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Abstract: Seamless positioning systems for complex environments have been a popular focus of
research on positioning safety for autonomous vehicles (AVs). In particular, the seamless high-
precision positioning of AVs indoors and outdoors still poses considerable challenges and requires
continuous, reliable, and high-precision positioning information to guarantee the safety of driving.
To obtain effective positioning information, multiconstellation global navigation satellite system
(multi-GNSS) real-time kinematics (RTK) and an inertial navigation system (INS) have been widely
integrated into AVs. However, integrated multi-GNSS and INS applications cannot provide effective
and seamless positioning results for AVs in indoor and outdoor environments due to limited satellite
availability, multipath effects, frequent signal blockages, and the lack of GNSS signals indoors. In
this contribution, multi-GNSS-tightly coupled (TC) RTK/INS technology is developed to solve the
positioning problem for a challenging urban outdoor environment. In addition, ultrawideband
(UWB)/INS technology is developed to provide accurate and continuous positioning results in
indoor environments, and INS and map information are used to identify and eliminate UWB non-
line-of-sight (NLOS) errors. Finally, an improved adaptive robust extended Kalman filter (AREKF)
algorithm based on a TC integrated single-frequency multi-GNSS-TC RTK/UWB/INS/map system is
studied to provide continuous, reliable, high-precision positioning information to AVs in indoor and
outdoor environments. Experimental results show that the proposed scheme is capable of seamlessly
guaranteeing the positioning accuracy of AVs in complex indoor and outdoor environments involving
many measurement outliers and environmental interference effects.

Keywords: seamless positioning system; AVs; multi-GNSS-TC RTK; INS; UWB; map; NLOS;
improved AREKF algorithm

1. Introduction

According to effective statistics, the total number of deaths due to road traffic accidents
tends to be millions of people every year, and most of these accidents are caused by driver
negligence, exhaustion while driving, drunk driving, and/or short reaction times [1].
Therefore, the application of autonomous vehicles (AVs) that do not require the intervention
of human drivers is a current trend of development in human civilization and one of the
signs of social technological progress [2–4]. With the rise of artificial intelligence and
the development of Internet of Things technology, AVs have become possible. Although
automatic driving technology is full of promise, it also faces new challenges, among which
safety issues are of the greatest concern [2]. To ensure the safety of AVs, high-precision
and continuous positioning information is essential. Many studies are pursuing extremely
high precision, but during the operation of AVs, high-precision continuity is the most
important. From the perspective of continuity, the positioning error cannot be suddenly
changed to the level of tens of meters at which fatal accidents occur while AVs are running.
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Ensuring high-precision continuity in indoor environments is also needed when AVs
are parked indoors in parking lots. In outdoor or obstacle-rich environments, global
navigation satellite systems (GNSSs) and inertial navigation systems (INSs) can overcome
each other’s shortcomings and compensate for each other’s disadvantages. Thus, integrated
GNSSs/INSs offering decimeter- to centimeter-level accuracy have become a recognized
feasible solution in the field of autonomous driving navigation [5–7]. However, many
studies still focus on either outdoor or indoor navigation, while there is a lack of research
on positioning performance in transitional environments or high-precision positioning in
indoor environments. Against this research background, it is necessary to study how to
achieve high precision and continuity for seamless positioning in indoor environments
and in transitional environments between outdoors and indoors. Making the positioning
system of AVs ensure high-precision continuity and stability in any complex environment
is a challenging and meaningful issue.

This paper concentrates mainly on achieving high accuracy and continuity of au-
tonomous driving systems based on sensor data sources such as GNSS, ultrawideband
(UWB), INS, and maps in seamless environments. UWB and maps are mainly used for
positioning in GNSS-degraded and indoor environments. Three main research difficulties
need to be solved in the current context of AV research. First, in the transition between
indoor and outdoor environments, GNSS signals are severely affected by multipath effects,
satellites receive fewer signals, and the geometric configurations tend to be poor. Moreover,
UWB transmission is susceptible to being influenced by intricate indoor structures, such as
signal propagation blockage and intensity attenuation, with the most serious effects being
encountered under non-line-of-sight (NLOS) conditions. Ultimately, an INS can provide
continuous and high-precision navigation information only for a short time because its
performance is affected by accumulated errors, resulting in a decrease in system accuracy
without good measurement correction in cases where the GNSS and UWB measurement
values are affected by the challenging surrounding environment.

The remainder of this paper is organized as follows. First, the related work on the topic
is presented in Section 2. Section 3 introduces the tightly coupled (TC) UWB/INS/map
scheme for an indoor environment. Section 4 describes the improved adaptive robust
extended Kalman filter (AREKF) algorithm based on a TC integrated system in a seamless
environment. Section 5 presents and analyzes the experiment and the corresponding results.
Finally, Section 6 offers a summary of the work by drawing several conclusions.

2. Related Work

In the past decade, the demand for indoor positioning of AVs has accelerated the de-
velopment of several mainstream technologies. Technologies based on relative positioning,
such as simultaneous localization and mapping (SLAM) using cameras [8,9], light detection
and ranging (LiDAR) [10], and pedestrian dead reckoning (PDR) [11,12], have been widely
used for indoor positioning. However, these technologies have the same disadvantages
as those of INSs: without absolute position of external sensor constraints, the positioning
performance will be degraded, and the accuracy will be significantly decreased. On the
other hand, radio frequency (RF)-based techniques such as wireless fidelity (Wi-Fi) [13,14],
Bluetooth Low Energy (BLE) [15], and UWB [16] have also been extensively investigated.
Wi-Fi and BLE technologies currently mainly use fingerprint recognition for positioning,
and their characteristics and accuracy cannot meet the positioning requirements of AVs.
Moreover, many emerging technologies can be applied to indoor positioning, such as
fifth-generation (5G) technology [17], pseudolites [18], and acoustic positioning [19,20]. The
application of 5G technology in indoor positioning is not yet mature [17]. Pseudolites are
severely affected by multiple paths, signal interference, and internal clocks [18]. The small
ranging range of acoustic positioning cannot meet the AV positioning requirements [19].
Among the abovementioned technologies, UWB can achieve ultrahigh time resolution by
virtue of its unique short pulse transmission, which means that accurate distance mea-
surements can be obtained. Moreover, UWB has certain penetration and anti-interference
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capabilities in indoor and GNSS-degraded environments. These advantages of UWB can be
well utilized when transitioning between indoor and outdoor environments. UWB technol-
ogy serves a similar purpose to GNSS technology and can also be perfectly combined with
an INS to mutually compensate for defects. Moreover, Apple Inc., SAMSUNG, and the
Xiaomi Corporation have implanted UWB chips into their next generation of smartphone
products [21], indicating that the use of UWB in the mass market has become a reality. The
promotion of this industrialization will increasingly lower the cost of UWB technology.
Accordingly, UWB-based positioning is considered to be an ideal replacement for the GNSS
within GNSS obstacle-rich environments.

Extensive investigations and research have been conducted in accordance with the
characteristics and problems presented by GNSS, INS, and UWB. Hao et al. [7] proposed
a vehicular navigation system using a modified extended Kalman filter (EKF) based on a
loosely coupled (LC) two-antenna Global Positioning System (GPS) real-time kinematics
(RTK) and an INS. The scheme proposed for actual measurements can constrain the maxi-
mum error in the horizontal position to 0.17 m. Li et al. [6] proposed a combination of TC
single-frequency multiconstellation Global Navigation Satellite System (multi-GNSS) RTK
and microelectromechanical system (MEMS)–inertial measurement unit (IMU) integration
to solve the positioning problem in urban environments. To reduce the system cost, the
low-cost POS1100 MEMS-grade IMU was selected, and it was verified that centimeter-level
positioning accuracy could still be maintained for a GPS outage duration of at most 4 s.
The results show that in a GNSS-degraded environment, such as an urban canyon, if no
measures are taken to control the GNSS data quality and the GNSS data have poor geome-
try, the performance of a dual-frequency multi-GNSS RTK/MEMS IMU system may not be
much better than that of a single-frequency system, and the dual-frequency receiver greatly
increases the system cost. Moreover, multi-GNSS refers to the LC approach to observations
of different GNSSs, and some scholars have proposed using multi-GNSS-TC in fewer
satellites. Multi-GNSS-TC refers to the tight combination of different satellite systems to
establish observation equations. Multi-GNSS-TC is more suitable for environments with
fewer observations [22,23]. Liu et al. [24] analyzed a combination of TC Precise Point
Positioning (PPP) and INS and verified that the measurements still restrict the drift of
the system when there are fewer than four satellite signals. Chiang et al. [25] evaluated
LC and TC schemes for an INS/GNSS/odometer/barometer system in a GNSS-degraded
environment and concluded that the direct use of low-cost GNSS receivers and low-cost
IMUs to obtain raw measurements has severe limitations under the TC scheme. Pietra
et al. [21] presented the use of an integrated UWB/GNSS/INS for seamless positioning.
Due to cost considerations, the system solution sacrifices some accuracy, and the accuracy
decreases when UWB transmission is severely affected by NLOS conditions.

To improve the accuracy of navigation and positioning, many scholars have studied
various improved models based on Kalman filter (KF) techniques. Liu et al. [26] proposed
an innovation-based adaptive estimation adaptive KF (IAE-AKF) with an attenuation factor
for integrated INS/GPS navigation of AVs. Chen et al. [19] conducted research on the
seamless positioning of indoor mobile robots and proposed an algorithm using the EKF and
the least squares support vector machine (LS-SVM). This algorithm is not suitable for AVs,
and it uses machine learning methods which increase the instability and computational
complexity of the system. Li et al. [27] proposed a TC system of robust and adaptive
complementary KFs that uses adaptive filtering to adjust the system state and robust
filtering to reduce the impact of outliers. However, the variance in the adaptive estimation
system noise increases the uncertainty of state estimation and reduces the accuracy for
high-dimensional systems with weak observability [28].

On the other hand, Liu et al. [29] proposed a UWB/PDR/map algorithm for indoor
navigation. The algorithm compares pedestrian trajectory data against a map, matches the
trajectory data with a map route, and corrects the heading angle error of the PDR system.
Qian et al. [30] presented a method combining PDR and a map using a particle filter (PF).
The map is used to reduce the computational complexity of the PF. Lan et al. [31] proposed
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a direction calibration algorithm that uses the geometric similarity between user trajectory
data and the map information of a building to infer the last corner a user visited.

The aforementioned sensors and algorithms have both advantages and limitations.
On the basis of a comprehensive comparative analysis, a single-frequency multi-GNSS-TC
RTK system can provide centimeter-level positioning accuracy once the problem of integer
ambiguities has been correctly solved. The effect of the multi-GNSS-TC approach obtained
by increasing the number of observation equations of the original observations is better than
that of the multi-GNSS approach. In addition, UWB and map technology can be used for
the localization of AVs in challenging indoor and transitional environments to improve the
accuracy and continuity of positioning. Hence, this paper proposes an improved AREKF al-
gorithm based on a single-frequency TC-integrated multi-GNSS-TC RTK/UWB/INS/map
system to be applied to AVs. The map and the INS are used concurrently to identify and
reduce UWB NLOS errors. To ensure the continuity, stability, and high precision of AV
positioning, the denoised UWB observations are fully utilized, and the improved AREKF is
introduced into the proposed scheme to limit the cumulative error of the INS. The main
contributions are as follows:

• Multi-GNSS-TC RTK and INS measurements are used to solve the problem of difficult
positioning in a challenging environment and improve the ambiguity fixing rate.

• UWB technology is developed to provide accurate and continuous positioning results
in indoor environments. INS and map information are presented to identify and
eliminate the effects of UWB NLOS errors.

• An improved AREKF algorithm based on a TC integrated single-frequency multi-
GNSS-TC RTK/UWB/INS/map system is proposed.

• The positioning experiment of using an experimental car to simulate AVs is carried
out in a harsh and seamless environment, and the results of the experiment provide
the possibility for the high precision and continuity of the positioning module in
automatic driving.

3. High-Precision Indoor Positioning for AVs

For use in an indoor environment similar to an underground parking lot, a TC
UWB/INS/map scheme is proposed for the high-precision indoor navigation and po-
sitioning of AVs. In this research, the INS and map information are fully utilized to identify
the NLOS propagation of UWB signals and eliminate the influence of NLOS errors.

3.1. INS Dynamics Model for the TC UWB/INS/Map Integrated System

In the TC integrated UWB/INS/map system model, as shown in Table 1, several
coordinate systems are used.

An error analysis is performed in an n-frame coordinate system for the calculated
position at the local level. The ψ angle error model is summarized as follows [32,33]:

δṙn = −ωn
enδrn + δvn

δv̇n = δgn − (2ωn
ie + ωn

en)× δvn + f n ×ψn + Cn
b [ba + diag( f b)sa]

ψ̇
n = −(ωn

ie + ωn
en)×ψn − Cn

b [bg + diag(ωb
ib)sg]

(1)

Here, δrn, δvn, and ψn are error vectors of the IMU position, velocity, and attitude,
respectively, in the n-frame. δṙn, δv̇n, and ψ̇

n are the time derivatives of the corresponding
error vectors in the n-frame. ωn

en denotes the n-frame projection of the angular rate of the
n-frame with respect to the e-frame. ωn

ie denotes the n-frame projection of the magnitude
of the rotation rate of the Earth. δgn denotes the projection of the gravity error vector
in the n-frame. f n = Cn

b f b is the specific force vector in the n-frame. Cn
b represents the

rotation matrix of the b-frame with respect to the n-frame. It is assumed that the current
geographic coordinate is (λ, φ, h), which represents the longitude, latitude, and height of
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the geographic coordinates of the point. Assuming (α, χ, κ) is the Euler angle from the
n-frame to the b-frame, Cn

b , ωn
ie, ωn

en, and δgn can be expressed as follows:

Cn
b =

cos κ cos χ cos κ sin χ sin α− sin κ cos α cos κ sin χ cos α + sin κ sin α
sin κ cos χ sin κ sin χ sin α + cos κ cos α sin κ sin χ cos α− cos κ sin α
− sin χ cos χ sin α cos χ cos α


ωn

ie =
[
ωe cos φ 0 −ωe sin φ

]T
ωn

en =

[
vE

RN + h
−vN

RM + h
−vE tan φ

RN + h

]T

δgn =

[
0 0

2gl√
RMRN + h

δrD

]T

(2)

where ωe denotes the magnitude of the rotation rate of the Earth (7.2921158× 10−5 rad/s).
RM is the meridian radius of curvature, and RN is the radius of curvature in the prime
vertical direction. gl denotes the current gravity value. vN and vE are velocities in the north
and east directions, respectively. ωb

ib and f b are the original observations of the angular
velocity and specific force of the gyroscope and accelerometer, δωb

ib = bg +diag(ωb
ib)sg and

δ f b = ba + diag( f b)sa, respectively. ba and sa are 3-dimensional vectors, which represent
the 3-axis accelerometer bias and scale factor, respectively. bg and sg are three-dimensional
vectors, which represent the three-axis gyroscope bias and scale factor, respectively. The
biases and scale factors are represented by first-order Gauss–Markov processes [34]:

Γ̇(t) = −βΓ(t) + w(t) (3)

where β denotes the inverse correlation time constant and w(t) denotes white Gaussian
noise excitation.

Table 1. Description of the coordinate system.

Coordinate System Description

The inertial frame
(i-frame)

The i-frame is an ideal frame of reference in which ideal
accelerometers and gyroscopes fixed to the i-frame have
zero outputs.

The body frame
(b-frame)

The b-frame is the frame in which the accelerations and
angular rates generated by the strapdown accelerometers
and gyroscopes are resolved, i.e., the forward–right–down
system.

The navigation frame
(n-frame)

The n-frame is selected as the navigation solution coordinate
system. The n-frame is a local geodetic frame that has
its origin coinciding with that of the sensor frame,
i.e., the north–east–down (NED) system.

The Earth frame
(e-frame)

The e-frame has its origin at the center of mass of the Earth
and axes that are fixed with respect to the Earth.

Most of the random system modeling performed in practical applications is continuous
in time. The continuous-time linear random system can be expressed as

Ẋ(t) = F(t)X(t) + G(t)w(t) (4)

where F(t) and G(t) are deterministic time-varying matrices expressed in terms of the
time parameter t, and w(t) is a zero-mean white Gaussian noise vector. According to
Equation (1), F(t) can be expressed as
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F(t) =



F11 I 0 0 0 0 0
F21 F21 ( f n×) 0 Cn

b 0 F27
0 0 F33 −Cn

b 0 F36 0
0 0 0 F44 0 0 0
0 0 0 0 F55 0 0
0 0 0 0 0 F66 0
0 0 0 0 0 0 F77


(5)

where F11 = −(ωn
en×), F21 = diag(−ω2

s −ω2
s 2ω2

s ), F22 = −[(2ωn
ie + ωn

en)×], F27 =

Cn
b diag( f b), F33 = −[(ωn

ie + ωn
en)×], F36 = Cn

b diag(ωb
ib), and ωs denotes the Schuler an-

gular frequency. F44 = −diag(T−1
gb T−1

gb T−1
gb ), F55 = −diag(T−1

ab T−1
ab T−1

ab ), F66 =

−diag(T−1
gs T−1

gs T−1
gs ), and F77 = −diag(T−1

as T−1
as T−1

as ). Because the errors of iner-
tial sensors are modeled as first-order Gauss–Markov processes, F44, F55, F66, and F77
are the corresponding correlation time coefficient matrices. T−1

gb , T−1
ab , T−1

gs , and T−1
as are

Markov process-related times, which depend on the performance of INS and are set to 4 h
in this article.

G(t) = diag(0 Cn
b Cn

b I I I I)

w(t) = [0 wv wψ wgb wab wgs was]
T (6)

where wv is the white noise of the accelerometer measurement error. wψ is the white noise
of the gyroscope measurement error. wgb and wab are the driven noise of the gyroscope
and accelerometer biases, respectively. wgs and was are the driven noise of the gyroscope
and accelerometer scale factors, respectively.

According to linear theory, to perform filter estimation, the continuous-time system of
Equation (4) needs to be discretized:

Xk = Φk/k−1Xk−1 + ηk−1

Xk = X(tk)

Φk/k−1 ≈ I + F(tk−1)Ts

(7)

Here, Xk and Xk−1 denote the state vectors after discretization. Φk/k−1 denotes the
state transition matrix. ηk−1 denotes the linear transformation of the white Gaussian
noise w(τ). I denotes identity matrix. Ts = 0.005 s represents the time interval, which is
determined by the IMU frequency 200 Hz.

By combining Equations (1) and (3), the state of the integrated system can be generated
in discrete vector form by using Equation (7), resulting in a 21-dimensional vector of the
following form:

Xk = [δrn δvn ψn bg ba sg sa]
T (8)

3.2. NLOS Error Recognition and Elimination Based on UWB/INS/Map Integration

Indoor structures generally have regular shapes. These structures include walls, metal
doors, glass, and some fixed facilities whose location information is an important part
of indoor maps. Therefore, high-precision maps for specific indoor scenes can be easily
obtained. These structures serve as obstacles that affect UWB ranging signals, resulting in
decreased ranging accuracy. Consequently, it is possible to make full use of indoor map
information to control the quality of UWB data to prevent degradation in the accuracy
of a seamless navigation system. The proposed TC UWB/INS/map integration method
attempts to eliminate the impact of NLOS errors. The prior information from a map
and an INS is used in this paper to identify UWB NLOS errors. As shown in Figure 1,
when an AV travels to an arbitrary position, this prior information can be used to quickly



Remote Sens. 2022, 14, 27 7 of 25

determine the occlusion of UWB observations. Specifically, each red dashed line in Figure 1
is drawn between the high-precision position of the mobile UWB node provided by the
INS mechanism and the position of a UWB anchor node. Then, the key to judging the
occlusion of UWB observations lies in judging whether each red dashed line intersects with
any line segment information in the map. The number n of intersection points between
each red dashed line and line segments in the map is counted to determine the status of
signal blockage by obstacles between the mobile UWB node and the corresponding anchor
node at the current moment. The larger the value of n is, the more severely the UWB
signal propagation is affected by surrounding obstacles. Based on experience from many
experiments, the UWB NLOS ranging value can be modeled, and the following formula for
UWB NLOS error reduction can be established [35]:

Vi =


vi n = 0
nβ ∗ vi 0 < n < 3
+∞ 3 ≤ n

(9)

where Vi is the real measurement noise adjusted based on the map, vi denotes the UWB
measurement noise in a line-of-sight (LOS) environment, and β is a constant that represents
an expansion factor introduced into the measurement noise, usually chosen to have a value
of 10–20. Both in theory and in practice, the constant β can be determined on the basis of
the unique properties of the UWB signal and the objective conditions of the environment.

Figure 1. NLOS identification.

Based on Equation (9), the measurement noise of the UWB observations can be ad-
justed by reducing the weight of an observation or discarding an observation.

3.3. Measurement Model for the TC UWB/INS/Map Integrated System

In the TC UWB/INS/map model, the UWB positioning coordinate system chosen can
be either the e-frame or the n-frame. If it is difficult to unify the systems for indoor and
outdoor spaces, a custom coordinate system can also be selected. In this paper, the e-frame
is adopted as the unified coordinate system to unify the indoor and outdoor coordinate
systems. The mobile UWB node position re

INS calculated by the INS can be deduced from
the IMU position re

IMU , and the disturbance analysis is as follows:
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r̃e
INS = Ce

n r̃n
INS = Ce

n r̃n
IMU + Ce

nC̃
n
b lb

UWB

= Ce
n(r

n
IMU + δrn) + Ce

n(I −ψn×)Cn
b lb

UWB

= Ce
nrn

IMU + Ce
nCn

b lb
UWB + Ce

nδrn + Ce
n(−ψn×)Cn

b lb
UWB

= Ce
nrn

UWB + Ce
nδrn + Ce

n(C
n
b lb

UWB×)ψn

(10)

where •̃ denotes a disturbed term, and re
INS and rn

INS represent the position coordinates in
the e-frame and n-frame for the mobile UWB node as calculated by the INS, respectively.
rn

IMU represents the position coordinates of the center of the IMU in the n-frame, and δrn is
the same as the IMU position error in the state vector of Equation (8). lb

UWB is the accurately
measured lever-arm vector in the b-frame, which is considered to be error-free, and Ce

n
denotes the rotation matrix of the n-frame with respect to the e-frame, and because the
ψ model is used, the n-frame can be considered known and there is no need to perform
disturbance analysis on Ce

n.

Ce
n =

− sin φ cos λ − sin λ − cos φ cos λ
− sin φ sin λ cos λ − cos φ sin λ

cos φ 0 sin φ

 (11)

rn
UWB denotes the actual location of the mobile UWB node in the n-frame. The UWB

observation equation can be written as follows:

d̃UWB = ‖r̃e
UWB − re

anchor‖2 (12)

where d̃UWB denotes the UWB observation, r̃e
UWB is the mobile UWB node position with

disturbance in the e-frame, re
anchor denotes the position of a UWB anchor node with known

coordinates, which is measured in advance by Leica TS50 automatic tracking total station,
and it is assumed that there is no error; ‖ • ‖2 is the Euclidean distance. For brevity, the
error δre

INS between the position r̃e
UWB of the mobile UWB node and the position r̃e

INS
calculated by the INS can be written as

δre
INS = r̃e

UWB − r̃e
INS

≈ Ce
nδrn + Ce

n(C
n
b lb

UWB×)ψn (13)

In the construction of the TC UWB/INS/map observation model, the UWB observa-
tion function is expanded using the Taylor formula at the approximate position x0 = r̃e

INS
to obtain the TC UWB/INS/map observation equation as follows:

d̃UWB − dINS =
(r̃e

INS − re
anchor)

T

dINS
Ce

nδrn +
(r̃e

INS − re
anchor)

T

dINS
Ce

n(C
n
b lb

UWB×)ψn + εu (14)

where d̃INS and dINS denote the UWB observation and the INS-predicted range, respec-
tively; εu represents the noise sequence.

Consequently, the discrete UWB/INS/map measurement model can be expressed
as follows:

Zk = HkXk + V k (15)

where Zk is an m-dimensional measurement vector, Hk is a measurement matrix with
dimensions of m× 21, and V k is an m-dimensional measurement noise vector. m depends
on the number of effective UWB observations. After the UWB/INS/map system is used
to identify and weaken or discard UWB observations affected by NLOS errors, V k is
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approximately a white Gaussian noise sequence with zero mean. Equation (15) can then be
rewritten as follows:

Zk = [d̃UWB − dINS]

Hk = [He
UWBCe

n 0m×3 He
UWBCe

n(C
n
b lb

UWB×) 0m×12]
(16)

where He
UWB is the linearized matrix in the UWB/INS/map observation equation.

In a challenging indoor environment, the NLOS propagation of UWB signals affects
the ranging accuracy. Moreover, multipath propagation, propagation interference, etc.,
affect the ranging accuracy. Hence, the use of map and INS information to identify the
NLOS propagation of signals cannot, by itself, meet the high-precision requirements for
AVs. To mitigate the effects of multipath propagation, propagation interference, system
noise, and unidentified NLOS errors, an improved AREKF algorithm is proposed for use in
complex indoor environments. This algorithm is introduced in Section 4.2.

4. High-Precision and Seamless Positioning for AVs in Harsh Environments

The positioning of an AV in the transitional environment between indoor and outdoor
environments is another challenging problem. In this transitional environment, the number
of GNSS satellites is small, their geometric distribution is poor, and their signals are severely
affected by multipath effects. Therefore, an improved AREKF algorithm based on a single-
frequency integrated multi-GNSS-TC RTK/INS/UWB/map system is proposed to solve
the positioning problem for AVs in transitional environments. In this TC integrated system,
the GNSS code and carrier phase observations are susceptible to multipath errors. The code
observations are particularly affected by multipath effects, and the UWB ranging accuracy
is affected by multipath propagation. Observations with large errors seriously affect the
accuracy of floating-point solutions in the GNSS calculation process, thereby affecting the
success rate of ambiguity resolution. To reduce the influence of measurement outliers on
parameter estimation, the improved AREKF algorithm is introduced to adjust the variance
of outliers. The algorithm flowchart is shown in Figure 2.

Figure 2. Algorithm flowchart.

4.1. Measurement Model of the TC Integrated Multi-GNSS-TC RTK/INS/UWB/Map System

On the basis of the respective internal double-difference (DD) observation equations
of GNSSs, multi-GNSS-TC RTK implies that in each system (including GPS, the BeiDou
Navigation Satellite System (BDS), Galileo, and the Global Navigation Satellite System
(GLONASS)), only one suitable satellite is selected as a reference, the deviations between
the different satellite systems are estimated, and the different satellite systems are tightly
combined to construct DD observation equations between the systems. In the process of
multi-GNSS-TC RTK, the space data and time reference data between different GNSSs need
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to be unified using known parameters and methods [36]. The multi-GNSS-TC RTK method
establishes DD observation equations between different satellite systems and increases the
number of redundant observations in a challenging transitional environment. The success
rate of ambiguity resolution between different satellite systems is improved. However,
the effects of receiver hardware delay differences, and signal frequency differences on the
ambiguity must be considered in the multi-GNSS-TC RTK method due to the existence of
systems with different signal modulation methods. The unified DD observation model of
multi-GNSS-TC RTK includes an internal DD observation model of a GNSS that uses code-
division multiple access (CDMA) technology, an internal DD observation model of a GNSS
that uses frequency-division multiple access (FDMA) technology, a DD observation model
between GNSSs that use CDMA technology, and a DD observation model between a GNSS
that uses CDMA technology and a GNSS that uses FDMA technology [37]. Considering the
hardware delay and the initial phase deviation, the pseudorange and phase undifferenced
observation equations can be expressed as follows:

LMs
a,j =ρMs

a + dta + dtMs + TMs
a − IMs

a,j + λMs
j (δMs

a,j + ϕMs
a,j − δMs

,j − ϕMs
,j + NMs

a,j )

+ dGMTO + εMs
a,j

PMs
a,j =ρMs

a + dta + dtMs + TMs
a + IMs

a,j + βMs
a,j − βMs

,j + dGMTO + ξMs
a,j

(17)

Here, M denotes the GNSS in which the observation is made, which can be GPS,
GLONASS, BDS, or Galileo. s is an index denoting a specific satellite in system M. Similarly,
a is an index denoting a specific receiver, and j is an index denoting a specific frequency
band for tracking satellites. L and P represent phase and pseudorange observations,
respectively. ρMs

a is the geometric distance from receiver a to satellite Ms. dta is the clock
error of receiver a. dtMs is the clock error of satellite Ms. TMs

a is the tropospheric delay. IMs
a,j

is the ionospheric delay. λMs
j is the wavelength of GNSS satellite Ms in the j-th frequency

band. δMs
a,j and βMs

a,j are the hardware delays of the GNSS receiver phase and pseudorange,

respectively, in the j-th frequency band. δMs
,j and βMs

,j are the hardware delays of the GNSS

satellite phase and pseudorange, respectively, in the j-th frequency band. ϕMs
a,j and ϕMs

,j

are the initial phase deviations of the GNSS receiver and satellite, respectively. NMs
a,j is the

undifferenced ambiguity with integer characteristics. dGMTO is the time system deviation
of system M, where the GPS system and GPS time (GPST) are used as the reference. εMs

a,j

and ξMs
a,j are the observation noise of the phase and pseudorange, respectively.

After the observation equations of two GNSS receivers a and b undergo single differ-
encing, the satellite clock error, hardware delay, initial phase deviation, orbit error, and time
system deviation are all eliminated. Under short-baseline conditions, both the tropospheric
and ionospheric delays in the single-difference (SD) case can be ignored. The SD phase and
pseudorange observation equations between GNSS stations can be expressed as follows:

LMs
ab,j = ρMs

ab + dtab + λMs
j NMs

ab,j + λMs
j (δMs

ab,j + ϕMs
ab,j) + εMs

ab,j

PMs
ab,j = ρMs

ab + dtab + βMs
ab,j + ξMs

ab,j

(18)

where •ab denotes the SD between receiver a and receiver b and λMs
j (δMs

ab,j + ϕMs
ab,j) denotes

the SD between the base stations of the uncalibrated phase delays (UPDs) at receiver [38].
The processing of λMs

j (δMs
ab,j + ϕMs

ab,j) depends on whether the current system M uses CDMA
technology or FDMA technology, and can be expressed as follows:

λMs
j (δMs

ab,j + ϕMs
ab,j) =

{
αM

j CDMA

αM
j + kMs ∆γ FDMA

(19)
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where αM
j and ∆γ are the constant term and the rate of change in frequency, respectively, and

kMs denotes the frequency number of a satellite that uses FDMA technology. Substituting
Equation (19) into Equation (18) yields the following formulas:

LMs
ab,j = ρMs

ab + dtab + λMs
j NMs

ab,j + αM
j + kMs ∆γ + εMs

ab,j

PMs
ab,j = ρMs

ab + dtab + βMs
ab,j + ξMs

ab,j

(20)

The signal frequency of the same frequency band may be different for different GNSSs.
The effect of different wavelengths on the fixed DD ambiguity is the same, either within
a GNSS that uses FDMA technology or between different GNSSs. This paper uses DD
ambiguity parameters to be estimated in the form of SD ambiguity parameters. When
calculating the difference between satellites Fl and Ms, the following DD observation
equation is obtained:

LFl Ms
ab,j = ρ

Fl Ms
ab + λMs

j NMs
ab,j − λ

Fl
j NFl

ab,j + αFM
j + (kMs − kFl )∆γ + ε

Fl Ms
ab,j

PFl Ms
ab,j = ρ

Fl Ms
ab + β

Fl Ms
ab,j + ξ

Fl Ms
ab,j

(21)

where •Fl Ms denotes the DD between satellite Fl and satellite Ml . The receiver clock error
dtab is eliminated. Fl denotes the l-th satellite of satellite system F. The values and meanings
of αFM

j , kMs , kFl , and ∆γ differ depending on whether F and M are the same and whether
the multiple access technologies used are the same [37]:

• Both satellite systems use CDMA signal modulation: αFM
j , kMs , kFl , and ∆γ are all

equal to zero.
• Both satellite systems use FDMA signal modulation: αFM

j = 0, kMs , and kFl are the
frequency numbers of the two different GLONASS satellites, and ∆γ is the rate of
change of the interfrequency bias (IFB).

• The two satellite systems are different, but both adopt CDMA signal modulation: αFM
j

is the intersystem bias (ISB) in the system phase, and kMs , kFl , and ∆γ are all equal
to zero.

• The two satellite systems are different and adopt different types of signal modulation:
αFM

j denotes the intersatellite phase ISB of the two satellites for frequency number 0,

kFl = 0, kMs is the frequency number of the GLONASS satellite, and ∆γ is the rate of
change of the IFB.

Equation (21) is a nonlinear equation. Taylor series expansion is performed around
the GNSS receiver antenna phase re

INS calculated by the INS, following a process similar
to that of Equations (10), (13), and (14), to obtain a unified multi-GNSS-TC RTK/INS
observation model:

LFl Ms
ab,j − ρ

Fl Ms
ab,INS =He

GCe
nδrn + (He

GCe
nCn

b lb
GNSS×)ψn + λMs

j NMs
ab,j − λ

Fl
ab,jN

Fl
ab,j

+ αFM
j + (kMs − kFl )∆γ + ε

Fl Ms
ab,j

PFl Ms
ab,j − ρ

Fl Ms
ab,INS =He

GCe
nδrn + (He

GCe
nCn

b lb
GNSS×)ψn + β

Fl Ms
ab,j + ξ

Fl Ms
ab,j

(22)

where ρ
Fl Ms
ab,INS is the DD geometric distance calculated between the receiver coordinates

provided by the INS and the satellite coordinates and He
G is the linearized matrix in the

multi-GNSS RTK/INS observation equation.
By combining and rearranging Equations (14) and (22), the TC integrated multi-

GNSS-TC RTK/INS/UWB/map observation equation, which considers the system bias, is
obtained as follows:
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LFl Ms
ab,j − ρ

Fl Ms
ab,INS =He

GCe
nδrn + (He

GCe
nCn

b lb
GNSS×)ψn + λMs

j NMs
ab,j − λ

Fl
ab,jN

Fl
ab,j

+ αFM
j + (kMs − kFl )∆γ + ε

Fl Ms
ab,j

PFl Ms
ab,j − ρ

Fl Ms
ab,INS =He

GCe
nδrn + (He

GCe
nCn

b lb
GNSS×)ψn + β

Fl Ms
ab,j + ξ

Fl Ms
ab,j

d̃UWB − dINS =He
UWBCe

nδrn + He
UWBCe

n(C
n
b lb

UWB×)ψn + εu

(23)

Therefore, the error vector of the TC integrated multi-GNSS-TC RTK/INS/UWB/map
is as follows:

Xk = [δrn δvn ψn bg ba sg sa δN]T (24)

where δN are the ambiguity error vectors of the GNSS system. Notably, when the carrier
phase ambiguities are not fixed, the TC integrated system uses the pseudorange and carrier
phase observation values to filter and update, respectively, and attempts to fix the ambiguity
of the obtained floating-point solution of the ambiguity. When the ambiguity is resolved,
the ambiguity parameters in the system state vector need to be eliminated, and the state
vector is Equation (8).

4.2. An Improved Innovation-Based AREKF Algorithm to Resist Outliers

As mentioned above, an improved AREKF algorithm is proposed for application in
a complex indoor environment to resist abnormal UWB observations, which are affected
by multipath propagation, environmental interference, system noise, etc. Similarly, GNSS
pseudorange and carrier phase observations are easily affected by multipath effects in
a complex urban environment. In the transitional environment between outdoors and
indoors, GNSS and UWB observations are particularly susceptible to noise, the error
of the GNSS pseudorange observations will exceed the meter level, and the ambiguity
parameter of the GNSS carrier phase observations is not easy to fix. If the UWB observations
are affected by the NLOS environment, the UWB error will also exceed the meter level.
Observations with these large errors will affect the performance of an integrated navigation
system, significantly reducing the accuracy of the floating-point resolution and ultimately
reducing the accuracy of the solution results. Therefore, before the tight combination of the
multi-GNSS-TC RTK/INS/UWB/map systems, the UWB NLOS error is first identified and
suppressed, and then outlier detection is performed on the GNSS and UWB observation
information. An INS offers high accuracy over a short time and has advantages in detecting
outliers in GNSS and UWB observations. In this paper, the innovation of the EKF is used to
adaptively adjust the noise matrix of the observations, making the filtering system robust.
The standardized innovation ṽk,i of the EKF can be expressed as follows:

ṽk,i =
(Zk − HkX̂−k )i√
(HkP−k HT

k + R)i,i

(25)

where Zk is the observation vector, Hk is the observation coefficient matrix, X̂−k is the state
prediction, P−k is the predicted state error covariance matrix, and R is the observation noise
covariance matrix. An adjustment factor is constructed based on the robust estimation for
correlated observations (RECO) scheme [39]:

γii =


1 |vk,i| ≤ k0
|vk,i |

k0
× ( k1−k0

k1−|vk,i |
) k0 < |vk,i| ≤ k1

+∞ |vk,i| > k1

(26)
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where k0 and k1 are two empirical constants, which are usually considered to be in the
ranges of 2.0–3.0 and 4.5–8.5, respectively [39]. When the accuracy of the observations
is stable, the adjustment factor is equal to 1; when the observation values are severely
abnormal, the adjustment factor is infinite, and observation anomalies do not affect the
state estimation; and when the innovation sequence is between k0 and k1, the influence
of observation anomalies is weakened. Thus, the adaptively adjusted observation noise
covariance matrix R̄ before the EKF measurement update is obtained as follows:

R̄ =

γ11σ2
11 · · · γ1nσ2

1n
...

. . .
...

γn1σ2
n1 · · · γnnσ2

nn


γij =

√
γiiγjj

(27)

where γij is the adjustment factor for the covariance in the i-th row and j-th column [39].
This model assumes that there is no abnormality in the control of the filter system,

i.e., observation anomalies are detected and weakened or isolated under the condition
that the mean squared error Pk and the state estimate X̂k are not abnormal. However, the
mean squared errors of some states will gradually decrease after a long time as the filtering
update process continues. Theoretically, the mean squared error will become very small,
indicating that the filtering accuracy of the corresponding state is very high. However,
random observation noise, often with unknown distributions, will generate erroneous
feedback to the system for state estimation due to modeling errors or interference from
the complex and changeable observation environment, which will cause state estimation
deviations and system model deviations. Consequently, the state estimate will eventually
be unable to reach the corresponding estimation accuracy, giving rise to a contradiction
between the theoretical accuracy and the actual accuracy, which will cause the system
model to fail to either produce the correct state or correctly predict its error level.

In this article, virtual noise injection technology is used to overcome the phenomenon
of excessive convergence of the mean squared error of the filter such that the noise has a
continuous stimulating effect. To this end, a certain lower bound on the mean squared error
is set in accordance with the actual physical meaning of the state or with prior experience.
To facilitate the calculation and ensure the positive definiteness of Pk, the diagonal elements
of Pk are processed as follows [40]:

(Pk)i,i < (Pmin)i,i → (Pk)i,i = (Pmin)i,i (28)

where Pmin is the lower-bound matrix of the mean squared error. When a diagonal element
(Pk)i,i of the updated mean squared error matrix (as measured by the filter) is less than the
corresponding lower limit (Pmin)i,i, it is directly artificially forced to be equal to the lower
limit. Similarly, an upper limit to the mean squared error is set to prevent possible filtering
anomalies. To ensure the positive definiteness of Pk, the nondiagonal elements need to be
set as follows at the same time [40]:

(Pk)i,i > (Pmax)i,i →


s =

√
(Pmax)i,i/(Pk)i,i

(Pk)i,j = (Pk)i,j × s
∣∣

j=1,2,··· ,n
(Pk)j,i = (Pk)j,i × s

∣∣
j=1,2,··· ,n

(29)

where Pmax is the upper-bound matrix of the mean squared error. When a diagonal mean
squared error matrix element (Pk)i,i exceeds the upper limit (Pmax)i,i, the i-th row and i-th
column elements corresponding to (Pk)i,i are both reduced by a factor of s simultaneously.
Obviously, (Pk)i,i is guaranteed to have the property of symmetric positive definiteness.

The values of Pmin and Pmax are determined based on experience and sensor perfor-
mance. The values of Pmax and Pmin in the test cases are set as shown in Table 2.
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Table 2. The values of Pmax and Pmin used in the experiment.

Pmax Pmin

bg 1.5 ◦/h 0.01◦/h
ba 30 mGal 5 mGal
sg 250 ppm 10 ppm
sa 250 ppm 10 ppm

bg, ba, sg, and sa are prone to transitional convergence or state abnormality during the
experimental calculation. The values of Pmin and Pmax should not be set too large or too
small, as this would result in a decrease in the accuracy of filter estimation and cause state
fluctuations. Therefore, the biases and scale factors of the accelerometer and gyroscope are
mainly constrained in the test cases presented in this article. For the position, velocity, and
attitude parameters, Pmin and Pmax are not used for virtual noise injection.

5. Field Experiment Design and Analysis of Results
5.1. Experimental Description and Platform Construction

To evaluate the performance of the improved AREKF algorithm based on the pro-
posed TC integrated multi-GNSS-TC RTK/UWB/INS/map system for AV applications,
an experimental car was designed to simulate AV driving in complex indoor and outdoor
environments. The experimental car is shown in Figure 3a, and the TS50 automatic tracking
total station is shown in Figure 3b. Due to the primitiveness of the experimental conditions,
the experimental car used in this article is not a perfect AV. For TS50 to effectively track the
experimental car and provide an accurate reference trajectory, the speed of the experimental
car is approximately 1 m/s, which is much slower than the ideal AVs. In addition, to
perform a large amount of data analysis on the transitional environment between indoors
and outdoors and the indoor environment, the experiment collects multicircle data along a
fixed route in this position. Therefore, the entire experiment time was close to 45 min in a
seemingly simple experimental task.

(a) (b)

Figure 3. Experimental car and automatic tracking total station. (a) Experimental car. (b) Leica TS50
automatic tracking total station.

The experimental scene is shown in Figure 4a,b. The selected location is a university
campus, where the road is flanked by four-floor buildings on both sides. The experimental
layout and the established trajectory are shown in Figure 4c. In Figure 4c, the positions of
the UWB anchor nodes are indicated by white plus signs; the start and end tags indicate
the start and end positions of the experiment, respectively; and the blue line denotes the
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established driving trajectory. Because of cost considerations, the layout of the UWB anchor
nodes is relatively sparse.

(a)

(b) (c)

Figure 4. Experimental scene and design. (a) Experimental environment. (b) Top view of the experi-
mental scene and the designed trajectory. (c) Experimental layout and established trajectory.

The experimental car was initially aligned with the starting position on the road. After
this alignment was completed, the car drove along the road, then drove into an experimental
building and continued to follow the experimental trajectory inside the building. After a
period of time, the experimental car drove out of the experimental building and proceeded
along the road to the end position, at which time the entire experiment was complete. The
number of available satellites was severely affected due to obstruction by the buildings, and
the satellite signal was strongly influenced by multipath effects. Therefore, the constructed
outdoor-transition–indoor-transition–outdoor driving route in a complex environment was
sufficient to meet the requirements of the envisaged experiment.

To provide a realistic AV environment, other cars, pedestrians, and experimenters were
allowed to pass freely through the experimental area throughout the whole experiment,
increasing the difficulty of high-precision AV positioning and the uncertainty during the
experiment.

The specifications of the IMU and UWB systems are given in Tables 3 and 4. Tactical-
level inertial navigation was applied in this study for the following reasons:

• This article focuses mainly on high-precision positioning systems in pursuit of high
precision and continuous reliability of such systems.

• An MEMS IMU was also tested. Although the algorithm proposed in this article
improves the positioning accuracy in most environments, the overall positioning
accuracy was seriously reduced.

An MEMS IMU currently cannot meet our needs in practical applications. Neverthe-
less, with the continuous advancement of MEMS IMU technology, our ongoing efforts are
dedicated to designing a seamless positioning system that uses an MEMS IMU.
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Table 3. Specifications of the IMU.

Parameter Accelerometer Gyroscope

Measurement range ±10 g ±300◦/s
Bias stability 25 mGal 1◦/h

Random walk 0.1 m/s/
√

h 0.03◦/
√

h
Sampling frequency 200 Hz 200 Hz

Table 4. Specifications of the UWB system.

Parameter UWB

Ranging principle TW-TOF
Wave band 3.1–4.8 GHz

Ranging ability <80 m
LOS accuracy 5 ± 1 cm

NLOS accuracy Environmentally determined
Sampling frequency 2 Hz

5.2. Time Synchronization and Spatial Unification

In a seamless positioning system, a prerequisite for using a TC integrated multi-
GNSS-TC RTK/INS/UWB/map system for an AV is to ensure the unification of the
GNSS/INS/UWB time system. Hard time synchronization of the hardware systems is used
for the GPST and the INS time to ensure strict time synchronization between the GPS and
INS measurements in this paper. Moreover, the times associated with other navigation
systems (BDS, Galileo, and GLONASS) are converted to GPST. In addition, the GPS second
pulse signal is used to time the computer to ensure that the computer time is strictly syn-
chronized with the GPST. Then, the UWB time is determined based on the computer system
time. In this way, the time systems of the UWB, GNSS, and INS measurements are strongly
unified. Unfortunately, three issues still exist in the process of time synchronization:

• When GPS is not available, the computer time cannot be corrected by means of the GPS
second pulse signal. In this case, the UWB time label depends only on the computer
time, which will be subject to clock bias and clock drift after a long time. At present,
time-asynchrony error occurrences are shown to exist in experimental observations
after several hours, but the impact on the experimental results within a few hours
is small.

• The UWB time label obtained using this synchronization method is still affected by
the time delay associated with the transmission of the signal to the computer through
a universal serial bus (USB) data cable. At present, this delay can be reduced only
through calibration technology.

• The sampling frequencies of the GNSS (2 Hz), the INS (200 Hz), and the UWB system
(2 Hz) are different. It is necessary to interpolate all observations to correspond to the
same observation times to facilitate calculations.

Time synchronization error is a problem that must be solved for high-speed AVs
because the faster a vehicle is, the more serious the impact of time synchronization will
be. The experimental car used in this work to simulate an AV does not travel very fast
(less than 1 m/s), and the time synchronization error is approximately 0.01 s, so the tiny
out-of-synchronization error 0.01 s ×1 m/s = 0.01 m (1 cm) can be ignored in this paper.

Spatial synchronization is another prerequisite for using a TC integrated multi-GNSS-
TC RTK/INS/UWB/map system for an AV. Figure 5 shows the layout of the experimental
platform and the sensor equipment of the experimental car. The experimental platform
includes an experimental personal computer (PC), an INS that consists of a three-axis
gyroscope and a three-axis accelerometer, a mobile UWB node, and a total reflection
prism, which is automatically tracked by a Leica TS50 automatic tracking total station
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to provide a high-precision trajectory reference for the experimental vehicle. The Leica
TS50 automatic tracking total station is also used to establish a station at a control point
where the coordinates in the e-frame are known. Thus, the coordinate system for UWB
navigation and positioning is unified as the e-frame. Figure 5 shows that all sensors are
rigidly connected by an aluminum plate to ensure accurate measurement of the lever arms
between different sensors, which are therefore considered to be free of error.

To evaluate the accuracy throughout the entire experiment, the total reflection prism
in Figure 5 and the TS50 in Figure 3b were used to provide an experimental reference
benchmark. Hence, it was necessary to achieve time synchronization between the reference
benchmark provided by the TS50 and the experimental results. As mentioned above, the
entire integrated system uses the GPST as the time reference. Since the time of the reference
results collected by the TS50 was based on the laptop time, the laptop used for TS50 data
reception was also timed based on GPS before data collection to ensure that the reference
results also used GPST. The specifications of the TS50 are shown in Table 5. Due to the
high-precision performance of the TS50, the three-dimensional coordinates of the UWB
anchor node antennas were also measured using the TS50 and thus are assumed to be free
of error.

Figure 5. Experimental platform and sensor layout.

Table 5. Specifications of the TS50.

Parameter TS50

Ranging accuracy 2 mm + 2 ppm
Angle accuracy 0.5′′

Sampling frequency 10 Hz

5.3. Satellite Availability

To simulate an extremely dense urban environment and avoid the influence of mul-
tipath effects, the cut-off elevation angle in the experiment was set to 35◦. Figure 6a,b
show the availability of satellites and the starry sky map of the four satellite systems,
namely, GPS (G), BDS (C), Galileo (E), and GLONASS (R), with a 35◦ cut-off elevation angle.
Figure 7a shows the number of available satellites in the four satellite systems with a 35◦

cut-off elevation angle. Figure 7b shows the dilution of precision (DOP) of the four satellite
systems with a 35◦ cut-off elevation angle, including the geometric dilution of precision
(GDOP), the position dilution of precision (PDOP), the horizontal dilution of precision
(HDOP), and the vertical dilution of precision (VDOP), for the four systems used as the
sources of multi-GNSS signals.
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Figure 6. Satellite availability in a dense urban environment with a 35◦ cut-off elevation angle.
(a) Satellite availability. (b) Starry sky map of satellites.

It can be seen from Figures 6a and 7a that in the outdoor environment, there are
at most four GPS satellites and at most three GLONASS satellites that can be tracked
continuously; for Galileo satellites, four can be guaranteed in the early stage, and three in
the later stage; and the BDS can guarantee the availability of six to seven satellites. In the
transitional environment, the number of available satellites is reduced, with only 5–9 in
total among the four systems, and no single satellite system can meet the requirements of
high-precision positioning from the perspective of the number of visible satellites. Most
satellites make discontinuous observations, and the constellation configuration is poor
from the perspectives of satellite visibility analysis and DOP value distribution. Under
these conditions, it is beneficial to increase the number of observation equations by using
multi-GNSS-TC RTK integration.

Figure 7. Number of available satellites and DOP for the multi-GNSS scenario with a 35◦ cut-off
elevation angle. (a) Number of satellites. (b) DOP.

It can be seen from Figures 6a and 7 that there is absolutely no GNSS satellite signal
for approximately 20 min. At this time, the experimental car simulates AV driving in an
indoor environment. Obviously, GNSS positioning can play no role during this period, and
thus, only the UWB, INS, and map technologies are used for indoor positioning.
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5.4. Influence of the NLOS Error on UWB Measurements

Following the above evaluation of satellite availability, the performance of UWB
measurements in the indoor environment and during the transition between the indoor
and outdoor environments is analyzed. The ranging statuses of the UWB measurements
based on different UWB anchor nodes during the operation of the experimental car are
shown in Figure 8. The pink lines represent the known map. The success or failure status
of every UWB anchor node on the map and the LOS or NLOS status, as represented by
the value of n in Equation (9), at each time are displayed in detail. The time series of the
ranging values and errors for the different UWB anchor nodes during the operation of the
experimental car are shown in Figure 9. As shown in Figure 8, the environment between
the mobile UWB node and the UWB anchor node is usually subject to LOS conditions
(indicated by red dots, n = 0) when successful UWB ranging can be performed. Due to
the unique penetration ability of UWB signals, ranging is still possible when this signal
is blocked by obstacles, but in this case, the UWB distance measurement value is affected
by the obstacles, leading to large errors (indicated by blue or green dots, n = 1, 2, 3, . . . )
during the operation of the experimental car. When effective UWB ranging cannot be
achieved, the UWB signal is usually blocked by multiple walls or fixed facilities on the
map. As shown in Figure 9, the UWB ranging error, which is mainly within 1 m, does not
vary with distance. However, many ranging error values exceed tens of meters, mainly
due to the NLOS effect of obstacles. Moreover, as shown in Figures 8 and 9, some ranging
values are unaffected by obstacles but still exhibit large errors because the UWB signal is
interfered with by the surrounding environment.

Figure 8. Occlusion status on the map for different UWB anchor nodes: (a) anchor node 1; (b) anchor
node 2; (c) anchor node 3; (d) anchor node 4; (e) anchor node 5; (f) anchor node 6; (g) anchor node 7;
(h) anchor node 8. The light blue and black triangles indicate the positions of the current UWB
anchor node and other UWB anchor nodes, respectively. The dots of different colors represent various
occlusion states of the current UWB anchor node (including ranging failure, LOS conditions, and
NLOS conditions).
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(a) (b)

Figure 9. Time series of the ranging values and errors for different UWB anchor nodes. (a) Ranging
values. (b) Errors.

Therefore, the method of identifying and eliminating NLOS errors based on UWB/INS/map
integration proposed in Section 3.2 was used to adjust the weights of the UWB measure-
ment values affected by NLOS errors. Then, to address the ranging values associated with
the UWB signals interfered with by the surrounding environment, the improved AREKF
algorithm proposed in Section 4.2 was applied to resist the influence of these abnormal
UWB measurement values.

5.5. Analysis of the Positioning Results

To evaluate the improved AREKF algorithm based on the single-frequency TC inte-
grated multi-GNSS-TC RTK/UWB/INS/map system proposed in this article, six schemes
were designed and compared:

• Scheme 1: The EKF algorithm based on the single-frequency TC integrated multi-
GNSS RTK/UWB/INS system.

• Scheme 2: The EKF algorithm based on the single-frequency TC integrated multi-
GNSS-TC RTK/INS system.

• Scheme 3: The EKF algorithm based on the single-frequency TC integrated multi-
GNSS-TC RTK/UWB/INS system.

• Scheme 4: The improved AREKF algorithm based on the single-frequency TC inte-
grated multi-GNSS-TC RTK/UWB/INS system.

• Scheme 5: The EKF algorithm based on the single-frequency TC integrated multi-
GNSS-TC RTK/UWB/INS/map system.

• Scheme 6: The improved AREKF algorithm based on the single-frequency TC in-
tegrated multi-GNSS-TC RTK/UWB/INS/map system (the method proposed in
this paper).

The effectiveness of multi-GNSS-TC can be verified by comparing Scheme 1 with other
schemes. The effectiveness of increasing the sensor UWB can be verified by comparing
Scheme 2 and other schemes. The effectiveness of the improved AREKF algorithm can
be verified by comparing Schemes 3 and 4. The importance of the map can be verified
by comparing Schemes 3 and 5. Scheme 6 verifies the effectiveness and feasibility of the
positioning scheme for AVs proposed in this article.

The complete trajectories and CDF of the positioning errors under each of the six
schemes are shown in Figure 10. The positioning error results of the different schemes are
further compared in Table 6.
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Figure 10. Experimental results under different schemes. (a) Positioning trajectory results. (b) CDF
of the positioning errors.

Table 6. Comparison of the RMS accuracies, average and maximum errors, and ambiguity fixing
rates under the different schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6

RMS (m)
North 1.6405 2.0621 1.0365 0.2593 0.3526 0.1756
East 1.8507 0.6411 1.8118 0.2795 0.3653 0.1698
2D 2.4731 2.1594 2.0873 0.3565 0.5077 0.2443

Average (m)
North 0.5583 0.7172 0.4247 0.1672 0.1645 0.0932
East 0.7539 0.4503 0.6916 0.1805 0.2154 0.1049
2D 1.0377 0.9919 0.8848 0.2530 0.3105 0.1657

Max (m)
North 42.3682 17.2070 8.6099 0.9990 5.4026 0.7986
East 18.1621 3.0340 17.9310 1.8241 2.2516 1.0632
2D 43.3052 17.2074 17.9450 1.8464 5.5461 1.1372

Fixing rate (%) 54.6 68.4 78.5 83.2 79.7 89.4

In the initial stage in the outdoor environment, because the experiment had just started
and the inertial navigation accuracy was high without divergence, the accuracy of several
schemes was relatively high.

In the transitional environment between indoors and outdoors, the numbers of avail-
able GNSS and UWB observations were small, and these observations were affected by
the environment, leading to greater noise. In Schemes 1 and 3, no processing is performed
on the GNSS and UWB observations and, consequently, the positioning results severely
diverge under these schemes. In Schemes 2, 3, 4, 5, and 6, multi-GNSS-TC is used to
improve the success rate of ambiguity resolution. Schemes 2, 3, 4, 5, and 6 all effectively
take measures to process the observations to varying degrees, and the positioning accuracy
under these schemes is obviously higher than that under Scheme 1. In Scheme 4, the
improved AREKF algorithm is used to adjust the weights of GNSS and UWB observations
and prevent excessive convergence of the filtering state. Scheme 5 uses a map to identify
and eliminate NLOS errors in the UWB observations. In Scheme 6, a map is used to identify
and eliminate UWB NLOS errors, and then the improved AREKF algorithm is used to
adjust the weights of GNSS and UWB observations to reduce the influence of other outliers
due to multipath effects, signal interference, and other errors. Moreover, the improved
AREKF algorithm effectively prevents any abnormal filtering status.
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In the indoor environment stage, the UWB observations had not been cleaned, so there
were no good UWB observations available for Schemes 1 and 3, and the corresponding
positioning accuracy was very poor, especially at the corners of the rectangular corridor
(near UWB anchor nodes 1 and 4). Scheme 2 has no UWB data, the position begins to
diverge gradually, and the positioning error gradually becomes larger. Scheme 4 uses the
improved AREKF algorithm to process UWB noise; consequently, the positioning trajectory
was relatively smooth, but the accuracy at the corners of the corridor was still poor. Scheme
5 uses a map to identify and eliminate UWB NLOS errors, and the positioning results do
not show a large amount of divergence, but the accuracy at the corners was also poor.
Scheme 6 uses both a map and the improved AREKF algorithm to effectively solve the
problem of difficult positioning at indoor corners; thus, the solution result was closer to the
reference trajectory.

From the time when the experimental car exited the building until the end stage,
fewer satellite observation equations were available for Scheme 1, and the ambiguity
could not be successfully fixed, resulting in poor accuracy. Scheme 2 can only rely on the
INS in the indoor phase, the position divergence is serious, and the ambiguity cannot be
fixed immediately when the number of satellites is small. Comparing Schemes 2, 3, 4,
5, and 6, it can be seen that in the final stage of the outdoor environment, several of the
schemes adopt multi-GNSS-TC RTK, which significantly improves the ambiguity-fixed rate
to varying degrees.

However, it can be seen from Figure 10 that in the outdoor stage, the solution tra-
jectories of Schemes 3 and 5 were not completely consistent with the reference trajectory,
Scheme 2 still had a large position error when it just entered the outdoor stage, Scheme 4
was relatively consistent, and Scheme 6 was very consistent with the reference trajectory.
The reason for the large error in Scheme 2 is that when the experimental car had just exited
the room, the entire system of Scheme 2 could rely only on INS mechanization for nearly
30 min. At this time, the accuracy of the floating-point solution of Scheme 2 was very poor,
GNSS data quality was poor, and there were few GNSS satellites available. The ambiguity
resolution could not be fixed, the accuracy of the floating-point solution could not be
improved immediately, and the inertial navigation error parameters were not accurately
estimated. Therefore, this part of the results for Scheme 2 is even worse than the results of
Scheme 1. In schemes other than Scheme 2, UWB observations were still available, and the
corresponding accuracy was better than that of Scheme 2. The reason for this phenomenon
is that the accuracy of the floating-point solution in the transition environment affects the
ambiguity-fixed and the accuracy of the solution. In the transitional environment, Scheme 6
uses the map to process NLOS, uses the improved AREKF algorithm to adjust the noise
matrix at the same time to adjust the weight of the observation value of GNSS and UWB,
effectively preventing the abnormal filtering state, and then uses multi-GNSS-TC RTK to
effectively control the accuracy of floating-point solutions in the outdoor environment.
Therefore, both Schemes 4 and 6 use the improved AREKF algorithm and multi-GNSS-TC
RTK in an outdoor environment, and Scheme 6 has a better ambiguity-fixed success rate
and accuracy than those of Scheme 4.

The positioning errors under the different schemes in various directions are compared
in Figure 11. To facilitate analysis, each subfigure includes an enlarged view to show the
details in Figure 11. The errors under Schemes 1, 2, and 3 can be up to tens of meters,
and those under Schemes 4 and 5 often exceed 1 m, while the errors under Scheme 6 can
basically be controlled within 1 m, which is sufficient to guarantee the safety and stability
of an AV.

Based on Figures 10 and 11, Table 6, and the analysis above, a comparison of Schemes
1 and 3 reveals that using multi-GNSS-TC RTK can significantly improve the success rate
of ambiguity resolution and the positioning accuracy. A comparison of Schemes 2, 3, 4,
and 5 indicates that increasing the UWB sensor and processing the UWB observations
are very important. As seen by comparing Schemes 3 and 4, the positioning accuracy is
significantly increased when the improved AREKF algorithm is used to adjust the weights
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of the observation values, and the smoothness and stability of the positioning trajectory
are enhanced. A comparison of Schemes 3 and 5 indicates that the introduction of map
information under the same conditions as in the other experimental settings significantly
improves the positioning accuracy in both the indoor environment and the transitional
environment between indoors and outdoors, which shows that the use of map information,
as proposed in this article, is effective in identifying and reducing UWB NLOS errors. In
Scheme 6, the improved AREKF algorithm based on a single-frequency TC integrated
multi-GNSS-TC RTK/UWB/INS/map system is used at the same time. Regardless of the
environment (outdoor, transitional, or indoor), the root mean square (RMS) accuracies in
the north, east, and 2D directions are 0.1756 m, 0.1698 m, and 0.2443 m, respectively; the
average errors in the north, east, and 2D directions are 0.0932 m, 0.1049 m, and 0.1657 m,
respectively; and the maximum errors in the north, east, and 2D directions are 0.7986 m,
1.0632 m, and 1.1372 m, respectively. The ambiguity-fixed rate can reach 89.4%. Thus, the
positioning accuracy and stability of the strategy and algorithm of Scheme 6 are significantly
higher than those of the other schemes, sufficient to guarantee high precision, safety, and
stability for an AV.

Figure 11. Comparison of the positioning errors under different schemes. (a) North. (b) East.
(c) Plane.

6. Conclusions

The high-precision positioning of AVs in a seamless environment is still a challenging
problem. In this study, an improved AREKF algorithm based on a single-frequency TC
integrated multi-GNSS-TC RTK/UWB/INS/map system is developed to provide reliable,
continuous, and high-precision positioning in challenging seamless indoor/outdoor envi-
ronments. Multi-GNSS-TC RTK and INS measurements are used to address the limited
number of available satellites in the outdoor environment and improve the ambiguity-fixed
rate. In addition, UWB technology is used in place of GNSS signals to provide effective
observations in GNSS-challenged or indoor environments. However, UWB observations
are seriously affected by NLOS errors. Hence, map and INS information are used to identify
and eliminate the effects of UWB NLOS errors. Additionally, to weaken the influence of
multipath effects or outliers due to environmental interference in GNSS and UWB observa-
tions, an improved AREKF algorithm is proposed that can effectively resist the influence of
outliers and abnormal filtering statuses. Experimental results show that the RMS accuracies
of the proposed algorithm and system in the north, east, and 2D directions are 0.1756 m,
0.1698 m, and 0.2443 m, respectively; the average errors in the north, east, and 2D directions
are 0.0932 m, 0.1049 m, and 0.1657 m, respectively; and the maximum errors in the north,
east, and 2D directions are 0.7986 m, 1.0632 m, and 1.1372 m, respectively. The ambiguity-
fixed rate can reach 89.4%. Whether in outdoor, transitional, or indoor environments, the
positioning accuracy and stability of the proposed solution are significantly higher than
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those of other schemes, which is sufficient to guarantee high positioning accuracy, safety,
and stability for AVs.

Although the proposed scheme achieves some progress in AV positioning, the max-
imum error is still close to 1 m. To make the AV positioning system more reliable, other
auxiliary sensors, such as LiDAR and cameras, will be considered in the future to fur-
ther enhance the positioning stability, improve high-precision capabilities, and avoid
major accidents.
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