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Abstract: Soil organic matter (SOM) plays a critical role in agroecosystems and the terrestrial carbon
cycle. Thus, accurately mapping SOM promotes sustainable agriculture and estimations of soil carbon
pools. However, few studies have analyzed the changing trends in multi-period SOM prediction
accuracies for single cropland soil types and mapped their spatial SOM patterns. Using time series
7 MOD09A1 images during the bare soil period, we combined the pixel dates of training samples and
precipitation data to explore the variation in SOM accuracy for two typical cropland soil types. The
advantage of using single soil type data versus the total dataset was evaluated, and SOM maps were
drawn for the northern Songnen Plain. When almost no precipitation occurred on or near the optimal
pixel date, the accuracies increased, and vice versa. SOM models of the two soil types achieved a
lower root mean squared error (RMSE = 0.55%, 0.79%) and mean absolute error (MAE = 0.39%, 0.58%)
and a higher coefficient of determination (R2 = 0.65, 0.75) than the model using the total dataset
and resulted in a mean relative improvement (RI) of 30.21%. The SOM decreased from northeast to
southwest. The results provide reference data for the accurate management of cultivated soil and
determining carbon sequestration.

Keywords: soil organic matter; northern Songnen Plain; single soil type; pixel date; prediction
accuracy; MOD09A1

1. Introduction

Soil organic matter (SOM) is a vital component of the soil and contributes to the
improvement of soil fertility status [1–4] and increasing grain yields [5–7]. As an important
crop production and cultivation base, the northern Songnen Plain plays a valuable role in
the sustainable development of China’s national economy and food security. However,
with the continuous development and utilization of cultivated land resources [8], a series of
problems, such as serious soil erosion, degradation of cultivated land quality, and destruc-
tion of the agricultural ecological environment, have been caused by various natural factors
and human production activities [9,10]. Therefore, accurate regional SOM predictions of
target areas are essential for strengthening soil ecological protection and implementing
management measures for precision agriculture.
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Conventionally, a large number of soil samples are collected during field investigations
to conduct analyses, and SOM prediction is both costly and difficult on a large regional
scale [11–14]. Geostatistical methods (e.g., kriging and cokriging) [13,15–20] are gradually
being applied to improve the prediction accuracy. However, due to the high spatial het-
erogeneity of soil properties, these methods also require numerous representative sample
points to ensure prediction accuracy [19,21–24]. To overcome these pitfalls, SOM prediction
using remote-sensing data is a cost-effective way to reduce sampling and analysis budgets
in order to predict soil properties and categories over large areas [25,26]. Some regression-
based statistical techniques for remote sensing-based SOM prediction have been developed,
such as multiple linear regression [16,27–29], stepwise multiple regression [15,30–32], and
mixed linear regression [6,33,34]. Therefore, regression models are widely used because of
their simple operation mechanism, efficient calculation speed, and the interpretability of
their prediction results and input variables [32]. Specifically, stepwise multiple regression
provides the advantage of eliminating multicollinearity between input variables [35,36],
and as such, it offers an improvement on traditional linear regression.

Extensive research has been performed on SOM prediction based on remote-sensing
data, and most of the knowledge of soil spectroscopy has been generated through remote
sensing [37].The relationships between SOM and spectral characteristics have been in-
creasingly studied, and previous studies have shown that SOM has a significant negative
correlation with soil reflectance [38,39]. Simultaneously, some results have illustrated
that the SOM content is sensitive to the visible near-infrared (VNIR) (400~1100 nm) and
shortwave infrared (SWIR) (1100~2500 nm) spectral regions [39–42]; in particular, the
VNIR spectral region provides a good alternative for predicting SOM [43–45]. The typical
moisture absorption bands of the soil spectrum are located in the SWIR spectral region
at 1400 nm, 1900 nm, and 2200 nm [46]. However, the prediction of soil properties using
satellite remote-sensing data faces many challenges [37]. The SOM prediction accuracy is
susceptible to being influenced by additional environmental factors [13,15,19,25,27,47–51],
such as soil type (e.g., soil properties and the number of soil types in the sample dataset),
seasonal conditions (e.g., precipitation and snowmelt time), and remote-sensing image fea-
tures (e.g., pixel data). These factors will impact the soil reflection spectrum, and then the
spectral index constructed by them as the model inputs will affect the prediction accuracy
of SOM. Notably, one frequently applied approach in the use of remote-sensing images to
analyze SOM prediction is to establish an analytic relationship between soil observation
data and available variables related to factors that impact the prediction accuracy [26,52].
It is generally believed that the spatial distribution pattern of SOM is controlled by various
environmental variables, and the use of auxiliary variables related to SOM spatial analysis
can effectively enhance the accuracy [32,53]. Therefore, changes in SOM prediction accu-
racy may also be affected not only by one factor but also possibly by the combined actions
of multiple factors, and effective approaches are needed to reveal the driving factors that
impact and improve the SOM prediction accuracy and to map the spatial distribution of
SOM more accurately.

With the continuous development of satellite remote-sensing technology, numerous
satellite remote-sensing datasets have been applied to establish the prediction models
of SOM and map its spatial distribution. The Moderate Resolution Imaging Spectrora-
diometer (MODIS) surface reflectance product (MOD09A1) is an 8-day composite dataset,
which has been widely used to perform the prediction of soil attributes and map their
spatial distribution characteristics [51,54–56]. Because the temporal information from the
MOD09A1 image at each pixel is inconsistent [30], each pixel may also have an inconsistent
pixel date during the 8-day period. Hence, compared to less processed forms of remotely
sensed imagery datasets, each image pixel of the MOD09A1 image contains detailed date
information. However, the existing SOM prediction studies in the northern Songnen Plain
generally used MOD09A1 images and SOM observation data from multiple soil types as
the data source, and integrated precipitation to investigate the changes in SOM prediction
accuracy [30,31,57,58]. For instance, Dou et al. [30] and Zhang et al. [31] performed regional



Remote Sens. 2021, 13, 5162 3 of 22

SOM prediction based on stepwise multiple regression and a soil sample dataset combined
with multiple soil type data on the Songnen Plain and explored the impact of precipitation
on SOM predictions. Zhang et al. [58] also used an SOM observation dataset composed
of multiple soil type data and machine learning algorithms to predict the SOM content.
However, it should be noted that the above studies both applied MOD09A1 images, but
neither of them introduced pixel date or combined precipitation to further explore the
comprehensive effects of these factors on SOM prediction. Hence, the MOD09A1 images
were used mainly for the following reasons in our study. On the one hand, MODIS images
have a high temporal resolution, which is suitable for exploring the trends of multi-period
SOM prediction accuracies based on time series images, and these images have been widely
used for the spatial prediction of soil properties and to accurately reveal their distribution
patterns [30,51,54,55]. On the other hand, we can extract the specific date of the pixel where
each training point is located according to the 8-day synthesis interval of each MOD09A1
image. This approach can be applied to comprehensively explore the impact of precipi-
tation integrated with the pixel date of training samples on SOM prediction. Moreover,
Meng et al. [59] and Bao et al. [60] separately applied hyperspectral experimental analysis
and satellite data to build SOM prediction models in the northern part of the Songnen Plain,
and simultaneously, the first study still applied an SOM dataset consisted of various soil
type data. Therefore, few studies have focused on the combined impacts of precipitation
and the pixel date of training samples on SOM prediction using time series remote sensing
images. Meanwhile, the use of data on a single soil type, rather than data combining all
soil types in a given region, to enhance the prediction accuracy has not been sufficiently
explored, and its advantages need to be further verified.

Consequently, in this study, we consider the potential impact of the pixel date of
training samples and precipitation data on SOM prediction accuracy by using time series
7 MOD09A1 images and SOM observation data of two typical cropland soil types over
the bare soil period. Additionally, the SOM prediction accuracy of the model using data
on a single soil type was compared with the results of the model using data on multiple
soil types, and the SOM contents for cultivated lands were mapped in the study area. To
compare our findings with other related studies of SOM prediction on the Songnen Plain
based on the same algorithm and image conditions, we applied the stepwise multiple
regression algorithm based on single soil type data and MOD09A1 images to further
integrate the pixel date with precipitation data to analyze the changes in multi-period
SOM prediction accuracies, and simultaneously, the advantages of using single soil type
data would be revealed. We also compared the model performance with SOM prediction
research using other algorithms or hyperspectral data. Our study provides comprehensive
and systematic research on SOM prediction on the Songnen Plain, further clarifying the
spatial distribution of SOM to help ensure the sustainable development of the soil ecological
environment and promote national food security.

The specific objectives are to (1) comprehensively analyze the impacts of the pixel
date of training samples and precipitation data on the accuracy of regional SOM prediction
based on time series MOD09A1 images; (2) assess the predictive ability of SOM prediction
models by using single soil type data; and (3) map the spatial distribution patterns of SOM
content in the two typical cultivated lands and the study area of the northern Songnen Plain.

2. Materials and Methods

Figure 1 shows the framework of our study. The four major steps are indicated here:
the green panels acquire and process time series MOD09A1 images and precipitation data,
thus analyzing the impact of pixel date of training samples and precipitation on SOM
prediction; the orange panels collect the SOM observation data and generate the training
and validation sample datasets; the gray panels establish SOM prediction models using
spectral indices and training datasets for two typical cropland soil types and the total
dataset, thereby verifying the advantages of using single soil type data in SOM prediction;
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and the purple panel selects the optimal models to map SOM content on the northern
Songnen Plain. Notably, the three blue panels show the main objectives of our study.
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Figure 1. Workflow schematic for analyzing the prediction accuracy of regional soil organic matter
(SOM) and mapping its spatial distribution. Notably, the models using two single soil types data (i.e.,
Arenosols and Phaeozems) are called the “two typical soil types models” and using the total dataset
are called the “total dataset models”.

2.1. Study Area

As an important source of national food production, Northeast China is one of the
regions with a large area of cropland in China. Our research area is located in the middle
of the northern Songnen Plain in Heilongjiang Province; the longitude ranges from 122◦E
to 128◦E, and the latitude ranges from 44◦N to 49◦N (Figure 2). The climate is dominated
by temperate continental semi-arid and semi-humid monsoon conditions, and the annual
mean precipitation varies from 400 to 600 mm [61]. The overall topography of the study
area is relatively flat. The area also has fertile soils and is suitable for planting various
crops, such as soybeans, maize, and rice.
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The northern Songnen Plain is commonly deemed to be an area with typical Mol-
lisols [62,63]. The two typical soils in the northeastern and southwestern parts of the study
area are classified as black and aeolian soils, respectively, which are termed Phaeozems and
Arenosols in the World Reference Base for Soil Resources (WRB) [64,65]. The Phaeozem
region is a part of the world’s three typical black soil belts with high SOM content and
good water-holding capacity, and the Arenosols region has a relatively low SOM content
and relatively poor water-holding capacity. The long-term management model of intensive
agricultural production and the application of fertilizers and pesticides [8] have caused
high spatial heterogeneity of soil nutrients [49], serious soil erosion, and poor soil fertil-
ity [9,10,66–68]. Thus, with the continuous decline in soil fertility in recent years, more
studies should focus on assessing the regional changes in SOM and its influencing factors
and on detecting the effectiveness of soil improvement measures. Therefore, the Phaeozem
and Arenosols regions were selected as two typical research areas in our study, and the
spatial distributions of SOM in these two regions were revealed with the hope of promoting
an in-depth understanding of soil degradation and rational use and promoting reasonable
agricultural protection measures in the target regions.

2.2. Data
2.2.1. Soil Sample Collection and Treatment

Field investigations were conducted in May in the cultivated areas during the bare
soil period in the study area. Most farmers use the incineration method to eliminate crop
straw, leading to almost no residue on the soil surface. This practice is usually conducted
from late March to early April, and the soil surface remains exposed thereafter (Figure 2c).
Hence, our study area has a unique period of bare soil between April and May; this period
is characterized by no snow cover and almost no residues or vegetation on the cultivated
soil surface and is regarded as the bare soil period [30,69]. Moreover, the bare soil period
experiences less rainfall than that occurring from June to September during the rainy
season [8,70], and simultaneously, the snow water remaining on the topsoil layer gradually
evaporates. Therefore, the bare soil period not only has better soil surface conditions but
also relatively dry topsoil.

Soil samples were collected from the 0~20 cm soil layer. To ensure that the SOM
content of the sampling points was highly representative, a relatively wide plain cultivated
area was selected for collection. We also confirmed in advance whether there would be
precipitation on or near the sampling date to reduce the sampling error. The specific sample
collection process was as follows. First, the Second National Soil Survey map was adopted,
which is produced based on a large number of soil sample measured data, incorporating
the advantages of the global soil classification system and with the specific distribution
situation of soil types in China to assist in selecting the location of sample points. The map
not only retains the information on soil genetics but also uses the diagnostic features of
the diagnostic layer to classify the soils, formulating a relatively accurate soil classification
system; thus, it is suitable for accurately collecting soil sample datasets of two typical
cropland soil types in our research. To ensure that the sampling points could evenly and
reasonably cover the entire study area and the areas of the target soil types, we also fully
considered the spatial distributions of soil types in the study area and the heterogeneity
of the soil surface. In particular, we made great efforts to ensure that each sampling site
was not located at the junction of soil types. Then, each sampling point was obtained by
mixing samples from five to six randomly selected subsample points within an area of
500 m by 500 m, which can characterize the average level of SOM content at a regional
scale. Ultimately, the geographic locations of sampling points were recorded with a global
positioning system (GPS, Beijing UniStrong Science and Technology Limited Company,
China). In total, we obtained 160 soil samples from cultivated land types, including
40 Phaeozems and 39 Arenosols. The soil samples were air-dried and passed through
sizes of ≤2-mm mesh [71] and were then analyzed for SOM content using the potassium
dichromate volumetric method [72].
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2.2.2. Satellite Image Data Selection

Time series MOD09A1 images in 2018 over the bare soil period (Table 1) were selected
from the Google Earth Engine (GEE) data pool (https://code.earthengine.google.com/,
accessed on 27 September 2019). Using satellite images acquired over the bare soil period
can effectively reduce negative effects [73,74], which is favorable for capturing more
accurate spectral reflectance of the cultivated soil surface and offering better conditions to
implement SOM predictions [30,59,60]. The MOD09A1 images provide 500-m resolution
MODIS band 1~7 surface reflectance data, including ρ1 (red band, 620~670 nm), ρ2 (near-
infrared band, 841~876 nm), ρ3 (blue band, 459~479 nm), ρ4 (green band, 545~565 nm),
ρ5 (mid-infrared band, 1230~1250 nm), ρ6 (SWIR-1 band, 1628~1652 nm), and ρ7 (SWIR-2
band, 2105~2155 nm). Here, the day of year (DOY) represents the beginning date of the
8-day period.

Table 1. Dates and periods of 7 MOD09A1 images.

Item
DOY

089 097 105 113 121 129 137

Image date 3/30 4/07 4/15 4/23 5/01 5/09 5/17
DOY period 089~096 097~104 105~112 113~120 121~128 129~136 137~144

2.2.3. Optimal Pixel Date and Precipitation Calculation

Since the 8-day synthesis interval of each image can provide the specific date of the
pixel where each training point is located. Then, we calculated the statistics on the pixel
dates of training samples within the 8-day period of each image. Ultimately, we defined the
pixel date with the largest number of training samples as the optimal pixel date for each
image period. As shown in Table 2, the optimal pixel dates were extracted from 7 image
periods for the Phaeozems and Arenosols.

Table 2. Optimal pixel dates of seven image periods for the Phaeozems and Arenosols.

Item
Soil Type

Phaeozems Arenosols

DOY Optimal Pixel Date Optimal Pixel Date

089 094 d 094 d
097 099 d 101 d
105 112 d 112 d
113 115 d 117 d
121 128 d 128 d
129 135 d 129 d
137 139 d 144 d

Meanwhile, according to the distribution regions of the training samples, we selected
the Duerbote meteorological station for the Arenosols region and the Kedong, Baiquan,
Mingshui, and Hailun stations for the Phaeozems region and then obtained precipitation
data from the regional meteorological stations at 20-20 h daily [30,31]. Finally, we calculated
the cumulative daily precipitation in the Phaeozems and Arenosols areas during the
research period (see Figure 3 for details).

2.3. Construction of Spectral Indices

Studies have indicated that the spectral indicator can be applied to characterize
SOM information [30–32,57] using band optimization algorithms [75,76], and the results
confirmed that the difference index, ratio index, and normalized difference index are helpful
to predict SOM accurately during the bare soil period [30,58,60,77,78]. Compared with the
one-dimensional spectral band, the use of spectral indicators highlights the advantages

https://code.earthengine.google.com/
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of enhancing the correlation between the SOM content and spectral indicators, providing
more spectral information [79,80], and reducing the reflection spectrum error caused by
terrain and atmospheric conditions [30,81,82], therefore improving the SOM prediction
accuracy. Three types of spectral index were calculated, including the difference index
(Dxy), ratio index (Rxy), and normalized difference index (NDxy). The above indices were
calculated based on the following equations:

Dxy = ρx − ρy (1)

Rxy = ρx/ρy (2)

NDxy =
(
ρx − ρy

)
/(ρx + ρy) (3)

where ρx, ρy and ρz represent the band x, y and z values, respectively; Dxy represents the
difference in reflectance between ρx and ρy; Rxy represents the ratio in reflectance between
ρx and ρy; and NDxy represents the normalized difference in reflectance between ρx and ρy.

Ultimately, we applied the reflectance values of seven bands, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, and
ρ7, as the base predictors and performed the above three mathematical transformations to
calculate remote sensing indices in our study. The input variable dataset included seven
bands ρ1~ρ7, 21 difference indices, 21 ratio indices, and 21 normalized difference indices;
thus, we constructed a total of 70 indices.

2.4. Prediction Method and Mapping of Soil Organic Matter (SOM)

Stepwise multiple regression is an effective statistical method for remote sensing-based
SOM prediction and is usually based on the correlation coefficients between the input
variables and SOM content to assess the importance of the input variables and test their
statistical significance [30,83]. The method is applied to recheck the input variables from
the previous steps at each step in the calculation process; that is, the variables previously
entered into the model may become redundant variables during the later stages because
of the relationships with other variables that are added to the model later [84,85], and the
newly added variables would reduce the contribution value of previously determined
input variables to the model [30]. The algorithm starts by selecting the variable with the
highest correlation with SOM as the first input variable. According to the t-test for the
regression coefficient, if the performance is significant, the variable is retained to construct
the single-variable model. Then, the secondary input variable is selected based on the par-
tial correlation coefficient to build the binary model [83]. Therefore, the stepwise multiple
regression algorithm is similar to the implementing feature selection procedures because
it selects only the most important variable to achieve maximum predictive power. To
ensure that all the models are comparable, we adopted one input variable with the highest
correlation with SOM content for each stepwise multiple regression model. Since the binary
model generally obtains higher prediction accuracy than the single-variable model [30,31],
we attempted to reserve two input variables for the models with the highest accuracy
of two typical cropland soil types and the total dataset to improve the SOM prediction
accuracy. Hence, single-variable and binary models were constructed by programming
them in IBM SPSS Statistics 22 software.

To assess the model accuracy, we randomly selected the training and validation sample
datasets at a 1:1 ratio [30,31] for the sample datasets. The training dataset was designated to
train the models, and the validation sample dataset was reserved for validation purposes,
which is consistent with previous literature [15,30,31,49,58–60,86,87]. We adopted the
root mean square error (RMSE), mean absolute error (MAE) [51,88], and coefficient of
determination (R2) [88,89] to evaluate the model performance. The RMSE and MAE assess
the prediction accuracy, with a lower value denoting a higher prediction accuracy, and R2

evaluates the model stability, with a higher value denoting higher stability. Moreover, we
also applied the relative improvement (RI) [90,91] in RMSE to measure the improvement
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in prediction accuracy. These statistical indicators for assessing the model performance
were expressed by the following equations:

RMSE =

√
∑n

i=1(oi − pi)
2

n
(4)

MAE =
1
n ∑n

i=1|pi − oi| (5)

R2 = 1− ∑n
i=1(pi − oi)

2

∑n
i=1(oi − o)2 (6)

RIX =
RMSEx1 − RMSEx2

RMSEx1
× 100% (7)

where pi and oi refer to the predicted and observed SOM values, respectively; n refers to
the number of soil samples; o refers to the mean of the observed SOM values; and RMSEx1
and RMSEx2 are the RMSE values of the models using the total dataset and single soil type
data, respectively.

Finally, the three optimal models with the highest prediction accuracy and adaptability
for two typical cropland soil types and the total dataset were used to map SOM spatial
distributions in the ArcGIS 10.2 platform.

3. Results and Analysis
3.1. Descriptive Statistics of the SOM Content

Table 3 shows the descriptive statistics on the SOM contents for the total, Phaeozem,
and Arenosol datasets and their training and verification sample datasets by using IBM
SPSS Statistics 22. The measured SOM content of the total dataset varied from 0.64 to
8.21%, and the mean content was 3.86%. The SD represents the standard deviation of the
SOM contents. Notably, a larger SD means that the SOM content dataset is more discrete
and unstable, and a smaller SD indicates that it is less discrete and closer to the mean.
The results indicated that the Arenosol dataset had the lowest SD value, followed by the
Phaeozem dataset, whereas the total dataset had the highest value. Moreover, the training
and validation datasets of the three sample datasets separately had similar range, mean,
and SD values; in particular, similar SD values indicate that SOM content datasets have
similar dispersion and stability. Hence, the training and validation datasets randomly
assigned for the three soil sample datasets are all highly representative.

Table 3. Descriptive statistics on the SOM contents for the total, Phaeozem, and Arenosol datasets and their training and
validation sample datasets.

Soil Type
SOM

Minimum % Maximum % Range % SD % Mean %

Total dataset 0.64 8.21 7.57 1.48 3.86
Training dataset 0.64 8.21 7.57 1.53 3.93

Validation dataset 0.83 7.39 6.56 1.43 3.80

Phaeozems 3.46 8.21 4.75 1.35 5.40
Training dataset 3.46 8.21 4.75 1.47 5.20

Validation dataset 3.92 8.21 4.29 1.26 5.56

Arenosols 0.64 3.73 3.09 0.74 2.20
Training dataset 0.64 3.73 3.09 0.81 2.26

Validation dataset 0.82 3.55 2.73 0.70 2.16
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3.2. SOM Prediction Using Single Soil Type Data

Tables 4 and 5 show the SOM prediction models for Phaeozems and Arenosols, re-
spectively, based on 7 MOD09A1 images. Figure 3 presents the RMSE series corresponding
to the optimal pixel dates of different DOYs and daily precipitation during the research
period. We found that the variation trends in SOM prediction accuracy were similar for
Phaeozems (Figure 3a) and Arenosols (Figure 3b), and the change trends in precipitation
near the optimal pixel date were also similar. It is clearly seen that the variation trends in
accuracies during the image period from DOY 97~121 are consistent for the two soil types.
A large amount of continuous precipitation occurred near the optimal pixel date of DOY
105, the RMSE values increased, and the accuracies decreased significantly. Subsequently, a
small amount of intermittent precipitation occurred during 112~128 d, and its date was
not close to the optimal pixel dates of DOY 113~121; therefore, the soil moisture gradually
decreased, the RMSE values decreased, and the accuracies showed an obvious increasing
trend. There was a one-day interval (from 128 d to 129 d) for the optimal pixel dates of
DOYs 121 and 129 for Arenosols, and the accuracies showed almost no change; however,
the precipitation time series occurred during 128~139 d in the Phaeozem regions, and the
accuracy decreased markedly. On DOY 137, continuous precipitation occurred near the
optimal pixel date in these two regions, and the accuracy showed a continuous down-
ward trend. Specifically, from the DOY 089 to 097 images, precipitation occurred before
the optimal pixel date (101 d) in Arenosols, the RMSE value increased, and the accuracy
decreased. However, almost no precipitation occurred during 089~099 d in the Phaeozem
region, the accuracy showed an upward trend due to the strong water-holding capacity of
the Phaeozems, and snow water remained in the topsoil layer at the beginning of April.
As the snow water gradually evaporated, the soil moisture gradually decreased, and the
RMSE value decreased from DOY 089~097 for the Phaeozems.

Table 4. Results of SOM prediction models for Phaeozems based on seven images.

Image DOY Optimal Pixel Date Input Variable RMSE MAE R2

089 094 ρ3 1.07 0.81 0.54
097 099 R62 0.98 0.88 0.60
105 112 R72 1.12 1.00 0.45
113 115 D23 1.07 0.81 0.65

121 128
ρ3 0.86 0.69 0.65

ρ3, R61 0.79 0.58 0.75
129 135 R64 0.99 0.74 0.38
137 139 R61 1.05 0.87 0.30

Table 5. Results of SOM prediction models for Arenosols based on seven images.

Image DOY Optimal Pixel Date Input Variable RMSE MAE R2

089 094 R43 0.65 0.56 0.63
097 101 R23 0.76 0.64 0.57
105 112 R63 0.94 0.74 0.25
113 117 ρ4 0.81 0.67 0.50
121 128 NDρ13 0.63 0.47 0.54

129 129
ρ4 0.62 0.52 0.53

ρ4, D52 0.55 0.39 0.65
137 144 R63 0.90 0.49 0.63

With respect to the model input variables, when the optimal pixel date and its neigh-
boring dates did not experience precipitation, the main input variables were generally
VNIR bands or the spectral indices constructed by these bands and represented SOM
information, such as on DOYs 113 and 121 for both soil types. However, when continuous
precipitation occurred near the optimal pixel date, the inputs were mainly spectral indices
composed of the SWIR bands and VNIR bands and characterized the impact of precipi-
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tation, such as DOY 105 for both soil types and DOY 129 for the Phaeozems. In addition,
the secondary input variables of binary models included the ρ5, ρ6, and ρ7 bands, which
primarily represented soil moisture information.
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3.3. SOM Prediction Using the Total Dataset

In comparison to the prediction accuracies using single soil type data, Table 6 shows
the SOM prediction results using the total dataset mixed with multiple soil types. Taking
the binary models of DOYs 121 and 129 as examples, which had the highest accuracies for
Phaeozems and Arenosols, the RMSE values of the SOM prediction models were 0.79%
and 0.55%, respectively; however, the RMSE for the total dataset on DOY 113 was 0.96%.
Therefore, the model performance for single soil type performed better than that for the
total dataset. Simultaneously, the application of single Phaeozem and Arenosol soil data
resulted in RIs of 17.71% and 42.71%, respectively, with a mean value of 30.21%. In addi-
tion, Tables 4–6 show that the ratio spectral index was generally screened to characterize
the impact of precipitation on SOM prediction, especially R61, which was significantly
correlated with SOM (Table 7).

Table 6. Results of SOM prediction using the total dataset based on 7 images.

DOY Input Variables RMSE MAE R2

89 ρ3 0.99 0.82 0.63
97 R61 1.08 0.43 0.55

105 R61 1.00 0.81 0.56

113
ρ1 1.00 0.76 0.49

ρ1, R51 0.96 0.77 0.62
121 D43 1.10 0.77 0.39
129 R61 1.04 0.79 0.51
137 R61 1.17 0.88 0.47

3.4. Selecting the Optimal Models of SOM Prediction

According to the results of Sections 3.2 and 3.3, the binary models for DOYs 113,
121, and 129 (Table 8) obtained the highest prediction accuracy and adaptability for the
total sample dataset, Phaeozem, and Arenosol, which were selected as three optimal
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models to draw the spatial distribution patterns in the SOM contents. As shown in Table 8,
we found that the main inputs of the three optimal models were all the VNIR bands,
which characterized SOM content information, and the secondary input variables were
the spectral indices composed of the VNIR and SWIR bands and further characterized and
reduced the influence of soil moisture on SOM prediction.

Table 7. Correlation coefficients between SOM and main input variables.

DOY
Main Input Variables

R61 ρ3 ρ1 D43 R51

089 0.70 ** −0.80 ** −0.78 ** −0.71 ** 0.48 **
097 0.74 ** −0.72 ** −0.72 ** −0.64 ** 0.34 **
105 0.75 ** −0.71 ** −0.69 ** −0.66 ** 0.60 **
113 0.62 ** −0.70 ** −0.70 ** −0.66 ** 0.65 **
121 0.48 ** −0.52 ** −0.58 ** −0.62 ** 0.39 **
129 0.71 ** −0.61 ** −0.64 ** −0.63 ** 0.52 **
137 0.68 ** −0.59 ** −0.59 ** −0.59 ** 0.58 **

Note: “**” represents the level of statistical significance at p < 0.01.

Table 8. Optimal models for the total dataset, Phaeozem, and Arenosol.

Soil Type Input Variables Model

Total dataset ρ1, R51 SOM = 0.482 − 0.002 × ρ1+ 2.421 × R51
Phaeozems ρ3, R61 SOM = −16.804 + 0.031 × ρ3 + 2.395 × R61
Arenosols ρ4, D52 SOM = 6.448 − 0.005 × ρ4 + 0.002 × D52

To test whether the established regression model is suitable for SOM mapping, the
spatial distribution patterns of residual values were produced for three datasets (Figure 4).
To observe the spatial distribution characteristics of different residual levels clearly, we
divided the randomly distributed residual values into seven levels and assigned different
colors to indicate the degrees of difference in the values. As shown in Figure 4, the residual
points of different numerical levels showed random and irregular distributions in the study
area; in particular, there was no aggregation distribution that was too high or too low in a
specific area. Therefore, the three SOM prediction models we selected are suitable and can
be used to relatively accurately map the spatial distribution patterns of SOM content in the
study area.
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3.5. Mapping the Spatial Distribution of SOM

We selected the three optimal models to map the SOM of the cultivated land in the
study area (Figure 5a) and Arenosol and Phaeozem regions (Figure 5b) by using the total
and two typical cropland soil type datasets, respectively. The Phaeozem areas were located
in the northeastern part of the study area, and they were affected by a cold environment and
higher latitudes characterized by rich SOM content, whereas Arenosols were distributed in
the southwest with low SOM. Hence, consistent with previous SOM predictions for the
Songnen Plain [30,31,43,58–60], the SOM content generally displayed a trend of being high
in the northeast and low in the southwest. Simultaneously, comparing Figure 5a,b, we can
find that the SOM spatial distribution characteristics of the corresponding Arenosol and
Phaeozem regions in the two figures are highly consistent. Therefore, the results further
prove the effectiveness of the optimal models based on our study, which can be applied to
accurately reveal the spatial patterns of SOM content in the study area and the two typical
soil regions.
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4. Discussion
4.1. Impacts of Pixel Date and Precipitation on Prediction Accuracy

Our study comprehensively considered the impacts of pixel date and precipitation
on the SOM prediction accuracy. Precipitation is an important source of soil moisture,
and it can affect the soil surface water content and, in turn, impact the soil reflectance
spectra [92–94]. Over the bare soil period in particular, precipitation is the main source of
soil moisture for the topsoil layer. Many researchers have reported the influence of soil
moisture on the VNIR reflectance spectrum [93,95–98]. Numerous studies also conducted
with various remote-sensing data have demonstrated that the soil moisture content is the
main limiting factor related to the soil when explaining the low performance of remote
sensing-based SOM prediction models [30,31,99,100]. Therefore, the variability in soil
moisture derived from the changes in precipitation can seriously impact the accuracy of
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the SOM prediction model [30,101]. However, an important influencing factor that is rarely
considered or discussed is the pixel date, which should receive more attention when ana-
lyzing the accuracy of SOM prediction. Our results showed that the variation trends in the
SOM prediction accuracies of Phaeozems and Arenosols were similar due to the occurrence
of similar variation trends in precipitation near the optimal pixel dates. The synergistic
effect of the precipitation and pixel date primarily determined the model accuracy and its
change trend. We detected that when almost no precipitation occurred on the optimal pixel
date and its neighboring days, the prediction models generally achieved a higher accuracy,
and the accuracies exhibited an increasing trend. However, continuous precipitation oc-
curred near the optimal pixel date, especially on the optimal date itself, which resulted in
a significant decrease in prediction accuracy, such as DOYs 121~129 for Phaeozems and
DOYs 089~097 for Arenosols. Meanwhile, when a small amount of intermittent precipita-
tion occurred after continuous precipitation and was not close to the optimal pixel dates,
the accuracy gradually increased with a gradual decrease in soil moisture, and as such,
the changes in accuracy presented an increasing trend from DOY 105 to DOY 121 for the
Phaeozem and Arenosols. Moreover, due to the snowmelt time and good water-holding
capacity, the topsoil surface of Phaeozems in early April was rich in residual snow water,
which may lead to an increasing trend of SOM prediction accuracy between DOY 089 and
097 with the gradual evaporation of snow water.

For the model input variables, the spectral index formed by the ratio of the VNIR and
SWIR bands can reduce the impact of precipitation on SOM prediction. In the three optimal
models with highest model performance, the main input variables were the VNIR bands
(i.e., SOM-sensitive bands), which were closely correlated with SOM content; the secondary
input variables were the spectral indices formed by the mathematical transformation
between the SWIR bands (i.e., moisture-sensitive bands) and SOM-sensitive bands and
characterized soil moisture and decreased the influence of moisture changes on prediction
accuracy. We also found that the model input variables underwent consistent changes
with the impacts of the optimal pixel date and precipitation. When almost no precipitation
occurred on or near the optimal pixel date, the main inputs were generally SOM-sensitive
bands or spectral indices construed by these bands to characterize SOM information, such
as DOYs 113 and 121 for both soil types. In contrast, the model inputs were mostly formed
by moisture-sensitive and SOM-sensitive bands to characterize the effect of precipitation,
such as DOYs 105 and 129 for Phaeozems and DOY 097 for Arenosols. Furthermore, soil
texture affects many soil types of soil-forming processes and soil properties [15]. The soil
texture of Arenosols is finer than that of Phaeozems. Previous research results showed
that the heavier the soil texture, the higher the SOM content [15,102]; therefore, the SOM
of Phaeozems is obviously higher than that of Arenosols. In particular, the soil moisture
retention capacity is closely related to SOM depending on different soil textures [103–105];
that is, the higher the SOM content of soils, the stronger the water storage capacity [106,107],
which makes it easier for the Phaeozems to store soil moisture. In our study, we detected
that the inputs of Phaeozems more effectively characterized precipitation, whereas the
Arenosols were more easily characterized by SOM due to the difference in water-holding
capacity. For example, due to the poor water-holding capacity of Arenosols, the model
input of DOY 097 primarily correlated SOM with bare soil characteristics; however, with the
higher precipitation that occurred during the later stage, the input of DOY 113 characterized
the impact of precipitation information. Moreover, the ratio spectral index, especially for
R61, was generally correlated with soil moisture and reduced the negative impact of
precipitation on SOM prediction, which is consistent with the literature [30,31,43].

4.2. Comparison of Soil Type Impact on SOM Prediction

The model performance using single soil type data was compared with that using the
total dataset, and the model using data on single soil type was better than that based on the
total dataset. Although numerous scholars have studied how soil categorical factors can
improve the accuracy of SOM prediction, soil type is considered less often [15,108]. Our
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study used single soil type data to explore the possibility of improving the SOM prediction
accuracy and obtained better model performance than has been reported in previous
studies on the Songnen Plain. For example, Dou et al. [30] and Zhang et al. [31] used soil
sample datasets that combined multiple soil types data and a MODIS image dataset as
the data sources to predict regional SOM on the Songnen Plain; however, the RMSE value
(0.81%) was higher than that of our research (0.55%). Compared with the results reported
by Zhang et al. [58], who used the random forest algorithm and an SOM dataset composed
of multiple soil type data, our research also achieved a slightly lower RMSE value using
stepwise multiple regression and single soil type data. Simultaneously, the superiority of
using single soil type data has also been verified in other SOM predictions. Bao et al. [59]
used hyperspectral experimental analysis data and a competitive adaptive re-weighted
sampling method to compare the accuracies of SOM prediction under various soil type
grouping strategies and ultimately confirmed the advantage of soil classification prediction.

On the one hand, the spatial heterogeneity of soil properties can impact the prediction
of soil attributes [109], and soil properties in different soil types play an important role
in understanding soil moisture dynamics [110]. Especially in a large region with large
spatial variation in soil moisture, soil moisture has a considerable influence on the model
performance of SOM prediction. The total dataset was composed of complex soil types
formed of different parent materials, resulting in a higher heterogeneity in soils and greater
spatial variation in soil moisture. On the other hand, the distributions of the sampling
points were relatively concentrated, and the SD values of the sampling dataset were small
for single soil types; hence, the spatial variation in soil moisture resulting from differences
in pixel temporal information was also smaller for two typical cropland soil types. However,
the whole study area had a larger area and precipitation, and the sampling points of the total
dataset were widely distributed, resulting in the greater spatial variability of pixel temporal
information and soil moisture; therefore, its prediction accuracy was lower than that of
single soil types. Furthermore, due to the long-term extensive utilization of cultivated
land, which leads to serious soil erosion and complex and changeable features of surface
soil, adjacent soil types are prone to proximity effects [111,112]. In particular, multiple
soil types are cross-distributed without clear boundaries in our study area. For instance,
meadow soils are widely interspersed among various soil types and readily form slightly
convex topography conditions and complex features of surface soil under the action of
external factors. As a result, the adjacent Arenosol and Phaeozem soils would have spectral
characteristics similar to those of meadow soil. However, our research directly used a
single soil type for soil sampling points and ensured that the sampling locations were not
at the junction of soil types, allowing us to obtain more realistic soil spectral features of
the Arenosols and Phaeozems and reduce the soil spectral similarity between adjacent soil
types, thus more accurately mapping the SOM spatial distribution characteristics of the
target areas.

Therefore, using sampling points of single soil type data to predict SOM for the
two typical cropland soil types can effectively reduce the negative effects derived from
the spatial heterogeneity in soil properties and the spatial variations in pixel temporal
information and soil moisture and can avoid the proximity effect of adjacent soil types to
achieve higher accuracy.

4.3. Limitations and Future Research

There are some limitations to our study. First, the bare soil period and MODIS im-
agery dataset were adopted as our research period and remote sensing data source. The
bare soil period can reduce interference and promote real spectral features of the soil
surface reflectance and more accurately map topsoil attributes [73,74]; however, some
areas may not have bare soil periods, or the periods might be short due to the different
seasonal tillage and continuous cropping systems. Thus, it remains to be verified whether
the SOM prediction model established or the analysis methods introduced in our study
can be applied to other areas. Simultaneously, the MOD09A1 image was used in our
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study, which has the characteristics of high temporal resolution and spatially seamless
and multitemporal series characteristics and has been widely applied to predict soil at-
tributes [51,54–56]. However, MODIS is affected by the medium spatial resolution and
heterogeneity of image pixels [113,114], thereby limiting the ability to enhance the precision
of SOM predictions [58]. Hence, future researchers should attempt to apply remote sensing
images with high spatial-temporal resolution (e.g., Sentinel-2 images) [58,60,89,115–117]
or other composite and fusion images [51,74,118,119] to reduce the uncertainty of SOM
spatial analysis. Second, our research is a simple case study of introducing the pixel date
into SOM prediction. Further exploration can determine the pixel dates of the sampling
points in advance to screen out the sample points with the same pixel date and ensure
that no precipitation occurs on those dates, thus revealing the accuracy changes when the
sample point data of the optimal pixel date are exclusively used to construct the SOM pre-
diction model. In this way, the influence of soil moisture and spatial heterogeneity in pixel
dates can be effectively reduced, and the SOM prediction accuracy may be significantly
improved. Moreover, the stepwise multiple regression algorithm was used in our research.
However, attempts should be made to use other algorithms to achieve better model per-
formance for SOM prediction in future studies, such as partial least squares regression
(PLSR) [1,120–122], machine learning algorithms (e.g., cubist algorithm) [87,91,123], and
hybrid algorithms (e.g., random forest-kriging) [13,124–126]. These algorithms have been
applied to predicting SOM content, and integrating different algorithms usually enhances
SOM prediction accuracy. Finally, combining various promising algorithms, the spatial
information on other environmental factors (e.g., soil surface roughness) [127–129] and
agricultural management practices (e.g., no-tillage) [51,130,131] can be incorporated into
SOM prediction to determine the decision variables and analyze the driving factors that
lead to the differences in prediction accuracy, thereby enhancing the robustness and gen-
eralization ability of the model [50]. In summary, determining the method to weaken the
negative effects, such as precipitation, on SOM prediction at a large scale to improve the
prediction accuracy is the main topic for future research.

4.4. Research Innovations and Implications

First, our study is the first attempt to introduce pixel date using time series MOD09A1
images integrated with regional precipitation to analyze their impact on SOM prediction.
The theoretical basis of this analysis method is the different effects of soil properties (e.g.,
SOM) and environmental factors (e.g., precipitation) on soil reflectivity. The spectral re-
flectance generally preserves a decreasing tendency with increasing SOM content [132,133],
especially for the VNIR bands. The SOM content can be reflected by the differences in
soil reflectance spectral characteristics [75,76,133]. However, the soil reflectivity usually
increases with increasing soil moisture [92,100,134]. The three typical moisture absorp-
tion bands of the soil spectrum correspond to ρ5, ρ6, and ρ7, which can characterize soil
moisture information derived from the changes in precipitation; thus, the variations in
spectral curves in this spectral region will present a greater uncertainty with increasing
SOM content [30,31]. Our results demonstrated that the analytical approach can clarify
the changes in prediction accuracies and their trend over the bare soil period, which is
conducive to revealing the driving factors that impact the accuracies of SOM prediction
and to investigating reasonable approaches to enhancing the prediction accuracy. Second,
our results illustrated that using single soil type data to establish SOM prediction models
is an effective approach to improve model performance. The negative impacts derived
from the spatial heterogeneity of different soil types and the greater spatial variation in soil
moisture and pixel temporal information can be reduced. Therefore, our study provides a
promising approach for improving the prediction accuracy and enhancing the robustness
and practical application of regional-scale SOM prediction models.

Furthermore, our research results provide new ideas for digital soil mapping (DSM).
The spatial distribution patterns of soil attributes are highly heterogeneous [49], leading to
the current unsatisfactory accuracy of SOM prediction based on satellite remote-sensing
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data, which is one of the reasons why the existing SOM mapping has considerable un-
certainty. On the one hand, our research used remote-sensing data to map the spatial
distribution of SOM content on the regional scale, which can overcome the limitations
(e.g., labor-intensive, costly, and time-consuming) of traditional DSM techniques [135,136];
therefore, it does not require heavy field investigation work and a subsequent series of
laboratory analyses. Simultaneously, the GEE cloud computing platform is used to obtain
time-series remote sensing image datasets in our research, which has powerful compu-
tational and storage capacities including various remote-sensing images and geospatial
datasets [137,138] and greatly enhances the work efficiency of scientific researchers [139].
More importantly, it also provides greater possibilities for conducting DSM on a large scale.
On the other hand, the essence of DSM is the relationship between soil observation data
and available environmental variables using predictive models to more accurately infer
the temporal and spatial changes in soil properties, thereby enriching the soil information
system [140,141]. The three main influencing factors (i.e., precipitation, pixel date, and
soil type) on SOM prediction were considered in our study, and the mechanisms of their
influence on SOM prediction accuracies were clarified from a theoretical perspective. Our
results proved that using single soil type data can reduce the negative impacts and increase
the accuracy of regional SOM prediction. Hence, our study provides data and methodolog-
ical references to more accurately reveal the spatial distribution patterns of soil attributes,
promote the development of DSM technology, and meet the needs of social development
for soil database information. Finally, the spatial patterns of SOM in the Phaeozem and
Arenosol regions and in the whole study area were accurately mapped based on the above
favorable analysis conditions. It is essential to understand the soil fertility status and adopt
active soil protection measures, such as adopting a reasonable increase in the amount of
fertilization, developing an appropriate rotation or fallow system, and ultimately realizing
the sustainable use of soil resources.

5. Conclusions

Our study focused on two typical cropland soil types on the northern Songnen Plain
and attempted to incorporate the pixel dates of training samples and precipitation to
evaluate their impacts on SOM prediction accuracy based on time series MOD09A1 images
and SOM observation data from multiple soil types. We also demonstrated the advantages
of using single soil type data to improve the SOM prediction accuracy and ultimately
mapped the SOM content in the study area.

Our results showed that the pixel dates of the training samples and precipitation were
the main factors controlling the model performance and inputs during the bare soil period.
When precipitation did not occur on the optimal pixel date and its neighboring days, the
model accuracies were high and generally showed an increasing trend, and the main inputs
were generally SOM-sensitive bands or spectral indices constructed from these bands to
characterize the SOM. Under the opposite conditions, the accuracies exhibited a decreasing
trend, and inputs were generally constructed by SOM-sensitive and moisture-sensitive
bands to represent the impact of precipitation. As anticipated, the ratio spectral index (e.g.,
R61) was suitable for characterizing the impact of precipitation.

The SOM prediction accuracy for soil samples composed of single soil type outper-
formed those of multiple soil types. Models of single soil type can better reduce the
spatial heterogeneity of soil properties, decrease the spatial variations in soil moisture and
pixel temporal information, and prevent regional proximity effects between adjacent soil
types. Moreover, compared to the total dataset, the RI of Arenosols displayed a greater
improvement than that of Phaeozems due to the occurrence of less precipitation in the
Arenosol region.

To conclude, our results indicated that integrating the pixel date with precipitation
data can illustrate the variation in the prediction accuracy during the bare soil period,
highlighting the advantage of using single soil type data and revealing that the SOM content
shows a decreasing trend from northeast to southwest on the northern Songnen Plain. Our
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study provides promising analytical approaches for investigating the driving factors that
impact and improve SOM prediction accuracy. The research results are beneficial in that
they serve as a data reference for improving the accuracy of remote-sensing models for
soil physical and chemical parameters and guiding the implementation of more precise
agricultural management measures.
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