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Abstract: An increased interest in computer-aided heritage reconstruction has emerged in recent years
due to the maturity of sophisticated computer vision techniques. Concretely, feature-based matching
methods have been conducted to reassemble heritage assets, yielding plausible results for data that
contains enough salient points for matching. However, they fail to register ancient artifacts that have
been badly deteriorated over the years. In particular, for monochromatic incomplete data, such as 3D
sunk relief eroded decorations, damaged drawings, and ancient inscriptions. The main issue lies in
the lack of regions of interest and poor quality of the data, which prevent feature-based algorithms
from estimating distinctive descriptors. This paper addresses the reassembly of damaged decorations
by deploying a Generative Adversarial Network (GAN) to predict the continuing decoration traces
of broken heritage fragments. By extending the texture information of broken counterpart fragments,
it is demonstrated that registration methods are now able to find mutual characteristics that allow for
accurate optimal rigid transformation estimation for fragments alignment. This work steps away
from feature-based approaches, hence employing Mutual Information (MI) as a similarity metric
to estimate an alignment transformation. Moreover, high-resolution geometry and imagery are
combined to cope with the fragility and severe damage of heritage fragments. Therefore, the testing
data is composed of a set of ancient Egyptian decorated broken fragments recorded through 3D
remote sensing techniques. More specifically, structured light technology for mesh models creation,
as well as orthophotos, upon which digital drawings are created. Even though this study is restricted
to Egyptian artifacts, the workflow can be applied to reconstruct different types of decoration patterns
in the cultural heritage domain.

Keywords: digital heritage reassembling; generative adversarial networks; mutual
information registration

1. Introduction

The digital reassembly of heritage artifacts captured with remote sensing techniques
is an important task that allows the further study of archaeological sites, monuments, and
ancient inscriptions. It is a complex problem to solve due to three reasons: the numerous
quantity of fragments to puzzle, the loss of heritage documents, and the severe damage
of existing assets. Therefore, researchers have focused on developing technologies to
aid experts in the task of finding correspondences between fragmented heritage data.
In general, these approaches rely on geometry-based local feature descriptors to find
matches between broken surfaces. These methods yield reliable solutions as long as the
fragmented surface footprint remains intact. However, this is a major constraint on the
reconstruction of severely damaged heritage artifacts since many of their broken surfaces
are eroded, and matching points between counterpart fragments have disappeared. As
a result, highly deteriorated artifacts are still puzzled manually. This manual puzzling
approach seldom considers the broken surface to find correspondences. Instead, experts
rely on decoration traces to guess where and how to fit the fragments. Only a few computer-
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assisted approaches have used decoration traces as a matching clue for digital heritage
reassembling, which has left room for new research opportunities.

Leveraging decoration traces for puzzling allows experts to find more matching points
regardless of the fragment damage. This manual puzzling approach relies on visible
matching clues, which help to predict how the drawing traces should continue in the
counterpart fragment. Therefore, computer-assisted registration approaches have used
line extraction methods to aid experts in distinguishing line-based decoration traces more
easily [1]. Furthermore, the extracted lines have been deployed as points of reference to per-
form alignment algorithms, thus improving the registration accuracy [2]. Although these
puzzling approaches have positively contributed to the state of the art, semi-automatic
digital reassembling is still a time-consuming task. Alternatively, fully automatic regis-
tration approaches have been proposed recently to reassemble incomplete and slightly
eroded textured heritage assets, such as paints and murals [3]. These deep learning-based
approaches have shown plausible registration results, but they require training images
with distinctive textures to learn the unique features. As a result, they are not able to
reassemble fragments with monochromatic eroded decoration, such as text inscriptions,
ancient hieroglyphs, damaged epigraphic documents, and sunk relief drawings. To tackle
this problem, the proposed approach attempts to mimic the process that experts follow
to puzzle highly deteriorated decorated fragments. This includes identifying decoration
traces of drawings or inscriptions, prediction of their continuing shape, and alignment
based on the predicted decoration traces.

The proposed methodology consists of three stages: preliminary reconstruction, dec-
oration completion, and registration. In the first stage, a Convolutional Neural Network
(CNN) is used to fill the line-based decoration gaps. This pre-processing step is deployed
to enable a classifier to correctly estimate the type of shape that decoration traces should
form. Based on these classification results, the goal of the second stage is to complete the
decoration shape by means of a Generative Adversarial Network. This is a crucial step since
predicted textures allow for registration algorithms to find sufficient corresponding points,
which is fundamental to estimate an accurate alignment transformation. Finally, similar
to multimodal image registration approaches, counterpart fragments are aligned based
on Mutual Information. The registration pipeline is tested on a set of ancient Egyptian
damaged fragments, whose decoration corresponds to hieroglyphs drawn on 3D block
fragments and 2D drawings. Structured light technology is employed to digitize the input
fragments since their decoration traces are highly eroded; therefore, dense mesh models are
required to accurately extract them. Furthermore, digital drawings resulting from two epi-
graphic studies are used to complement the 3D data and obtain more accurate decoration
completion results. This novel methodology is an alternative to feature-based geometric
approaches when the input data is highly deteriorated and contains few salient points
for matching. Moreover, the GAN-based decoration completion module can be deployed
independently to aid experts in the interpretation of deteriorated digital heritage in two
ways: by highlighting and reconstructing decoration traces and by providing experts with
depictions of potential complete decoration drawings.

In short, the main contributions of the presented work are:

• The automatic registration workflow for digital heritage reassembling, which relies
on both a generative model and an entropy-based registration approach to find corre-
spondences between broken fragments. This allows for the reassembly of highly dete-
riorated heritage fragments with monochromatic decoration traces in 3D or 2D space.

• The novel way of training a GAN model for the completion of monochromatic dec-
oration traces, which can be deployed to support different kinds of registration ap-
proaches in the digital heritage field. This includes not only the proposed entropy-
based methodology, but also feature-based and semi-automatic alignment systems
when the input data is incomplete.

• The proof-of-concept experiments, which show that an MI-based registration can be
deployed to estimate reliable alignments for input data outside the medical domain.



Remote Sens. 2022, 14, 6 3 of 27

The remainder of the paper is structured as follows. Section 2 provides an overview
of the existing literature on deep learning-based approaches for digital heritage reassem-
bly; it also provides background information on inpainting and generative approaches
in the field of digital heritage. Section 3 describes, in detail, the steps that compose the
registration pipeline, as well as the dataset of Egyptian fragments used to test the proposed
methodology. Section 4 details both the technical and algorithmic aspects of the imple-
mentation. Additionally, it describes the experimental framework carried out to evaluate
the registration performance of the methodology as a whole. Finally, a discussion of the
obtained results and conclusions are presented in Sections 5 and 6.

2. Related Work

Although the proposed work tackles the issue of reassembling fragmented decoration,
the main contributions lie in the completion and alignment modules. Therefore, the
literature study focuses on the methodologies that exploit texture for the reassembly of
digital heritage, from feature-based to machine learning methods.

The reassembly of digital heritage is mainly addressed by estimating feature corre-
spondences among counterpart fragments. These features are points of interest, computed
based on either geometric [4] or texture properties [5], depending on the data space: 3D or
2D, respectively. For example, in [6,7], curvatures are computed to build 3D descriptors
of salient points, which are deployed to reassemble broken blocks of sculptures. Sim-
ilarly, 3D shapes are further studied in [8,9] to automatically extract drawing patterns
from mesh models of archaeological objects. The latter works are essential to developing
the segmentation and matching methods proposed within the research program of the
project “GRAVITATE” [10]. Following the same registration workflow, but in a 2D-space,
the broadly used SIFT [11] descriptor is calculated to register various types of heritage
artifacts, such as fresco fragments [12], ancient paintings [13], and historical buildings [14].
However, feature-based approaches require sufficient overlap to estimate reliable trans-
formations for data alignment. This is an important limitation when dealing with digital
heritage. As such, recent studies have resorted to Artificial Intelligence (AI) methods to
solve puzzles of incomplete, damaged data. In [15], Generative Adversarial Networks
(GANs) [16] are deployed to puzzle jigsaw fragments based on semantic information
rather than on features of the image boundaries. Even though this approach mitigates
the lack of overlap, it requires square images as input data, which is a limitation when it
comes to reassembling sophisticated archaeological materials, such as pottery drawings or
inscriptions. Consequently, Neural Networks are trained in [3,17] to predict the position of
pottery shapes and jigsaw puzzles regardless of the gaps between them. Similar methods
are deployed to develop a mobile app for the recognition and matching of pottery shards
within the context of the ArchAIDE [18] European project. These latter studies are similar
to our approach in the sense that they address the issue of incomplete heritage data.

The presented deep learning registration approaches have been proven to cope well
with the lack of overlap between input fragments. Nevertheless, they still require sufficient
texture information to train the neural network. This is a major issue since highly deterio-
rated fragments suffer from color degradation, material erosion, incomplete decoration
traces, and the lack of assembled artifacts’ documents for training. To solve these data
incompleteness constraints, image inpainting and completion approaches [19] have been
studied to reconstruct incomplete or deteriorated images. Inpainting and completion are
normally solved by image-to-image translation approaches [20,21]. These methods attempt
to learn a set of characteristics that transform a group of images A into a dataset B and
vice-versa. GAN approaches [22,23] have gained popularity in this field since they only
require uncorrelated input datasets A and B, thus easing the task of collecting training
data. In the heritage domain, inpainting and completion methodologies have been seldom
studied due to the lack of ground truth training samples, as images with intact decoration
are hard to compile. However, a few examples are found in the field of ancient mural
reconstruction [24,25].
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Another limitation of deep learning-based reassembling approaches is that they do
not cope with rotation variations. This registration property is key to align any kind of
data, either automatically [26] or through a computer-assisted approach [2]. Feature-based
registration methods are popular since they are able to cope with rotations. Moreover,
they yield accurate translation and rotation transformations as long as sufficient correct
matches are computed. However, as mentioned before, the lack of data overlap represents
a big challenge for feature-based algorithms when dealing with heritage fragments. In
the medicine field, researchers have resorted to feature-free registration alternatives [27]
to align images from different sources. This means that the input data do not share exact
information in terms of pixel intensities, which is an unfeasible scenario for feature-based
approaches. This matching alternative relies on the entropy of counterpart images to
determine the similarities between them. Mutual Information (MI) [28,29] is the most
commonly used metric to compare image similarities in this field. Therefore, alignments
are estimated by MI-based methods when a pair of input images exhibit a high MI value.
Even though this is quite a broadly studied approach, to the best of our knowledge, it has
not been used to reassemble heritage assets.

The proposed work integrates deep learning inpainting completion approaches and MI
into a registration pipeline for the reassembly of incomplete heritage drawings. Given the
maturity of GANs, similar to [23], a network is trained to predict the extended decoration
of Egyptian inscriptions. Next, inspired by the way in which multimodal images are
registered in the medicine field, MI is deployed to find a rigid transformation that aligns
two counterpart fragments. Unlike the mentioned deep learning registration approaches,
our workflow only takes as input monochromatic images, which represent decoration
traces of inscriptions. This way, our methodology is able to cope with non-square input
shapes, such as in [3,17]. This also allows the input of 2D projections of sunk relief traces
extracted from 3D models. Therefore, the paper tackles two main constraints of the state of
the art: the lack of features overlap for registration and data incompleteness.

3. Materials and Methods

In this section, an overall overview of the proposed registration workflow is presented.
Figure 1 depicts the consecutive steps that compose the registration pipeline: valley lines
extraction, line/curve inpainting, signs recognition, decoration completion, and MI regis-
tration. The system handles broken fragments of ancient inscriptions in the form of either
3D mesh models with sunk relief decoration or monochromatic drawings. If the process
receives the former input, the 3D points that shape the fragment indentations are extracted
and projected onto a planar surface, thus obtaining an image in which the sunk relief details
stand out. Next, a connected component analysis is performed on the resulting image to
estimate decoration traces of actual inscriptions. Since these signs are made of incomplete
segments, the line/curve inpainting step aims at filling decoration gaps in a way that the
curve properties and line thickness are preserved. This preliminary reconstruction helps
improve the performance of the sign recognition and completion steps. The sign classifier
is paramount to the algorithm because it determines which image completion model will
be applied to extend the decoration. According to the classified sign, an image-to-image
translation method is then deployed to predict the continuing traces of broken counterpart
fragments. Finally, an MI-based registration approach is used to calculate a rigid optimal
transformation for fragments alignment.

The remainder of this section first explains the dataset used to develop this research,
after which each of the pipeline modules are described in detail.
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Figure 1. Overview of the proposed registration pipeline based on decoration completeness. The
input can be either a 3D model with sunk relief decoration or a monochromatic image. The first step
is conducted only when the input is a mesh model. The second and third steps aim to determine the
decorated fragments’ completed sign. Finally, the predicted signs are registered by computing their
mutual information.

3.1. Dataset

The data for this study come from heritage documents recorded in Dayr al-Bersha,
Egypt. We chose a set of ancient broken fragments that were excavated in the decorated
tombs of this region. Their current state is quite deteriorated since they date back to the
Middle Kingdom period of ancient Egypt, from 1975 BC to 1640 BC, and have suffered from
earthquakes, looting, and vandalism. Since the proposed work handles 3D and 2D input
data, the dataset is composed of 3D mesh models of decorated blocks and drawings of
two epigraphic studies.The description of the technology employed to digitize the former
data type and their recording process can be found in [30]. In terms of data quality and
accuracy, the triangles density of the recorded 3D mesh models is 300–1000 k faces, and
the average distance among the vertices is 3 mm. Figure 2 depicts some of the selected
3D models containing sunk relief decorations of ancient Egyptian inscriptions. Although
30 decorated fragments are used for this study, only four are shown in this paper so that
their sunk relief properties can be distinguished from the picture. As we are only interested
in the decorated surface, only the planar region of the fragment is considered as input
information. The 2D data come from the epigraphic studies carried out by Newberry
in 1894, whose digital results were published in [31]. The second epigraphic study was
conducted by egyptologists of KU Leuven, within the framework of the Dayr al-Bersha
project [32]. Both studies are depicted in Figure 3. By collecting inscriptions from decorated
blocks and different epigraphic studies of the same site, our data contains shape similarities,
and it is also differs in terms of drawing style.

Figure 2. 3D models of ancient Egyptian decorated blocks with sunk relief decorations. In total, 30
fragments of this type are used to develop and test the proposed study.
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Figure 3. Samples of epigraphic studies used to develop and test the registration pipeline. Study A
was provided by the Dayr al-Bersha project [32]. Study B is published in [31].

3.2. From 3D to 2D Extraction of Sunk Relief

Sunk and high relief decoration traces are commonly found in ancient heritage frag-
ments. For this reason, the proposed workflow is designed in a way that not only permits
the input images of texture decoration but also mesh models with sunk/high relief dec-
oration. Since such 3D inputs are textureless, we resort to differential geometry-based
approaches [33] to convert them into images. More specifically, the 3D ridge–valley lines
approach proposed by Ohtak Y. [34] is deployed to extract fragment indentations. This algo-
rithm is able to extract irregular surfaces and classify them as a ridge or a valley line based
on their curvatures. However, not all indentations are decoration traces. Some of them are
footprints of damage or shape errors that occurred during the 3D scanning process. There-
fore, after extracting the valley lines, a connected component analysis [35] is conducted
to remove small indentations that do not form a decoration shape. The remaining lines
are projected onto a 2D plane, yielding a segmented image with separated components, in
which each segmented component represents a potential trace of decoration.

The ridge–valley lines method relies on the relationship between the principal cur-
vatures k1 and k2 of a surface to mathematically describe its local bending. To visually
understand this concept, Figure 4 illustrates the principal curvature values for ridge and
valley surfaces. Note that ridge shapes are similar to high relief traces while valley shapes
resemble sunk relief traces. Considering this observation, the mathematical description of
valley surfaces is taken into account to extract decoration traces out of the mesh models.
For each vertex p, the neighboring surface S and the principal curvatures are computed.
If k1 = 0 and k2 > 0, then S is taken as an indentation. This process yields every sunk
surface present in the model, which might lead to many unwanted points. This effect is
illustrated in Figure 5a. As observed, numerous indentations with shape irregularities
are segmented, making it difficult to distinguish decoration from damage. This result
was expected since the ancient fragment’s decoration does not lie on a perfect plane-like
surface. To mitigate this effect, the input mesh is smoothed by using the Laplacian method
proposed by J. Vollmer et al. [36]. The impact of smoothing the input 3D mesh several
times is shown in Figure 5c,d. The number of smoothing steps is determined based on the
mesh density. For our dataset, three smoothing steps are sufficient to remove a significant
amount of undesired traces, while keeping the decoration lines.
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Figure 4. Principal Curvature values of the valley (left) and ridge (right) surfaces.

Figure 5. Ridge–valley lines extraction of a decorated fragment smoothed with 0, 3, and 6 steps.
Ridges and valley surfaces are marked in red and blue lines, respectively.

Even though the previous step removed a significant number of damage traces, some
small, unconnected and non-uniform lines remain present. These unwanted traces are
removed by performing a connected component analysis on the extracted valley lines.
Since the goal of this module is to extract decoration in 3D space and convert it into an
image, the connected components are computed in 2D space. In order to avoid shape
deformations when converting the lines from 3D to 2D, the convex hull [37] of the fragment
is calculated to estimate the output image dimensions. This way, we keep the height and
width proportions of the 3D model in the image. Next, the 3D valley lines are drawn onto
a canvas, producing a binary 2D representation of the decoration traces. Finally, based on
custom-defined size thresholds, small connected components are discarded. This process
is illustrated in Figure 6. From left to right, the first image depicts the input 3D valley lines
marked in blue and the convex hull delineated by a red rectangle. The second image shows
the 3D extracted lines projected into 2D space. Finally, the last image depicts the connected
components extracted marked in green. Each component represents potential traces of
decoration and is the input of the Line/Curve inpainting module.

Figure 6. Left: Valley lines of a decorated fragment. Center: Lines projected onto an image. Right:
Segmented connected components delineated with green rectangles.

3.3. Lines and Curves Inpainting

There exist two main techniques to tackle drawing inpainting: via rudimentary com-
puter vision methods and through data-driven approaches. The former includes mor-
phological operations, contour drawing, and flood fill algorithms. These methods are
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mainly deployed as a pre-processing step for blob-based solutions. The latter performs
unsupervised and supervised learning methods to visually enhance sketches, corrupted
documents, and hand-made drawings. Since damaged decoration traces are made of curvy
shapes and lines with multiple intersections, the core of the inpainting module relies on
a data-driven approach. Concretely, the joint gap detection and inpainting method pro-
posed by Kazuma S. et al. [38] is integrated in our pipeline to complete decoration traces.
The authors proved that line segments of basic 2D shapes are sufficient to train a CNN
for automatic detection and completion of drawing gaps while preserving line thickness
and curvature.

The unsupervised method for gap detection and inpainting presented in [38] is trained
with fragmented segments of 2D shapes, such as triangles, circles, and squares. The authors
provide a pre-trained model to complete the gaps on drawings of any size since the network
is fully convolutional. This model is tested on some images of our dataset of Egyptian
drawings, which are made of straight lines and curves. To this end, random gaps of
different sizes are deliberately added to the input drawings, and the pre-trained model is
applied to fill the created gaps. Figure 7 depicts the obtained results. For most of the small
gaps, the network is able to fill the line gaps while maintaining curvature and thickness.
However, the method struggles to detect gaps of complex shapes, such as the flower
sign marked in red dotted lines, in which the model is not able to predict expected line
traces. Nevertheless, this test shows that the inpainting data-driven approach is suitable to
complete small decoration traces of heritage signs.

The line/curve inpainting module serves as a pre-processing step in the registration
workflow to complete small decoration gaps caused by erosion over time or valley lines
that were not properly detected. As a consequence, the likelihood of recognizing the correct
decoration class is increased. The details of the Egyptian signs classifier are presented in
the next subsection.

3.4. Signs Recognition

The sign recognition module’s goal is to decide on the type of hieroglyph that is
going to be used as a reference to extend the decoration of a broken fragment. Since
the Egyptian signs mainly correspond to silhouettes of body parts, objects, and animals,
transfer learning can be performed to train the classifier. Similar to sketch recognition
network models [39,40], a CNN is designed using Resnet50 as a backbone. This architecture
has proved to yield a high classification score for the TU-Berlin sketch dataset [41], whose
images are similar to ours. Moreover, Barucci A. et al. [42] have recently shown plausible
classification results of Egyptian hieroglyphs by building a CNN, which takes Resnet50
as a basis. In contrast to this work, we are interested in classifying segments of a sign
rather than the entire hieroglyph shape. Therefore, our network is trained with random
segments of hieroglyphs. To this end, different drawing styles of inscriptions are selected
from the Egyptian epigraphic study described in Section 3.1. Additionally, to recognize
the decoration traces from the 3D models, the extracted valley lines that delineate the
fragments’ hieroglyphs are extracted and included in the training data. As a proof of
concept, five Egyptian inscriptions are selected to test the proposed registration workflow.
These signs are chosen because they are commonly found in the set of recorded fragments.
Moreover, they are made of basic drawing shapes, such as circles, zigzag lines, square
corners, semi-circles and combinations of them. Thus, these shapes are not only relevant to
drawing Egyptian signs, but also they form the basis of other heritage drawing styles, such
as Hieratic and Greek inscriptions [43,44].



Remote Sens. 2022, 14, 6 9 of 27

Figure 7. Joint Gap Detection and inpainting method [38] tested on our dataset of Egyptian Drawings.
The left column shows the Egyptian signs with gaps of different sizes. The middle column is the
predicted image with gaps completed. The right column is the ground truth image. The red dashed
lines highlight the areas in which the inpainting algorithm failed to detect and fill the line gaps.

As previously mentioned, the goal is to classify segments of traces rather than the
full hieroglyph. With this objective in mind, the training images are created, as shown
in Figure 8. Complete signs are used as a reference, from which random segments are
extracted to compose the set of training images. In order for the classifier to cope with scale
effects, the reference image is resized for different resolutions. The size of the square mask
used to delineate the segmented area is more than 25% of the reference image to ensure
that the network is able to extract distinctive features. Otherwise, drawings would become
too small and might lead to misclassifications due to the similarity between decoration
traces. In total, 6500 segments per class are used to train the model, including image
augmentations. The confusion matrices of the trained classifier for 10, 20, and 30 epochs are
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depicted in Figure 9. The classifier yields some false positives for the feather sign because
it is made of less distinctive shapes. It is composed of one straight line and a rounded
rectangle. However, the overall results prove that the trained network yields reliable
classifications. The trained classifier is deployed to determine which completion model
should be used as a decoration predictor. This module is explained in the next subsection.

Figure 8. Left column: Classes and reference images used to create the training data for sign
classification. Right Column: Random segments extracted from the reference images, which resemble
decoration traces of broken fragments.

Figure 9. Confusion matrices of the trained CNN for 10, 20, and 30 epochs, respectively.

3.5. Decoration Completion

The completion module attempts to extend the decoration traces of a classified sign to
obtain a more complete image from which we can extract features for image registration.
The completion task is performed by training an image-to-image translation model using
Cycle-GAN [45]. This unsupervised approach is able to learn special characteristics of one
image collection X and translate them into the other target image collection Y. CycleGan
is deployed to extend decoration pixels since it relies on learned features rather than on
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relationships between paired images. This way, the network learns the decoration pattern
that needs to be extended based on the characteristics of the incomplete input drawing. In
our case, the image collections domains X and Y are composed of incomplete and complete
drawings, respectively. The idea is to create two images that resemble both the decoration
of a broken fragment and its complete decoration. As the salient image characteristics
vary from one Egyptian inscription to another, we train five different models for each of
the classified classes: eye, head, feather, water, and circle. The next paragraphs provide a
detailed explanation of how the training data is produced as well as an evaluation of the
decoration completion results.

The data is created from the same reference images used to train the sign recognition
model (see Figure 8). The process to create an image for X and Y domains is illustrated in
Figure 10. Square masks, randomly distributed across the reference sign, are utilized to
delineate the target completion area. The masks’ size is determined based on two factors:
the recommended input image dimensions for Cycle-GAN and the area length that can be
extended by the model without altering the inscription shape. For the former, the input im-
age size needs to be a multiple of for, since CycleGAN entails downsampling/upsampling
operations. For the latter, an exhaustive experimentation showed that 24 px is the optimal
length that can be extended by the model. Therefore, if we consider a square mask of
64 × 64 px (marked in green), plus the image extensions of 24 px for each side, the total
size of the training images is 112 × 112 px (marked in blue). To extend the dataset, random
rotations and scale operations are applied to the images. In total, for each reference inscrip-
tion, 1400 images are created for each domain by varying the masks location, number of
rotations, and scale transformations.

Figure 10. Example of how the training data for the decoration completion GAN model is produced.

To show the performance of the trained networks, the decoration completion models
are tested on a set of incomplete signs with different rotations. Figure 11 depicts some
predicted images for the selected classes. Keeping in mind that the goal of this module is
to predict the continuing traces of a fragmented drawing, instead of aesthetically recon-
structing the input sign, it becomes difficult to select the appropriate evaluation metrics.
From a general perspective, the completion problem falls into the inpainting approaches
category. As such, for the sake of a quantitative assessment, the image completion results
may be evaluated based on image quality metrics [46], such as SSIM and PSNR. However,
it is not of our interest to accurately reconstruct a drawing. Instead, we seek to extend
the input texture to intuitively find common characteristics between broken counterpart
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signs. Consequently, aside from SSIM and PSNR, Mutual Information is also computed to
estimate whether the predicted image might provide more distinctive points for matching.

For the purpose of evaluating the trained models’ performance, the expected complete
image is compared not only against the predicted sign but also to the incomplete input
hieroglyph. This way, we are able to measure how much the predicted image has improved
or distorted the incomplete input drawing. As there are numerous test images, computing
the evaluation metrics for all of them might lead to confusion when interpreting the results.
Thus, the best-predicted signs, qualitatively wise, are manually selected for evaluation.
These signs are highlighted with dashed lines in Figure 11. Moreover, note on the left side
of the figures that nomenclatures A, B, and C refer to incomplete signs, predicted signs, and
ground truth complete signs, respectively. The image quality results are summarized in
Table 1. For the selected signs, C is compared to A and B in terms of the evaluation metrics:
SSIM, PSNR, and MI. As shown in the first two columns, the SSIM and PSNR quality results
do not provide useful information for evaluation. These obtained metrics are inconsistent;
in some cases, the similarity values are higher when comparing B vs. C or vice-versa,
which makes it difficult to assess whether the predicted images are providing more salient
points for matching or not. This fluctuation of values is expected since SSIM and PSNR
metrics measure pixel-to-pixel relationships, and the completion models are not trained
to enhance the quality of the input image at the pixel level, such as noise reduction or
inpainting methods. For MI results, on the other hand, the estimated values are consistent
and allow us to quantitatively assess the predicted decoration. The MI metrics indicate that
the predicted images contain more overlap with respect to the ground truth complete sign.
Particularly, the MI results for water and eye signs (highlighted in bold) have increased
41 and 24 times, respectively, with respect to the C vs. A comparison. Although the SSIM
and PSNR metrics also show an increase, the differences are not as notable as with MI.
This quantitative assessment proves that MI is a reliable similarity metric to register the
predicted complete inscriptions.

Table 1. Comparison of image quality and similarity metrics between incomplete signs A, predicted
signs B, and ground truth signs C. Their range is from 0 to 1, where 1 means images are more alike.
For this evaluation, only the best decoration completion results are considered. These are highlighted
with a red rectangle in Figure 11.

SSIM PSNR MI
B vs. C A vs. C B vs. C A vs. C B vs. C A vs. C

circle 0.2202 0.3974 0.3226 0.3529 0.0037 0.003
water 0.8830 0.6286 0.3759 0.3729 0.3981 0.0096

feather 0.9088 0.9263 0.3812 0.4583 0.3951 0.3747
head 0.6906 0.5139 0.3348 0.3407 0.2319 0.0051
eye 0.8744 0.6995 0.3593 0.3526 0.2321 0.0093

3.6. Puzzling Fragments with Mutual Information

As mentioned in Section 2, MI is an entropy-based approach that detects similarities
between complex relationships. Instead of exploiting pixel-based properties to estimate
correspondences, MI compares density heat maps or 2D histograms of two input sources.
This metric is high when input signals share significant information and zero when they
are independent. This method has been widely used in the medical field to register
data from different sources, for example, computerized tomography (CT) vs. magnetic
resonance (MR) images [47]. Motivated by these characteristics, MI is the core of our
registration module.
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Figure 11. Examples of decoration completion for the circle, water, feather, head, and eye inscriptions.
The rows are labeled as A, B, and C to indicate incomplete signs, predicted completion, and ground
truth complete signs, respectively. The red rectangle highlights the best results, which are used to
evaluate the generative model.
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We make use of MI to select possible alignments. Given a pair of counterpart fragments
resulting from the completion step, the generated overlap between the predicted images
is now leveraged to estimate common regions for matching estimation. The registration
process is illustrated in Figure 12. First, we compute MI over all possible alignments,
considering rotations and translations. This step yields all possible alignments sorted from
highest to lowest MI. In other words, this list represents a set of potential registrations.
However, since a pair of broken signs might contain multiple segments with similar shapes
that can be matched, the highest alignment in the list does not always correspond to the
correct registration. Therefore, a discriminator is implemented to filter out registered
images that form a different shape than the expected sign in a way that the final result
consists of a set of shape-coherent alignments.

Figure 12. Step-by-step process to register two incomplete signs using the proposed
MI-based approach.

To illustrate why relying only on the highest MI might lead to false registrations
(opposite to medical images), Figures 13 and 14 depict the top 500 MI values and shows the
resulting alignments of some of the values. For example, the highest MI for the eye sign is
0.083, but the expected registration has a MI of 0.048 (position 40 of top 500). The same
goes for the feather inscription, the rough alignments that form the actual sign are found in
positions 12 and 49 of Figure 14. We found that the correct potential alignments are always
found within the top 100 MI values. As such, a sign discriminator is implemented to select
only alignments that form the expected hieroglyph. This module is performed by training
a CNN model that classifies misaligned and properly aligned fragments.

Figure 13. Example of the top 500 potential signs alignments based on MI for the eye sign. The Y-axis
is the MI value, and the X-axis corresponds to the respective alignment index.
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Figure 14. Example of the top 500 potential signs alignments based on MI for the feather sign. The
Y-axis is the MI value, and the X-axis corresponds to the respective alignment index.

The integration of MI with the sign discriminator is described in Algorithm 1. It takes
as input the resulting images of the completion module. One of them is set as the target,
and the other is used as the query. All possible rotations and translations are applied to
the query image in a nested loop so that each step represents a possible alignment. Each
iteration of the query and target images are compared by means of MI. Next, the computed
metrics are sorted from highest to lowest, saving the top 100 values with the respective
alignment. Finally, the CNN discriminator filters out registrations that do not correspond
to the expected sign.

Algorithm 1 Mutual Information registration

procedure MIREG( f rA, f rB) . Fragments with predicted completion

for all possible alignments ti do . Rotations and translation

f rBti ← RigidTransormation(frB) . Apply rigid transformation to f rB with
respect to f rA

MIi ← MutualInformation( f rA, f rBti) . MI values and alignments are saved

end for

SortedMI← Sort(MI) . Sort MI values from largest to smallest

for i← 1, 100 do . Top 100 MI values and alignments

isSign← SignDiscriminator(MIi) . is the alignment an expected sign?

if isSign then

Ai ← MIi . Add registration to array of potential alignments

end if

end for

return A . Array of potential alignments

end procedure
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4. Results

In this section, the implementation details of the modules that compose the registration
pipeline are described. Moreover, a qualitative and quantitative assessment of the puzzling
performance of the complete pipeline is presented.

4.1. Implementation

The following libraries and pre-trained models are utilized to implement the reg-
istration pipeline. The C++ library for the manipulation of 3D triangles and meshes.
Trimesh2 [48] is deployed to implement the extraction of valley lines. Auxiliary computer
vision algorithms, such as resizing, convex hull, and connected components analysis, are
performed using Opencv [49]. For the line/curve inpainting module, the trained models
provided by [38] are used. The CNN network for sign recognition is designed using Ten-
sorflow and Keras [50]. The GAN network for decoration completion is built upon the
Cycle-GAN pytorch-based implementation presented in [51]. Finally, the python libraries,
Numpy and Scikit-learn [52,53], are deployed to implement the MI registration. The system
is tested on a computer with the following specs: processor intel i7, 16GB RAM, GPU
Nvidia GeForce GTX 1080.

The integration of all modules is performed following the structure of Algorithm 2. For
the sake of clarity, each step of the pipeline is described succinctly by comments in the code.
The system requires as input two broken fragments, FrA and FrB, that contain decoration
traces in the form of 3D sunk relief and monochromatic images. When the system receives
the former input, the decoration lines are extracted and converted into an image. Otherwise,
the system starts to process from the inpainting stage. Once the line and curve gaps are
filled, the partially reconstructed segments Img f rA, Img f rB are classified to determine the
model for decoration completion. After that, the decoration lines are extended accord-
ing to the classified sign. Finally, the predicted complete signs are aligned by deploying
Algorithm 1. The final result is a list of potential alignments that can be evaluated by experts
to determine the best registration or can serve as candidates for further
matching approaches.

4.2. Evaluation

The proposed pipeline is analyzed as a whole in terms of processing time and qual-
itative/quantitative metrics for each of its modules. Since the registration depends on a
set of consecutive steps, it is important to determine the influence of each step on the final
result, thus providing an insight into how the pipeline performs. Concretely, the following
modules are evaluated: line/curve inpainting, sign recognition, decoration completion,
and MI-based registration.

The processing times are presented in Table 2. The input image dimensions correspond
to the size of the training images for the completion model, namely 112 × 112 pixels. The
estimated results do not include the time to load the trained model parameters, as this
process is performed only once. The table clearly shows that the MI registration process is
the bottleneck. This module is time-consuming since its algorithmic complexity is O(N2).
The algorithm itself is a nested loop that iterates through all possible alignments for each
image row and column. The processing time can be reduced by calculating the MI of
all possible alignments in parallel. This is not performed in this work as the fragments
registration problem does not require a real-time solution.

Table 2. Average processing time of each step of the registration pipeline for every fragment expressed
in seconds.

Line/Curve Inpainting Sign Recognition Decoration Completion MI Registration

0.0867 0.1708 0.8975 65.350
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Algorithm 2 General Registration Pipeline

Require: FrA, FrB . Input Broken Fragments

Ensure: FrA, FrB contain decoration traces

if FrA, FrB are 3D models then . From 3D to 2D

ValleyLinesA← ExtractValleyLines(FrA) . Sunk Relief Extraction

ValleyLinesB← ExtractValleyLines(FrB)

Lines2dA← DrawLines2D(ValleyLinesA)

Lines2dB← DrawLines2D(ValleyLinesB)

CCA← CC(Lines2dA) . Connected Component (CC) analysis

CCB← CC(Lines2dB) . Images resulting from CC

Img f rA ← CCA

Img f rB ← CCB

else
Img f rA ← FrA

Img f rB ← FrB

end if

Img f rA ← LineCurveInpainting(Img f rA) . Inpainting

Img f rB ← LineCurveInpainting(Img f rB)

modelA← SignClassifier(Img f rA) . Classification of Egyptian Inscriptions

modelB← SignClassifier(Img f rB)

FrAComp← DecCompletion(Img f rA, modelA) . Decoration extension w.r.t. classified
sign

FrBComp← DecCompletion(Img f rB, modelB)

PotentialAlignments←MIREG(FrAComp, FrBComp) . MI registration (See
Algorithm 1)

For the qualitative and quantitative evaluation of the registration pipeline, random
pairwise puzzles are created from the input dataset. This includes segments of inscriptions
from the epigraphic studies and 2D traces extracted from the mesh models. Random gaps
are added to the generated counterpart signs with the aim of resembling damaged deco-
rated fragments. Aside from the experiments presented in this section, an implementation
of the pipeline is provided (https://www.kaggle.com/robdelima/genreassembly, accessed
17 November 2021) for independent third-party evaluation. This jupyter notebook contains
not only the code for each module, but also the pretrained models for sign recognition

https://www.kaggle.com/robdelima/genreassembly
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and completion. It allows the user to generate random puzzles and to process each of the
pipeline steps for further results analysis.

The evaluated pairwise puzzles for each sign are shown in Figures 15–19. To qual-
itatively assess each step, their respective performance metric and expected result are
depicted as well. The inpainting module is evaluated via the image quality metric PSNR.
Since the sign classifier was already evaluated in Section 3.4, only the classification score is
shown. For the completion module evaluation, MI between the predicted image and the
ground truth is computed. Finally, on the right side of the figures, the potential estimated
alignments are shown.

Figure 15 depicts the results for the eye sign. For the majority of the cases, the
inpainting module yields reliable results, obtaining a PSNR of more than 20, except for
the broken sign on row five. This performance positively impacted the classification score,
which was 100 % for all input signs. The completion module is not completely accurate
when compared to the ground truth data, but the predicted traces help to generate sufficient
overlap between images to estimate correct alignments through MI. In general, this sign is
challenging to align since counterpart fragments are symmetrical. This characteristic might
lead to false positives due to the fact that the maximal MI is estimated when broken signs
completely overlap with each other, yielding two ’half eyes’ on top of each other instead
of one ’full eye’. This issue is exemplified on row seven, where the best alignment is the
full overlap of the input signs. For the other alignments, however, the sign discriminator
correctly filtered out false positives, yielding reliable solutions. Since the registration results
only represent potential alignments, some of them require further interpretation by experts
to determine true positives. For instance, the results on rows 9 and 10 seem correct, but
their left segment is flipped. Therefore, in this particular case, the results are false positives
and need to be discarded by an expert.

Figure 16 shows the results for the water sign. Unlike the eye inscription, the inpaint-
ing result struggles to fill lines of populated gaps. This is depicted on rows 1, 3, 7, 9, and
11. The spaces between zigzag traces are interpreted by the module as line/curve gaps;
therefore, it attempts to fill them, resulting in blurry traces. This slight issue does not affect
the performance of subsequent steps. For all examples, the inscription classifier yields a
score of 100%. The completion module accurately expands the decoration traces, which
is translated into a high MI score when compared to the ground truth data. All in all,
the registration workflow is capable of registering this type of decoration, as traces were
properly extended and matched.

Figure 17 shows the results for the feather sign. Similar to the water inscription, when
line gaps are small, the inpainting module fills them with blurry traces. However, the
obtained outcome enables subsequent steps to estimate reliable intermediate results. As
expected from the confusion matrices presented in Section 3.4, the confidence of the sign
classifier is reduced by roughly 20%. As explained, this has to do with the fact that the
broken feather segments might look similar to eye segments. Nonetheless, the classification
score is more than 60 % for all cases, allowing the completion module to select the correct
model. The completion step proves to cope well with a different type of inscription styles
for both inputs: 3D traces (rows from 5 to 12) and epigraphic drawings (rows 1 and 2).
These accurate completion results are translated into reliable alignments, as obtained results
are coherent with the expected shape.
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Figure 15. Examples of obtained results for the eye sign. From inpainting to registration.
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Figure 16. Examples of obtained results for the water sign. From inpainting to registration.
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Figure 17. Examples of obtained results for the feather sign. From inpainting to registration.
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Figure 18. Examples of obtained results for the circle sign. From inpainting to registration.
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Figure 19. Examples of obtained results for the head sign. From inpainting to registration.

Figures 18 and 19 show the results for the circle and head signs, respectively. They
are analyzed together since they exhibit similar registration results. As with previous
signs, the inpainting model successfully fills the line and curve gaps. Consequently, the
obtained classification score is over 90% for all input drawing segments. The main issue
for this sign lies in the decoration completion module. When a straight line is expected
to extend a drawing trace, the model attempts to complete it with a circular shape. This
problem negatively affects the MI-based registration approach, as incorrectly generated
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segments are considered correspondences. As a result, the estimated rigid transformation
is inaccurate, leading to misalignment, which distorts the input inscription’s form. This
registration issue can be clearly seen in Figure 18 rows 9 and 10, where the obtained
alignments result in a highly distorted sign. The same effect is shown in Figure 19, rows 4,
11, and 12.

Although the predicted completion leads to incorrect alignments, some of the pre-
dicted pixels are actually correct, which might serve as a guide for manual reassembling.
This is illustrated in Figure 20, in which correct predicted segments are highlighted in blue
and dotted lines. For the head sign, note that the traces that delineate the ’face’ are correctly
extended. Similarly, for the circle sign, the straight lines that form a ’cross’ and the curves
that join two points (see rows 1 and 2) are predicted properly. These results confirm that
the completion module can serve as a matching clue for either manual reassembling or
automatic matching when additional information is included, such as geometry.

Figure 20. Examples of decoration completions for the head and circle inscription. The delineated areas correspond to correct
predictions. Although the general inscription is distorted, the correct segments might support semi-automatic registration approaches.

5. Discussion

The integration of an inpainting method, GAN-based model, and an MI-based align-
ment approach results in a potential approach to not only find correspondences between
broken decorated fragments but also to synthetically produce heritage monochromatic
drawings. GAN models are normally used to solve inpainting or pixel-to-pixel image
translation problems, in which the prediction consists only of filling the gaps between two
points based on salient features and pixels’ position. However, our study proves that by
deploying the proposed training strategy, GANs also can be used to extend drawings solely
based on the texture information of the image perimeter. In order to predict shape-coherent
decoration traces, the experimental framework suggests a filling area of 24 px for each side
of the image. As illustrated in the experiments, for Egyptian signs made of curves and lines,
such as the eye, water, and feather inscription, the proposed pipeline is able to yield reliable
registration and completion results. This is a significant finding as this approach can be
deployed for reconstructions of other types of heritage data, such as ancient papyrus.

Moreover, the extraction of valley lines proves to be an efficient solution to extract
3D-relief traces and convert them into lines that can be used as input data for sophisti-
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cated 2D algorithms or as training data. For example, in this research, the segmented
inscriptions extracted from 3D indentations serve as complementary data for training the
completion model, thus enabling the registration pipeline to cope not only with images
but with mesh models as well. For the feather sign, in particular, these additional images
played a fundamental role in the completion module, as the predicted decorations serve to
successfully perform the MI-based registration approach. This result is relevant due to the
fact that the line segments of such extracted signs are quite irregular but sufficient for GAN
models to learn distinct features and improve the decoration completion results. Therefore,
combining the extraction of 3D sunk relief lines, GANs, and MI represents a novel solution
to reconstruct mesh models of antique decorated stelas, which are commonly found in
ancient cultures, such as the Egyptian, Greek, and Roman.

Although the proposed approach yields plausible alignment results for sophisticated
decoration shapes, the MI-based registration module struggles to estimate the optimal
alignment transformation. As mentioned in the previous section, this problem is caused
by incorrectly predicted decoration segments, which distort the inscription and affect the
rigid transformation’s accuracy. This means that prominent features have an impact on
the decoration completion, such as the circle and head sign that are mainly constructed
by a circle. In these kinds of scenarios, the reconstruction and completion modules can be
part of a semi-automatic registration approach. As such, they can serve as tools for experts
to easily find matching decoration clues from either drawings or 3D-decorated blocks via
a puzzling virtual interface. Along the same lines, the deep learning reconstruction and
completion approach offers the opportunity to create synthetic training data from highly
damaged archaeological assets. Enabling data-driven approaches to tackle unsolved topics
in the field of digital heritage, such as segmentation and classification of archaeological
monuments [54,55], ancient text deciphering [56], and visualization enhancement [57].

6. Conclusions

This paper presents a registration pipeline for ancient broken fragments with highly
damaged decoration traces in 3D and 2D space. Its main modules are: (i) decoration inpaint-
ing and completion and (ii) MI-based alignment. The first stage attempts to mitigate the
fragments’ lack of texture (caused by erosion and damage over the years) by reconstructing
line-curved decoration traces and completing its expected shape. To this purpose, a novel
way to train a GAN-based model is proposed for digital heritage decoration completion.
We proved that this completion methodology is able to cope with highly deteriorated
drawing traces of ancient Egyptian fragments since the predicted decoration completions
produce sufficient distinctive salient points for matching. In the second stage, the predicted
images are used to find common segments between counterpart fragments on the basis
of MI. The results show that the registration pipeline is suited to puzzle fragments with
textureless decorations made of zigzag lines, curves, and combinations of straight lines
and curves. For such shapes, the proposed approach is able to accurately perform the core
modules of the registration workflow: decoration inpainting, completion, and alignment.
Therefore, this methodology can be implemented to automatically register fragments of
ancient inscriptions or texts made of similar forms, such as some of the presented Egyptian
Hieroglyphs. However, for decorations made of more complex shapes, the proposed work
can serve as a tool for experts to seamlessly find matching clues by means of a virtual
environment or a semi-automatic registration approach. Future work includes the inves-
tigation of ways to homogenize the different types of decoration for a particular set of
inscriptions. Since this work requires a completion model for each type of inscription, the
training process becomes tedious and time-consuming.
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