucial role in defining soil erosion, while a
miscalculation of any of them could lead to inaccurate assessment of the soil loss rates.
Consequently, during the implementation of this method, much attention is needed so as
to estimate the study area characteristics. Although RUSLE modeling is usually applied
within the hydrological basin, in this research, the model was implemented within the
burned area boundaries derived from dNBR. According to the units of the aforementioned
factors in Equation (2), soil loss is calculated based on the soil erodibility (K factor) units
for the time period defined by the rainfall erosivity (R factor) [43]. According to Gyssels
et al. [46], soil loss decreases exponentially as vegetation increases. The rainfall erosivity
factor R (MJ mm ha−1 h−1 season−1) and the soil erodibility factor K (tn MJ−1 mm−1) have
dimensions, while the rest of the model’s factors are unitless. Their multiplication equals
the total soil erosion in the study area.

However, by examining each factor one by one, the rainfall erosivity factor (R factor)
consists of a key factor in evaluating the possibility of soil erosion development [40]. It is
developed based on climatic data acquisition from meteorological stations and quantifies
the effect of each rainfall episode [10]. Particularly, it defines the outcome of each rainfall
episode’s intensity and duration [47]. R factor is a fairly variable size on an annual,
seasonal, and monthly basis. To estimate the R factor, climatic data were used, which were
included in the linear correlation equation, originally developed for Portugal by Loureiro
and Couthino [48], as well as for the Malesina region as follows:

R =
∑12

i=1(7.05× r10 − 88.92× d10)

N
(4)

where N is the number of months calculated annually, r10 is the monthly rainfall exceeding
10 mm, and d10 is the number of days with daily rainfall exceeding 10 mm per month. Thus,
the R factor was estimated based on rainfall data extracted from each meteorological station
on point data form representing each station. The resulting values were implemented on
the spatial interpolation method, inverse distance weighting (IDW), through spatial analyst
tool and interpolation toolset within the GIS environment.

K factor is the soil erodibility component that describes the sensitivity of soil particles
to detachment and transport by rainfall and runoff [10] due to these processes and penetra-
tion [11]. In other words, the K factor represents the susceptibility to soil erosion, sediment
transport, and the amount and rate of outflow [49]. The factor’s value depends on the soil
properties such as structure, organic matter, permeability, and texture-granulometry of the
soil [50]. The estimation of erodibility factor was based on the ESDAC soil database, which
includes the ready-made K factor for Europe, published by the JRC. K factor, which had a
spatial resolution of 500 m per pixel, was converted into point data and then implemented
on the spatial interpolation method Kriging.

The slope length and steepness factor (LS factor) signify the effect of topography on
soil erosion [49]. This factor consists of two sub-factors, the slope length (L) and the slope
steepness (S), whose multiplication determines the topographic LS factor. Both can be
derived from DEM integrated into a GIS environment [51]. As stated by Panagos et al. [47],
L is defined as the point of departure of the surface runoff to the point where either the
slope decreases to such an extent that it is the starting point of the deposition process or the
runoff focuses on a predetermined channel. S factor describes the behavior of soil erosion
with an inclination angle. The approach developed by Moore and Burch [52] was applied
to estimate the LS factor, where input data are distinguished in the upslope contributing
area per unit width, determined by the flow accumulation, the pixel size, and the slope:

LS = (
U
L0

)
m
× {[sin

(
β× 0.01745

S0

)
]
n
} × (m + 1), (5)

where U is the flow accumulation multiplied with the pixel size, L0 is the slope length
(22.13 m), β is the slope in degrees, S0 is the slope percentage (9%), m is sheet erosion
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ranging from 0.4 to 0.6, and n is rill erosion ranging from 1 to 1.3. The values of the
indicators used were m = 0.6 and n = 1.1.

The root system enhances the mechanical properties (shear strength, slope stability,
cohesion, etc.) of the soil, reduces the rate of surface runoff while maintaining and increas-
ing filtration [53]. In RUSLE, the C factor evaluates the influence of soil cover, crop, and
management territorial loss relative to territorial loss in bare fallow land areas [54]. It is a
dimensionless factor ranging from 0 to 1, where values near 1 state the lack of coverage
in vegetation and, therefore, the surface is considered to be bare, while values near 0
state intense coverage [55]. C factor was based on normalized difference vegetation index
(NDVI) images, which were implemented in Equation (6). Specifically, four Landsat 8
products were used for the creation of seasonal maps before the fire incident, for the periods
November 2012–February 2013 and May 2013–August 2013, and after the fire, November
2014–February 2015 and May 2015–August 2015, while also Sentinel 2 products were used
examining a time period many years after the incident, on November 2019–February 2020
and May 2020–August 2020. Subsequently, the following formula was applied to these
data according to Durigon et al. [56]:

C =
1− NDVI

2
(6)

According to Shin [57], practices on agricultural land play a significant role in the land
loss processes of the area. In obedience to Vidali [58], since these practices occupy a high
rate of 36.57%, it was quite necessary to assess the impact of crop systems in soil erosion. P
factor was created generated based on the Corine 2012 and 2018 land cover data. This factor
was assigned values based on Yang et al. [59], where the CLC agricultural land categories
(211, 212, 221, 222, 223, 231, 241, 242, 243) were given a value of 0.5, which according to
David [60] corresponds to the “minimum plowing”, while the rest of the classes were then
given the value of 1. The support practice factor (P factor) is defined as the ratio of soil
loss in a particular soil conservation practice compared to a field with elevation and soil
elevation [13] and is a dimensionless size. Its value range is from about 0.2 to 1, with low p
values corresponding to greater control of soil erosion. Due to the difficulty of capturing it,
many studies ignore the assessment of the factor, giving it a value of 1.

The factors were set to GIS raster grids with 30 m of spatial resolution (pixel size). The
majority of them were originally in raster format, while the rest were converted from vector
to raster format. Therefore, the implementation of the final seasonal soil erosion maps of
Mazi of Malesina for 2013, 2015, and 2020 (Figures 6 and 7) was achieved by incorporating
in Equation (2), the invariant factors K, LS, and P and each of the seasonal factors, R and C.
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3. Results
3.1. Burn Severity Index Quantification

Figure 5 visualizes the spatial distribution of the evaluated Burn Severity Index for
Mazi of Malesina after the fire case in June 2014. The study area displays a loss in high
burn severity values, while the moderate-high severity-level accounts for 1.16 km2, which
corresponds to 4% of the total burned area and is consisted mostly of sclerophyllous
vegetation (63.79%) and land principally occupied by agriculture with significant areas of
natural vegetation (30.17%). Moderate-low severity values account for 18.15 km2, with
a percentage of 62.71% of the total burned area, which is the highest burn severity rate
and is mainly characterized by sclerophyllous vegetation (74.9%) and land principally
occupied by agriculture with significant areas of natural vegetation (17.91%) as well.
Finally, the low severity level is attributed to the area of 9.64 km2, 33.31% of the burned
area mostly occupied by sclerophyllous vegetation (48.24%), and land principally occupied
by agriculture with significant areas of natural vegetation (25.7%) as well.

3.2. Seasonal Spatial Variations of Soil Loss

Figures 6 and 7 represent the estimated soil loss, on a seasonal basis within the period
of winter and summer, for Malesina in 2013, 2015, and 2020, while Figure 8 visualizes the
soil loss values. It is observed that the seasonal maps of 2015 highlight the most erosive
period after the wildfire event. Specifically, the winter seasonal map shows that the soil
loss reaches up to 1.5 ton/ha/season exceeding the calculated soil erosion before the fire
in 2013. In Figure 6, the difference is quite distinguishable between the pre-fire summer
seasonal map and the post-fire one, while also Figure 9 indicates that the soil loss values
have quadrupled regarding the initial ones before the fire incident.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

loss reaches up to 1.5 ton/ha/season exceeding the calculated soil erosion before the fire in 

2013. In Figure 6, the difference is quite distinguishable between the pre-fire summer sea-

sonal map and the post-fire one, while also Figure 9 indicates that the soil loss values have 

quadrupled regarding the initial ones before the fire incident. 

On the contrary, during the period of 2020, soil loss significantly reduces, especially 

in winter, where the estimated number is lower than 0.47 ton/ha/season. Moreover, the 

corresponding summer seasonal maps have also been reduced, indicating minimal differ-

ences according to 2015. Soil loss values of 2020 have also reached values below those 

displayed in the corresponding seasonal maps before the fire incident in 2013. 

 

Figure 8. Burn severity quantification and land cover classification. 

Summarizing, regarding the summer periods, the derived maps represent low values 

of soil erosion with small fluctuations. Finally, results showed that there is a significant 

change between the pre-fire and post-fire seasonal soil loss values, while several years 

later, soil loss values seem to have decreased, reaching the minimum values of soil ero-

sion. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

Moderate-high Severity Moderate-low Severity Low Severity

Figure 8. Burn severity quantification and land cover classification.



Remote Sens. 2021, 13, 5160 12 of 18
Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 9. Seasonal variation of mean soil loss rate in 2013, 2015, and 2020. 

3.3. Validation of the Results 

According to the applied RUSLE approach, the highest erosion values occurred in 

winter 2015 (Figure 9). Thus, these spatial results could play a key role in an attempt to 

identify and locate the most vulnerable areas. More particularly, the model recognized 

areas adjacent to the drainage network that accumulate the highest soil erosion values. 

In order to validate RUSLE modeling results, recent Google Earth images were ana-

lyzed and interpreted during 2019–2020. Combining optical observations and areas with 

high soil erosion rates, five areas were identified where infrastructure works were carried 

out, especially in the western part of the affected area (Figure 10). These areas validate 

RUSLE modeling results and emphasize the necessity for the development of engineering 

works in specific areas. More analytically, infrastructure works are recognized in Figure 

9, located in areas where morphology is characterized by steep slopes due to the action of 

the drainage network, which run across cultivated lands on the plane region. Although a 

greater accumulation of soil loss values is located in the eastern part, where no engineer-

ing works have been carried out yet. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2013 2015 2020

So
il

 L
o

ss
 (

to
n

/h
a/

se
as

o
n

)

Winter Season Summer Season

Figure 9. Seasonal variation of mean soil loss rate in 2013, 2015, and 2020.

On the contrary, during the period of 2020, soil loss significantly reduces, especially
in winter, where the estimated number is lower than 0.47 ton/ha/season. Moreover,
the corresponding summer seasonal maps have also been reduced, indicating minimal
differences according to 2015. Soil loss values of 2020 have also reached values below those
displayed in the corresponding seasonal maps before the fire incident in 2013.

Summarizing, regarding the summer periods, the derived maps represent low values
of soil erosion with small fluctuations. Finally, results showed that there is a significant
change between the pre-fire and post-fire seasonal soil loss values, while several years later,
soil loss values seem to have decreased, reaching the minimum values of soil erosion.

3.3. Validation of the Results

According to the applied RUSLE approach, the highest erosion values occurred in
winter 2015 (Figure 9). Thus, these spatial results could play a key role in an attempt to
identify and locate the most vulnerable areas. More particularly, the model recognized
areas adjacent to the drainage network that accumulate the highest soil erosion values.

In order to validate RUSLE modeling results, recent Google Earth images were ana-
lyzed and interpreted during 2019–2020. Combining optical observations and areas with
high soil erosion rates, five areas were identified where infrastructure works were carried
out, especially in the western part of the affected area (Figure 10). These areas validate
RUSLE modeling results and emphasize the necessity for the development of engineering
works in specific areas. More analytically, infrastructure works are recognized in Figure 9,
located in areas where morphology is characterized by steep slopes due to the action of
the drainage network, which run across cultivated lands on the plane region. Although a
greater accumulation of soil loss values is located in the eastern part, where no engineering
works have been carried out yet.
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4. Discussion

It is widely known that wildfires may result in extensive damages to properties,
human losses and can destroy natural ecosystems [61]. Regarding European Union (EU),
more than 85% of the total forest fires have occurred in the Mediterranean region [62]. Due
to the nature of Mediterranean climate and other biological characteristics, forest fires and
post-fire erosion take place every year [63]. Soil erosion is a very dynamic process affected
by a wide variety of factors, such as the topographic position of slope, vegetation, and
soil type, which play a crucial role in the behavior of soil erosion [53]. In compliance with
that, this study estimated the seasonal variations of the aforementioned factors in order
to assess the soil loss results for Malesina during the time periods 2013, 2015, and 2020.
The implementation of RUSLE was mostly based on rainfall data and time-series satellite
images, which formed the rainfall erosivity (R) and cover management (C) factors. The rest
of the factors, which are the soil erodibility factor (K), the slope length and steepness factor
(LS), and the support practices factor (P), were considered to be more “static” during the
process of the creation of the seasonal soil loss results.

The RUSLE model is developed through parameters, each one of which is analyzed
by the technology of geoinformation, providing a robust and cost-effective approach in
examining their impact on soil erosion [36]. Despite the fact that RUSLE is identified as
one of the most widely used soil erosion models, data availability factors are created, may
lead to some limitations.

The RUSLE results were analyzed in order to calculate the soil erosion in the study area
on a local scale (Figures 6 and 7). According to the occurring outputs, the seasonal maps
of 2015 are identified as the most erosive period, which is after the fire break-out in 2014,
while many years after the event, in 2020, soil erosion has significantly reduced as a result
of the natural vegetation recovery. On the other hand, the calculation of recovery rates is
still an issue that needs more research in terms of high resolution within the boundaries
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of the Mediterranean region [64]. The outputs of RUSLE modeling regarding post-fire
assessment seem to agree with those of other Mediterranean site researches [49] that
distribute increased erosion rates after a fire incident. Regarding the spatial distribution,
higher soil erosion values seem to be following the path of the hydrologic network. Areas
near the drainage network seem to be characterized by steep slope lands leading to higher
soil erosion activity as a result of increasing runoff velocity and erosion [10,65]. According
to Bocchila et al. [66], drainage channel beds need to be cleaned systematically after a fire
event due to the potential transportation of wooden debris or sediments to the hydrological
basin to which the network belongs. Based on the seasonal maps, winter seasonal maps
seem to represent maximum soil erosion values compared to the summer seasonal ones.

Under the prism of the examined factors, produced data sets are generated from
different databases. Factors such as the cover management factor C and the rainfall
erosivity factor R, which have been extracted from Sentinel-2 images and the National
Observatory of Athens climate database, offer the advantage of comparing time-series data
sets. However, the C factor represents a parameter that could be easily misinterpreted
since some areas may be given values that correspond to burned land without necessarily
having been burned. In addition, anthropogenic processes concerning the P factor play an
important role in soil erosion control since it expresses the effect of cultivation processes on
the reduction in soil erosion [43], ranging between values with a lack of corrosion control
practices [10]. Thus, it is useful to include them in the erosion risk assessment, although
there is no report that attributes global values of the factor, as the factor varies in relation
to local activities [59].

Regarding the RUSLE method, some observations can be made to verify the reliability
of this model. Initially, the databases from which the data were extracted play a significant
role in their spatial resolution since high spatial resolution data sets contribute to the higher
accuracy of the generated products. However, there were some limitations regarding the
analysis of some factors, such as the support practice factor P and the soil erodibility factor
K, that were derived from the Corine and JRC databases, respectively. These databases
offer low spatial resolution products, leading to lower accuracy regarding the examination
of the study area. On the contrary, the LS factor is produced from the DEM of the Hellenic
Cadastre, which provides high spatial resolution at 5 m. Rainfall data, which was derived
from the National Observatory of Athens database, was acquired from stations located
far from the study area because of the lack of data at these time periods. Thus, the results’
accuracy might be limited due to the restricted number of the available stations, reducing
the R factor’s reliability. Furthermore, factors R and C are considered to be determinants in
defining the final outputs.

Subsequently, the applied methodology illustrated high-risk areas regarding soil
erosion rates. Soil erosion hotspots, especially in the western part of the study area, were
identified successfully. The implemented approach within the boundaries of the dNBR
index identified five risk areas where engineering works occurred during 2019–2020. These
observations are based on visual interpretation using timelapse images from Google Earth
imagery (Figure 10).

According to the work of [67], RUSLE methodology does not take into consideration
a few geomorphological processes such as gully, bank and channel erosion, and land
movements. It is true that calculations of soil erosion rates are affected by different and
complex parameters, and outputs from RUSLE modeling need ground-truthing. On
the other hand, the RUSLE approach offers an important asset in visualizing the spatial
distribution of soil erosion when fieldwork is abundant due to rough terrains and lack of
resources. Finally, it is suggested that field surveys of soil erosion calculations are required
in order to increase the accuracy and to better evaluate the reliability of outputs.

5. Conclusions

Taking into consideration the above mentioned, soil erosion is a global phenomenon
that rises from agricultural intensification, terrestrial degradation, and manmade activities.
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Consequently, its numerical assessment is very important due to the identification of
anthropogenic and natural criteria. Modeling of soil erosion consists of a wide range
of factors, which contribute to the creation of this phenomenon. Based on the above-
mentioned findings, seasonal soil erosion maps visualized the spatial soil loss variations
before and after the fire break-out that occurred in Malesina in 2014. Initial use of the NBR
index and RUSLE model afterward within the boundaries of the affected area revealed
some very interesting spatial patterns between the examined time periods in the study
region since high erosion values are a consequence of the bare soils [68]. Specifically, the
highest soil loss values were occurred in 2015, after the fire break-out in 2014, as a result of
soil inefficiency in holding rainfall deposits. In addition, the study showed that regions
vulnerable to high levels of soil erosion were identified to locations with direct tributaries
to the major streams and steep sloping zones.

In the winter season of 2015, only a couple of months after the fire incident, a higher
concentration of soil erosion values is observed, a fact that is verified according to Andreu
et al. [69], who claim that post-fire regions seem to be more vulnerable to erosion 4 to 6
months after the fire incident. In addition, the study showed that regions vulnerable to high
levels of soil erosion were identified to locations with direct tributaries to the major streams
and steep sloping zones. Several years later, in 2020, the study area showed reduced soil
erosion values indicating a remarkable regeneration reducing naturally the soil erosion rate,
as predicted by the authors of [70], who claimed that soil loss values continuously decrease
one year after the event. Moreover, winter seasonal maps were characterized by higher soil
erosion values as opposed to the summer seasonal maps, which might be based on the fact
that the R factor is higher in winter due to the rainfall quantity and frequency. Furthermore,
in 2020 there seems to be a major change in the soil erosion of the area, mitigating the
increased high values of 2015.

All in all, these findings could be essential for distinguishing the burned area effects
on soil loss in Malesina as well as its spatial variations. From that point of view, the
recognition of high soil loss time periods could add up to a strong basis for assessing
the generation of potential measures. It is worth to be mentioned that the continuous
implementation of RUSLE modeling can be useful as a monitoring soil erosion tool for
areas with slope steepness and high altitudes. In addition, it contributes to the sustainable
and logical decision making for the identification of vulnerable areas before and after a
natural hazard. Furthermore, RUSLE replication can also indicate sensitive areas after fire
incidents. Moreover, dNBR is a commonly used index in burned area delineation and burn
severity classification, though in other Mediterranean regions, burn severity classes were
driven by indexes such as LAI (Leaf Area Index) or NDVI [71]. To summarize, this study
also underlines the significance of using remote sensing and geoinformation techniques to
assess the post-fire effects on soil characteristics, not only on a regional but even more on a
local scale.

Future work could be based on annual data sets of soil loss with higher spatial
resolution in order to avoid limitations that may have some relation with the spatial
distribution of the RUSLE model and Burn Severity Index. Further work could also include
extending the knowledge of RUSLE parameters’ associations to burn severity in post-fire
erosion evaluation [49]. Additionally, as for the creation of some of its parameters, some
data sets could be generated from different databases or satellite images in order to validate
some of the key findings of this study. Field surveys using drone imagery would be an
interesting approach that could overcome the difficulty of local-scale observations over a
rolling landscape regarding the post-fire effects [71]. Finally, another potential for future
work could be the creation or the implementation of another methodology in order to
compare the current study’s results.
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