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Abstract: Among natural disasters, earthquakes are recorded to have the highest rates of human loss in
the past 20 years. Their unexpected nature has severe consequences on both human lives and material
infrastructure, demanding urgent action to be taken. For effective emergency relief, it is necessary to
gain awareness about the level of damage in the affected areas. The use of remotely sensed imagery is
popular in damage assessment applications; however, it requires a considerable amount of labeled
data, which are not always easy to obtain. Taking into consideration the recent developments in the
fields of Machine Learning and Computer Vision, this study investigates and employs several Few-
Shot Learning (FSL) strategies in order to address data insufficiency and imbalance in post-earthquake
urban damage classification. While small datasets have been tested against binary classification
problems, which usually divide the urban structures into collapsed and non-collapsed, the potential
of limited training data in multi-class classification has not been fully explored. To tackle this gap,
four models were created, following different data balancing methods, namely cost-sensitive learning,
oversampling, undersampling and Prototypical Networks. After a quantitative comparison among
them, the best performing model was found to be the one based on Prototypical Networks, and it was
used for the creation of damage assessment maps. The contribution of this work is twofold: we show
that oversampling is the most suitable data balancing method for training Deep Convolutional Neural
Networks (CNN) when compared to cost-sensitive learning and undersampling, and we demonstrate
the appropriateness of Prototypical Networks in the damage classification context.

Keywords: few-shot learning; data balancing; image classification; remote sensing; damage assessment;
imbalanced learning

1. Introduction

Earthquakes are events of episodic nature, which can have a grave impact on human
life and cause immense property loss. The Centre for Research on the Epidemiology of
Disasters (CRED) and UN Office for Disaster Risk Reduction (UNDRR) [1] report on the cost
of disasters for the period 2000–2019 declared earthquakes as the deadliest type of disaster
for the first two decades of the 21st century, and highlight their potential for massive
damage to infrastructure. Given that earthquakes are unpredictable, both in terms of time
and magnitude, responding appropriately after the event is often critical to minimize the
number of casualties. The success of emergency response operations relies on efficient
organizational management and rapid reaction. A mandatory precondition to fulfill these
requirements is to gain Situational Awareness: to know what has happened, when and
where. The suitability of Machine Learning (ML) [2] techniques in different phases of
disaster mitigation has been exhibited in recent studies. Harirchian et al. [3] assess the
seismic vulnerability given a set of quantifiable parameters. The regional seismicity can
also be monitored using ML if the automatically captured ambient noise data are subjected
to Convolutional Neural Network (CNN)-based classifiers in order to detect earthquake
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events [4]. In the post-disaster phase, ML approaches have been employed to locate
and measure post-earthquake urban damage, confirming the relevance of this field for
such kinds of applications [5–15]. Pre-event seismic vulnerability assessment, earthquake
magnitude evaluation and post-event damage detection are complementary aspects of
disaster mitigation and, if combined, can provide valuable insights to local stakeholders
for traffic network disruption modeling, restoration planning and cost estimation [16].

To identify the locations that require immediate relief, remotely sensed data are com-
monly used because they can provide an overview of a large region at once, and acquiring
them does not pose the same risks as collecting ground-truth data [11]. In the context of
emergency mapping, remotely sensed data usually refer to imagery acquired via satellite,
Unmanned Aerial Vehicles (UAVs) or other aerial platforms [17]. As the availability of
this kind of data and the processing power of modern computational systems have been
constantly increasing, the possibility of automating the identification and assessment of
post-disaster damage is also being explored [18]. For this reason, computer vision methods
are employed, aiming to minimize the time overhead and the error that is introduced by
the human factor [9]. Recent studies have demonstrated that ML algorithms outperform
traditional Remote Sensing techniques in image classification tasks [19]. One of the main
obstacles to overcome in the identification of earthquake damage is the small number of
training samples [6]. The methodology that we follow in this study is based on Few-Shot
Learning (FSL), which is a type of ML method, where the available data for the target classi-
fication task contains only a limited number of examples with supervised information [20].
Since destructive seismic events rarely happen but reacting quickly in such cases is crucial,
FSL is competent when it comes to extracting knowledge from a narrow amount of data,
and thus, the required effort for data gathering is also reduced. However, an FSL problem
is not easy to solve. The lack of data requires a different approach than other ML problems,
which rely on having a plethora of samples to train the model. The suggested solutions
may vary in terms of algorithm, model parameters and data handling [20].

Related research papers that have incorporated FSL for locating ravaged buildings
focus on binary classification rather than further dividing buildings into different wreckage
levels [5,6,8,10,12]. Multi-class categorization, though, can emphasize or even create class
imbalances within the data. The present study seeks to fill this gap by leveraging FSL to
tackle data deficiency for certain classes in a multi-class problem. There are several means
of dealing with data deficiency [20,21] and imbalance [22]. Applications that track disaster-
related damage with ML can benefit from the existence of pre-event data, but on some
occasions, this kind of data may be impossible to acquire. For this reason, we examine how
efficient can a model be that is based only on post-event data. The purpose of this study is
to implement and evaluate the effect of different FSL approaches on an imbalanced dataset.
More precisely, we explore how can the supervised classification of a highly imbalanced
dataset be elaborated, to what extent are the representatives of the majority and minority
classes successfully detected and how indicative is the map overlay of the predictions for
the severity of damage suffered by a geographic region.

The rest of the document is organized as follows. Section 2 reviews related studies,
considers the applied research approaches and analyzes the theoretical background that is
necessary to follow the present study. Section 3 presents the data and the methodological
workflow. Section 4 explains the results of the study and is followed by Section 5, which
discusses the results and proposes future research directions. Finally, Section 6 concludes
the work.

2. Related Work
2.1. Remote Sensing in Emergency Mapping

Boccardo and Tonolo [17] have created a systematic review concerning the role of
Remote Sensing in post-disaster damage mapping. Based on their paper, optical imagery is
favored over Synthetic Aperture Radar (SAR) imagery for damage estimation, as it permits
finer spatial resolution and is semantically richer, which is crucial in operational conditions.
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Nevertheless, Ge et al. [23] emphasize on the key role of SAR data when the atmospheric
conditions do not allow optical sensors to capture imagery of quality. The existence of
pre-event data is mentioned to add up to the quality of collapsed building detection [17].
According to Cooner et al. [5], ML algorithms gain popularity in damage assessment
applications, due to outperforming traditional methods for change detection and image
classification and due to being capable of dealing with non-linear datasets. The authors
compared Random Forest (RF), Artificial Neural Network (ANN) and Radial Basis Function
Neural Network (RBFNN) algorithms on panchromatic and multispectral VHR imagery
obtained by the satellites WordView1 and QuickBird2. The study concluded that ANN
demonstrates the lowest Error of Omission and the shortest training time, while the model
could be produced with only panchromatic imagery.

Li et al. [24] performed an extensive survey about object detection in optical Remote
Sensing images. As stated in the paper, Deep Learning algorithms are currently the predom-
inant approach for visual recognition tasks, including object detection related to the fields of
Computer Vision and Earth Observation. Although in Computer Vision, the employed meth-
ods can be region proposal-based or regression-based, Earth Observation applications favor
the first approach [24]. The study also proposed a new benchmark dataset, characterized
by low inter-class and high intra-class variability and tested it with different combinations
of backbone and object prediction architectures, stating that deeper backbone networks
demonstrate a higher Overall Accuracy.

Different incident types affect urban structures differently [11]. However, we assume
that earthquake and wind-induced damages are comparable because they impact the
structural materials in a similar way, causing lateral damage to the constructions [25,26].
For this reason, hurricane-related studies are also included in the literature review.

2.2. Deep Learning for Urban Damage Assessment

Anniballe et al. [8] analyzed multispectral and panchromatic, bi-temporal images
of a small geographic region with the Bayesian Maximum A Posteriori (MAP) criterion
and the Support Vector Machine (SVM). The study followed a five-level scale for damage
assessment, but the results reported are grouped in heavy damaged buildings (damage
grade = 5) and less damaged buildings (damage grade < 5). SVM demonstrated better
performance than the MAP classifier for this study case.

Ji et al. [6] applied a CNN architecture called SqueezeNet on single-temporal post-
earthquake VHR QuickBird imagery. The study divided the buildings in the city of Port-au-
Prince after the Haiti 2010 incident into two categories: collapsed and non-collapsed. As the
non-collapsed buildings outnumbered the completely destroyed ones, the researchers
used three different data balancing methods, namely random oversampling, random
undersampling and cost-sensitive, to improve the accuracy.

Ji et al. [12] have shown the potential of pre-trained CNN (VGGNet) models for post-
earthquake damage identification. Two models were compared, one trained from scratch
and one pre-trained on the benchmark dataset ImageNet [27], with the accuracy results
greatly favoring the latter. Both models were fed with labeled bi-temporal VHR imagery
and were responsible for binary classification of the buildings: collapsed and non-collapsed.
The study also points out the risk of overfitting when the data are limited and makes use
of data augmentation to figuratively expand the dataset. Li et al. [10] have also derived
similar results when comparing a fine-tuned pre-trained model of Single-Shot Multibox
Detector (SSD) with one trained from scratch for identifying post-hurricane structural
damage. In contrast with Ji et al. [12], this study used single post-event aerial imagery for
classifying the damage at two different levels: damaged and debris.

Xu et al. [9] performed a comparative study of four different models using the Haiti
2010 dataset. Three of the models were built using both pre and post-disaster-labeled
images, and one was built using single post-earthquake data. The study tested the general-
ization ability of the best-performing model and found it more competent as the number
of earthquake incidents that are included in the training increases. The reason is the
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low variability that characterizes each individual incident dataset, a fact that can lead to
overfitting [9].

The need for a common framework for building damage assessment after different
kinds of natural disasters (earthquakes, floods, hurricanes, wildfires, volcanic eruptions,
etc.) has been highlighted by Gupta et al. [11]. The study discusses the need for having a
benchmark dataset that is compliant with the requirements of ML algorithms taking into
account the rarity of occurrences of a large-scale natural disaster and hence the relevant
data shortage. The study’s main contribution is a dataset that consists of bi-temporal VHR
labeled satellite imagery from various disaster incidents. The produced xBD dataset has
already been used to train and evaluate ML classifiers for damage in the works of other
researchers [14,15,28]. Valentijn et al. [14] have trained Inception-v3-based CNN models,
trying to simulate operational conditions, while Bai et al. [15] developed a combination
of a semi-Siamese network with a pyramid-pooling module. The aforementioned studies
follow an end-to-end approach for damage localization and classification, meaning that the
building extraction is part of the ML pipeline. Touzani and Granderson [29] have outlined
the necessity for creating accurate Deep Learning models that recognize urban structures
and propose a method for automatic extraction of buildings in openly available datasets
based on semantic segmentation in order to create a unified training dataset with high
variability that contains them all.

The transferability of pre-trained CNN models to new disaster occasions was also
examined by Vetrivel et al. [7]. The study integrated 3D point cloud data on top of vertical
and oblique aerial photography. Among the models that were employed, the authors
recommend the use of a pre-trained CNN as a feature extractor with no further weight
tuning because it can achieve Overall Accuracy of the same levels without being as costly
in terms of data and computation. However, the inclusion of site-specific samples can
positively impact the model’s performance [7].

Li et al. [13], taking into consideration the amount of time that labeled data needs
to be produced, have employed an unsupervised domain adaptation model based on
unlabeled post-hurricane imagery. The model, despite its complexity, as it consists of several
Generative Adversarial Networks (GANs), a classifier and a self-attention module, was
evaluated by the authors as successful with regards to the transfer learning tasks that were
assigned to it.

2.3. Comparative Analysis

The aforementioned studies concern related applications, where post-disaster urban
damage is tracked with ML. The approaches vary greatly with regards to the methods
employed. The input imagery and the number of the predicted classes are parameters that
affect the design of the learning pipeline. The input imagery and the number of the predicted
classes are parameters that affect the design of the learning pipeline. Table 1 summarizes the
parameters that were encountered in the literature and were evaluated as fundamental for the
creation of the predictive model, namely data source (satellite/airborne, single/bi-temporal),
dataset size, ML approach and number of output classes.

The most common incident among earthquake-related studies is the Haiti 2010 earth-
quake and has often been the unique data source of the analysis [5,6,12]. Given that the
models built on very specific data have a poor generalization ability [9], newer studies are
incorporating more earthquake incidents [7,9] or do not distinguish between the damage
cause, especially the ones utilizing the dedicated xBD dataset [11,14,15]. The preferred
imagery type in the relevant ML applications is of VHR, acquired either by satellite (usually
WorldView and QuickBird) or by aerial platforms. Additional data sources, such as 3D
point cloud features [7], can be used collaterally, but the basis for the learning process
remains optical imagery, which is also meaningful to human vision.
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Table 1. Data parameters that affect the architecture design. Dataset size refers to building instances.

Study Data Source Dataset Size ML Approach Classes

Cooner et al. [5] Satellite—Bi-temporal 897 RF, ANN, RBFNN 2
Ji et al. [6] Satellite—Single post-event 3928 SqueezeNet, data balancing 2

Vetrivel et al. [7] Airborne—Bi-temporal 12,544 CNN, pre-trained CNN 2
Anniballe et al. [8] Satellite—Bi-temporal 1667 SVM, MAP 2

Xu et al. [9] Satellite—Single post-event 75,468 AlexNet 2
Li et al. [10] Airborne—Single post-event 757 SSD, data augmentation 2

Gupta et al. [11] Satellite—Single post-event 632,228 Shallow CNN and ResNet50 4

Ji et al. [12] Satellite—Bi-temporal 1789 VGGNet, pre-trained VGGNet,
data augmentation 2

Li et al. [13] Airborne—Single post-event 34,000 GANs and classifier
and self-attention module 3

Valentijn et al. [14] Satellite—Bi-temporal 850,736 Inception-v3 CNN 4

Bai et al. [15] Satellite—Bi-temporal >850,000 Pyramid Pooling Module and
Semi-Siamese Network 4

To overcome a possible data shortage and accelerate the creation of a competent pre-
dictive model, a plethora of approaches have been put to use. Pre-trained models can
transfer knowledge and save time and computational resources [7,12]. Data augmenta-
tion is necessary for small datasets [10] and data balancing for non-linear datasets [6,15].
Unsupervised classification is also gaining popularity [24], as it minimizes the effort for
labeling the training data. All the aforementioned strategies are possible solutions to an
FSL problem. FSL has already been introduced as a means of dealing with emergency
situations [30–32]. However, the related studies do not address post-disaster emergency
mapping explicitly but rather focus on video surveillance [32], tweet classification [30] or
indoors safety [31].

As observed in the literature, there is a proportional relationship between the amount of
input data and the number of output classes. The studies that utilize small-scale datasets for
damage classification categorize the buildings into two classes: damaged/undamaged [5,7],
collapsed/non-collapsed [6,12], debris/mild damage [10]. On the other hand, studies based
on larger datasets further split the wreckage level into more categories [11,13]. A finer division
is beneficial for prioritizing the emergency response in the affected areas. However, multi-
class classification problems formed upon a few available data with low inter-class variation
can highlight data imbalances, as shown in the case of Anniballe et al. [8], resulting in a
problem that is difficult to solve. In this study, we explore mechanisms for overcoming the
obstacles that are encountered in multi-class damage classification tasks with small datasets.

2.4. Few-Shot Learning (FSL)

FSL is a family of ML approaches, where the target classification task is solved with
only a limited number of available labeled examples [20]. The efforts to systematize FSL
as a distinct branch of ML are very recent. The proposed definitions for FSL converge to
it being a family of methods for solving ML problems that are characterized by a small
quantity of available labeled data. Since the human brain is capable of learning only from a
few examples, FSL can be seen as a way for Artificial Intelligence to approximate human
learning even more [20]. According to the taxonomy proposed by Kadam and Vaidya [21],
the coping strategies can be divided into two categories: data-bound and learning-bound.
Data-bound strategies focus on attaining more data so that the sample is big enough to
leverage standard Deep Learning network architectures. This can be achieved by transform-
ing the existing data, by creating artificial new data or by incorporating similar datasets.
Data augmentation is the most common example of a data-bound strategy. Wang et al. [20]
further divides the learning-bound methods depending on how the error rate of the learn-
ing process is minimized into model and algorithm-based. The model-based approaches
aim to narrow down the hypothesis space so that new unlabeled data can be identified
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based on similarity. This is also called metric learning [21]. Algorithm-based approaches
make use of knowledge acquired by similar learning problems and adjust it accordingly.
Pre-trained models are relevant examples that were encountered in the literature.

3. Data and Methodology
3.1. Dataset

The data used in this research has been proposed by Gupta et al. [11] and can be
found at https://xview2.org/ (last accessed on 14 January 2021). This dataset is based
on Maxar/DigitalGlobe’s Open Data program [33] and consists of imagery that has been
acquired with WorldView and GeoEye satellites. The mean technical specifications of the
imagery, as declared in the dataset’s metadata, are presented in Table 2.

The complete xBD dataset refers to multiple disaster categories: volcanic eruption,
hurricane, earthquake, fire, flood, monsoon, tornado and tsunami. The dataset is composed
of three different file types: (1) VHR satellite imagery (pan-sharpened), (2) JSON files
with metadata and labels about the buildings of the region and (3) building polygons. All
three categories contain both pre and post-disaster data. The images referring to prior to
the disaster have plain building labels, while the post-disaster building labels are further
classified into four levels of damage: (1) No damage, (2) Minor damage, (3) Major damage and
(4) Destroyed. The proposed damage scale is a modification of the EMS-98 standard [34],
based on the level of destruction that can be observed from a vertical angle.

The present research is primarily concerned with earthquake-related urban damage,
so, for the creation of the predictive models, the earthquake incidents were initially isolated.
This led to the collection of 386 images in total, all of which refer to the Mexico City 2017
earthquake. As this amount of data is insufficient to train a deep network, data from
hurricane incidents were also incorporated, and the total amount of images increased
to 4432. The reason for this inclusion is that wind and earthquake-related damage is
similar [25,26]. All images are of the same standard dimensions (1024 × 1024 pixels) and
spatial resolution; thus, the pre-processing effort is minimized. The disaster incidents
referred to by the VHR imagery eventually collected from xBD are presented in Figure 1.

Figure 1. The disaster incidents in the training dataset.

https://xview2.org/
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Table 2. Imagery technical specifications.

Parameter Value

Sensor Resolution 0.66 m
GSD 2.65 m

Off-nadir angle 28.4 degrees
Sun azimuth angle 143.6 degrees

Image Width 1024 pixels
Image Height 1024 pixels

3.2. Methodology

The aim of this study is to implement and compare different FSL approaches. For this
purpose, four models were developed. In Figure 2, we provide an overview of the workflow,
from the stage of pre-processing the labeled satellite imagery to the stage of producing maps
with damage predictions. Given the theoretical fundamentals clarified in Section 2, the elab-
orated methodology is targeted to tackle models for imbalanced datasets. The following
subsections describe in detail the methodological components.

Figure 2. Methodology overview.

3.2.1. Data Preparation

Pre-processing includes the preparation of the data for training and testing the models.
Images of dimensions 1024 × 1024 are not only extensive for our available computational



Remote Sens. 2022, 14, 40 8 of 20

resources, but they also contain multiple examples of possibly every class per image.
Therefore, building instances were cropped, as in the example of Figure 3, using the
polygon coordinates in the respective JSON files and then mapped to the corresponding
label using a .csv file.

Figure 3. Isolation of labeled building instances.

The resulting dataset was further split into three parts: train, validation and test.
The test division was forced to have an equal number of representatives for each class so
that the performance evaluation gives a reliable picture of the model’s accuracy for each
one of the classes, independently from the number of instances of that class in the training
set. The derived number of examples per class is summarized in Table 3.

Table 3. Number of examples per class in train, validation and test subsets.

Class Train Validation Test

No damage 64.722 21.502 1.000
Minor damage 15.575 5.304 1.000
Major damage 13.116 4.370 1.000

Destroyed 3.487 1.125 1.000

The subsequent analysis follows two distinct FSL paths: data-bound and learning-bound.
All architectures require 3-channel 128 × 128 images as the input. To ensure that the input
images comply with the appropriate format, downscaling was enforced where necessary.

3.2.2. Data-Bound FSL

As mentioned in Section 2, data-bound methods aim to extend the dataset so that
traditional Deep Learning architectures can be leveraged. In this context, three models
were developed, with the baseline CNN architecture being the same for all of them. Every
model utilizes a different data balancing method.

Baseline Architecture

This architecture exploits the framework proposed by Gupta et al. [11], focusing on
creating new observations on how the performance changes according to the data balancing
method. For the training procedure, batches of 64 images of dimensions 128 × 128 × 3,
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are fed to a Deep Neural Network that consists of two main components: a shallow CNN
and a ResNet50 [35] model. The shallow CNN is composed of six alternating layers
of convolutional and pooling blocks. The ResNet50 block is initialized with ImageNet
weights. Finally, the outputs of the two chunks are concatenated and fed to three adjacent
fully-connected layers. The output of the last fully-connected layer holds the predicted
classes and is compared to the corresponding labels to eventually compute the performance
metrics. The convolutional and the fully-connected layers are ReLu activated. A graphical
interpretation of the network’s architecture can be observed in Figure 4.

Figure 4. Deep Neural Network baseline architecture.

Method 1—Cost-Sensitive Learning

The first model we implemented aims to smooth the differences among the classes
by balancing the training weights as a means of normalizing their importance during the
learning process. This is achieved by weighting the classes according to a cost matrix that
is derived by estimations made on the training data [36]. The importance of the majority
and minority objects is tuned based on this matrix. In this present study, the weight wi of
class i is normalized based on Equation (1):

wi =
|S|

m× |Si|
(1)

where m is the number of classes, |S| is the number of examples in the dataset and |Si| is
the number of representatives for this specific class [37]. The calculated class weights are
shown in Table 4.

Table 4. Input class weights for Model 1.

Class Weight

no-damage 0.37
minor-damage 1.56
major-damage 1.85

destroyed 6.95

The train subset of Table 3 is further subjected to batch-wise real-time data augmenta-
tion, using Keras ImageDataGenerator class. The gradient optimization was handled by an
Adam optimizer. The Adam’s parameters where initially set to α = 0.001 (learning rate),
β1 = 0.9 and β2 = 0.99, as suggested for ML problems by Kingma and Ba [38]. After pre-
liminary testing experiments, where the training loss was not dropping, the learning rate
was finally tuned to 0.0001.

Method 2—Undersampling

In the second model considered for damage classification, we try to overcome the data
imbalance undersampling all non-minority classes. Examples from the initial dataset are
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randomly selected so that each class remains with the same number of representatives for
the learning process. The undersampling resulted in 4.600 examples per class, 0.3 of which
created the validation set. The learning rate was at first set to 0.0001, as in Method 1, but the
training loss was increasing and eventually, the learning rate was set to 0.00001. The rest of
the Adam optimizer’s parameters were kept the same (β1 = 0.9, β2 = 0.99) [38].

Method 3—Oversampling

In the same manner as undersampling, but from the opposite perspective, oversam-
pling’s purpose is to balance the classes by creating more examples of the non-majority
classes. In this case, the oversampling is handled by creating copies of the original examples
and then applying simple transformations to these copies. The possible transformations
are horizontal flipping, vertical flipping, horizontal and vertical flipping and clockwise
rotation and counterclockwise rotation. The process was repeated for all the instances of
the non-majority classes until each class had 1/4 of the final dataset’s instances. The over-
sampled dataset contained 340,180 building instances in total, where 0.3 of every class
made the validation set. Following the same steps for Method 1, the learning rate for the
training process was set to 0.0001, and the Adam optimizer parameters were set to β1 = 0.9
and β2 = 0.99.

3.2.3. Learning-Bound FSL: Method 4—Prototypical Networks

The last candidate follows a different FSL strategy. While deep networks, such as
ResNet, can be predictive powerhouses when there are plenty of training data, opting
for a deep architecture when there is not enough data may not be the most reasonable
option. Among state-of-the-art FSL-specific algorithms, Prototypical Networks (ProtoNets),
initially introduced by Snell et al. [39], have shown to be able to detect even new classes
that are not part of the training data.

Prototypical Networks combine elements from the fields of Meta-learning and Metric
learning. Meta-learning, being the subfield of ML that leverages experience acquired by
similar tasks to accelerate the learning process of new tasks, is also referred to as “learning
to learn” [40]. In Prototypical Networks, this is achieved by measuring distances between
features, hence learning the metric space. The basic idea is to create a prototype (i.e., a
vector mean) of each class and categorize the input feature based on the distance between
the two. This distance is actually the “metric” in metric learning.

The implemented model can be observed in the schema of Figure 5. From the initial
dataset, 50 examples of each class were selected to support the training process. This creates
a 4-way (as the total number of classes), 50-shot (as the number of examples per class)
FSL approach.

Figure 5. Methodological Workflow and Network Architecture for Model 4.

In accordance with the previous models, the query and support sets consist of
128 × 128 × 3 images. The network has two identical “legs”: one for calculating the support
set embeddings, namely the class prototypes, and one for calculating the query set embed-
dings. Each leg is constructed by eight alternating convolutional and pooling layers. The
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convolutional blocks are ReLu activated. Finally, the Euclidean distance between the query
embedding and every class prototype is calculated in order to compute the class prediction.
The learning rate was set to 0.001 [39] and the decay was handled by an Adam optimizer with
beta parameters set to β1 = 0.9 and β2 = 0.99 [38].

4. Results

Following the methodological designs described, this section presents the results
acquired by the experimental process and carries out a comparative analysis of the models’
training duration and their performance on unseen data. The selected best model is also
tested against RGB pan-sharpened satellite images to infer damage assessment maps.
The trained models, the pre-processed training and validation datasets and the code are
available in the links provided in Supplementary Materials.

4.1. Training Time

The models were trained until the loss became less than 1%. A summary of the training
time that was required to achieve the best model of each architecture is provided in Table 5.
All training processes took place on a Linux Ubuntu 18.04 machine, equipped with Intel
Core i7-7700HQ@2.80 GHz CPU and 16 GB RAM.

Table 5. Training time for the best model of each method.

Model Epochs Training Time/Epoch (Mean) Total Training Time

Balance weights 57 47 min 44 h, 40 min
Undersampling 55 6.5 min 6 h
Oversampling 40 2 h, 13 min 88 h, 40 min

ProtoNets 21 13.5 min 4 h, 45 min

Models 1, 2 and 3 use the same baseline, so we can observe how the size of the train
dataset affects the time that is required to create one epoch and, eventually, to conclude the
learning process. This is expected, as one epoch has to iterate through all data, and thus,
more data will demand more time for the same network. In fact, the two variables appear
to be almost linearly related. On the other hand, the Prototypical Networks implementation
depends on a completely different architecture, which apparently needs more time to train
an equivalent amount of data. As observed in Table 5, Model 3, based on the oversampling
strategy, took the longest to train (88 h and 40 min) and Model 4, based on Prototypical
Networks, had the shortest total training time (4 h and 45 min). Model 2, based on the
undersampling strategy, had the shortest training time per epoch but needed more epochs
for the training process to reach the target loss of 1%.

4.2. Performance Metrics

The result image classification in Remote Sensing applications is usually evaluated with
Overall Accuracy, which represents the fraction of correctly classified instances or pixels in
a map [41]. However, Overall Accuracy is by definition biased against the minority/non-
majority classes and relying entirely on this metric can lead to ambiguous conclusions [22,42].
For this reason, for the evaluation of the elaborated models, we have used Precision, Recall
and F-score metrics. The formulas for calculating these metrics are as following:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP stands for the sum of True Positives, FP stands for the sum of False Positives and
FN stands for the number of False Negatives. F-score is a combination of precision and
recall. It ranges between 0 (worst) and 1 (best) and is defined accordingly:
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F-score =
2 · Recall · Precision
Recall + Precision

(4)

4.2.1. Model 1—Cost-Sensitive Learning

As reported in Table 6, all metrics for Destroyed are equal to 0, confirming that no
examples of this class are detected. This is due to the train and validation subsets being
extremely imbalanced, while the test subset has been designed to have an equal number of
examples for every class. As such, a model that favors the majority class but ignores the
minority class can still achieve good performance metrics if not tested against a balanced
dataset. Additionally, the class Minor damage is the most favored one, attracting examples
from all other classes, as indicated by the highest demonstrated recall in combination with
the lowest precision value. A recall value equal to 0.69 means that among the total instances
of the class in the dataset, 69% were correctly classified. Major damage precision is 0.49,
indicating that almost half of the predicted instances for this class are correct predictions.
All the other results achieved by the model seem rather poor.

Table 6. Performance metrics for Model 1 (cost-sensitive learning strategy).

Precision Recall F-Score

No damage 0.33 0.30 0.31
Minor damage 0.30 0.69 0.42
Major damage 0.49 0.38 0.43

Destroyed 0 0 0

4.2.2. Model 2—Undersampling

The results returned by this method are presented in Table 7. The effect of balancing
the dataset that was used for training is immediately visible since all classes are detected
by this model. Consistent with Model 1, Minor damage is favored, as indicated by the
high recall value. The precision for Minor damage is the lowest, which means that the total
predictions are much more than the relevant predictions. For the other three classes, the
precision scores are over 50%. On the other hand, recall achieves a high value for Destroyed,
resulting in a respectively high f-score value. The precision is higher than Model 1 for
all classes and, only Major damage shows significantly lower values for recall and f-score.
Overall, Model 2 performs much better than Model 1 but stills shows poor prediction
capabilities for certain classes.

Table 7. Performance metrics for Model 2 (undersampling strategy).

Precision Recall F-Score

No damage 0.55 0.35 0.43
Minor damage 0.40 0.70 0.51
Major damage 0.58 0.29 0.39

Destroyed 0.69 0.74 0.71

4.2.3. Model 3—Oversampling

In Table 8, the performance results of the CNN model that was trained with the over-
sampled dataset are reported. Observing this table, we can immediately have an intuition
that this data-balancing strategy is better than the previous ones because the obtained f-score
values are consistently higher for all classes, with values ranging from 0.52 (No damage) to 0.75
(Destroyed). Apart from the precision of Minor damage, all performance metrics demonstrate an
upward trend relative to how many times the class representatives were oversampled in the
training dataset. It can be observed that the more times a class was oversampled, the highest
the metrics that were achieved, with class Destroyed, initially the minority class, exhibiting
the highest values. Additionally, the recall for No damage is below 0.50, which indicates that
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less than half of the undamaged buildings were identified correctly. Minor damage exhibits
borderline precision but relatively high recall, which means that attracts examples from other
classes. Nevertheless, all classes achieve their best performance so far.

Table 8. Performance metrics for Model 3 (oversampling strategy).

Precision Recall F-Score

No damage 0.60 0.46 0.52
Minor damage 0.49 0.59 0.53
Major damage 0.69 0.63 0.66

Destroyed 0.72 0.78 0.75

4.2.4. Model 4—ProtoNets

Table 9 clearly shows that Model 4 succeeds in identifying more than half of all classes’
representatives. Precision, recall and f-score exhibit values higher than 50% for all classes,
indicating a reliable model. Precision is higher than recall for all classes, except for No
damage. This indicates a relatively low possibility for Minor damage, Major damage and
Destroyed to attract examples from other classes since an instance is classified as such only
when there are clear indications that it indeed belongs to this class. Minor damage and
Major Damage, which represent the middle levels in the classification scale, show lower
performance metrics than the other two classes (No damage and Destroyed), with Major
damage values being slightly higher than Minor damage. Noteworthily, No damage and
Destroyed performance are better than all previous Models, and class Destroyed has the best
class performance for Model 4 across all metrics.

Table 9. Performance metrics for Model 4 (ProtoNets).

Precision Recall F-Score

No damage 0.60 0.69 0.64
Minor damage 0.55 0.52 0.54
Major damage 0.59 0.57 0.58

Destroyed 0.83 0.75 0.79

To summarize, cost-sensitive learning (Model 1) is immediately excluded, as it is un-
able to detect one class and has an overall performance that is the poorest of all candidates.
Undersampling (Model 2) seems relatively efficient in detecting Destroyed buildings, but the
very low precision of No damage and Minor damage and the low recall of No damage and Major
damage make it a questionable candidate for this type of problem. Oversampling (Model 3)
and ProtoNet (Model 4) show a comparably adequate overall performance. However, Pro-
toNet is much more competent in detecting No damage buildings and is much faster to train.
Therefore, based on the evaluation of the computed performance metrics on the testing
dataset, ProtoNet is more appropriate to fulfill the requirements of a structural damage
classification problem and, thus, Model 4 is selected to infer damaged building maps.

4.3. Inference

To enrich our results with a practical context, three test cases were selected to visualize
the model inference in terms of mapping the assessed polygons. For each of these examples,
the predictions were collated with the polygon labels, and the difference between these
two images was calculated. Since the output classes represent a damage gradient, we
defined the misclassification difference from label as the interval between the prediction and
the true class of every polygon, to quickly assess how far the prediction is from reality.
For example, a No damage building that was falsely identified as Minor damage, Major
damage or Destroyed will have a misclassification difference of 1, 2 or 3, respectively. A
misclassification difference equal to zero means that the prediction was correct.
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4.3.1. Dense Urban Area, Hardly Affected

The first test case that we considered was extracted from the Mexico 2017 earthquake;
whose reported magnitude was 7.1 on the Richter scale [43]. It represents a dense urban
area that was merely affected by the incident, so almost all polygons are expected to belong
to class No damage (see Figure 6b). As illustrated in Figure 6a, the model detects almost
equal examples from all four classes.

Figure 6. Application of ProtoNet model on a test case from Mexico 2017. Satellite image overlaid
with: (a) the predictions, (b) the labels and (c) the difference between the two.

Comparing Figure 6a,b, and also consulting Figure 6c, we can see a tendency for
misclassification, especially in the top left corner of the region (North–Northwest), where
the majority of the instances have been identified as Major damage or Destroyed. In the rest of
the image, most of the buildings are classified as No damage or Minor damage, with the sparse
presence of Major damage buildings and even fewer Destroyed. Likewise, the misclassification
differences are higher towards the top and left of the image. This depiction is explained by
the No damage recall and the Minor damage and Major damage precision, which leave space
for such misclassifications. Overall, the general impression of the severity of damage for the
whole area can be misleading.

4.3.2. Urban Area, Severely Affected

The second test case is a snapshot of the tornado Joplin’s aftermath in Joplin, Missouri,
USA. The tornado’s maximum winds reached over 200 miles per hour [44]. In contrast
with the first test case, this area is highly affected. According to the ground truth (see
Figure 7b), all building labels belong to Destroyed or Major damage categories, except for
four buildings in the lower right corner. Nevertheless, the model classifies instances of
all classes across the entire region (see Figure 7a). Moving to the bottom of the image,
the structures tend to be classified more as Major damage and Destroyed, eventually giving
the broader look of a region severely attacked by the natural disaster. In a similar fashion,
the misclassification differences appear to be higher in the top half of the image (see
Figure 7c). The misclassifications appear less in Figure 7 than in Figure 6, a fact that is
supported by the higher performance metrics of Model 4 for Destroyed, which is the most
frequent class in this region.
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Figure 7. Application of ProtoNet model on a test case from tornado Joplin. Satellite image overlaid
with: (a) the predictions, (b) the labels and (c) the difference between the two.

4.3.3. Coastal Area, Moderately Affected

The last case considers a coastal line from Panama City, Florida, USA, after the hur-
ricane Michael, which recorded maximum sustained wind speeds equal to 161 miles per
hour [45], stroke the area. The region contains examples of all four classes (see Figure 8b).
Again, we can observe a relatively high rate of misclassifications, as the model misses half
of the classified items. The two Destroyed buildings in the top section of the image were
categorized as Major damage and Minor damage. The main dissonance between the ground
truth in Figure 8b and the predictions in Figure 8a are the three No damage structures that
were classified as Destroyed. Aside from these, the misclassified instances have a distance
of 1 or 2 from the correct class, meaning that they were assigned to a neighboring class of
the correct one. In this example, we observe a tendency for smaller misclassification differ-
ences. A possible explanation is that the buildings of larger areas in Figure 8 (compared
to the smaller building sizes in Figures 6 and 7) contain more pixels and, thus, hold more
information that is important for the classification process.

Figure 8. Application of ProtoNet model on a test case from Hurricane Michael. Satellite image
overlaid with: (a) the predictions, (b) the labels and (c) the difference between the two.
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5. Discussion

Previous work indicates that the common trend for urban damage assessment with
Remote Sensing is to use Deep Learning. The data shortage is mostly addressed with
data augmentation, but pre-trained models and unsupervised learning have also been put
to the test. All these approaches are considered Few-Shot Learning, demonstrating the
applicability of this Machine Learning family of strategies in relevant problems. In this
study, we took into consideration the type of input imagery (labeled optical imagery) and
the intended number of output classes (four-level damage scale) to select the appropriate
methodological components. According to the conclusions drawn by the literature review,
we confronted the data shortage in two distinct ways: (1) balancing and augmenting the
dataset to make it suitable for training a Deep Architecture and (2) metric Few-Shot Learn-
ing with Prototypical Networks. More data from hurricane incidents were incorporated
in the analysis as a first step of expanding the dataset with data from related problems.
Subsequently, four different models were developed and compared.

As revealed by the quantitative evaluation to which the models were subjected, over-
sampling achieved the highest precision and f-score values for all classes and the highest
recall values for all classes except Minor damage, amongst all three data-balancing strategies
for Deep Learning architectures. This outcome is consistent with related studies that have
used the xBD dataset for model training. Valentijn et al. [14] have compared cost-sensitive
learning with a combination of over and undersampling and conclude that the latter is
more effective in the classification outcome. Bai et al. [15] mention that after preliminary
experiments, they chose to use oversampling to train their models. Contrarily Ji et al. [6]
used a different dataset to train a binary CNN-based classifier and found cost-sensitive
learning more effective as a balancing operation.

The comparison of the four models demonstrates that Prototypical Network models
can outperform Deep Learning models in damage classification problems with data scarcity.
However, in accordance with other studies from the literature, it was not easy to acquire
very high accuracy results for a small dataset with slight inter-class disparities in a multi-
class classification task. Furthermore, although the xBD dataset is not uncommon in the
recent damage classification studies, its use of it in research that focuses on FSL has not
been encountered in the literature. As a consequence, similar studies exploit the entirety of
the xBD for model training. Valentijn et al. [14], who trained a model based on Inception-v3
with xBD, report on recall as the following: No damage: 0.867, Minor damage: 0.541, Major
damage: 0.607 and Destroyed: 0.679. As shown in Table 9, the recall of the ProtoNets model
is 0.69 for No damage, 0.52 for Minor damage, 0.57 for Major damage and 0.75 for Destroyed.
The results are not only comparable but also can surpass the performance of a model trained
with the entire dataset. Bai et al. [15], who also trained their proposed architecture with xBD,
report on the same evaluation metrics as the present paper, namely precision, recall and
f-score, and distinguish between localization and classification metrics, so the comparison
with the values of Table 9 is more straight-forward. For No damage, the results for precision,
recall and f-score are 90.64%, 87.07% and 89.85%, respectively, and are significantly higher
than the respective values in Table 9. On the contrary, the calculated metrics for Minor
damage (precision: 35.51%, recall: 49.50%, f-score: 41.36%) are significantly lower than
the values of Table 9. For Major damage, the Bai et al. [15] performance metrics (precision:
65.80%, recall: 64.93%, f-score: 65.36%) are higher than Model 4. Finally, for Destroyed,
the precision in Bai et al. [15] is 87.08%, which is higher than Model 4, but the other two
metrics (recall: 57.87%, f-score: 69.55%) are lower than Model 4. As a general remark,
Model 4, which is based on ProtoNets, exhibits more consistent behavior across the four
classes, but it performs significantly lower for No damage.

Based on the intuitive interpretation gained by the visual mapping of the predictions
of Model 4 compared to the ground truth, we can deduce that the tested model has plenty
of room for improvement but seems promising for tackling the problem of post-earthquake
urban damage assessment. The most confounding aspect of the results is when No damage
buildings are misinterpreted as Destroyed and vice versa because in a real case scenario it
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could lead to consuming critical resources and time for assisting the wrong locations. It
must be stated that such misclassifications seem to be more rare as the area of the polygon
increases. In the broader context of emergency response, the significance of the damage
classification output should be validated by other data sources. Seismic vulnerability reports,
smart building structural monitoring [46] and earthquake magnitude measurements based
on environmental noise [4] can be ancillary information to earth observation-based damage
classification. The aforementioned information sources, along with ground-truth verification,
should be taken into account for the response planning by the local authorities, as the traffic
network capacity and the citizen mobility demands change dramatically during the recovery
process [16].

While the obtained results from Model 4 seem promising, there are certain limitations
to the extent a 50-shot metric-learning approach on satellite imagery of this resolution can
reach. Randomly picking 50 representatives of each class to train a ProtoNet model may
have led to excluding important information carried by the data. Additionally, satellite
imagery of higher resolution is usually private, and thus, very difficult to acquire. The
model’s ability to assess damage is also limited to disasters of a magnitude similar to the
events in the training data set.

Since the outcome is encouraging, further research on this subject is recommended.
Although remotely sensed imagery of higher resolution is difficult to obtain, we anticipate
that a similar study with satellite or UAV imagery of higher resolution should be pursued.
UAVs can also provide oblique perspectives of the buildings, which may hold important
information in the context of structural damage and have been already applied in similar
applications [7]. Furthermore, instead of picking at random a few examples from the
available data, certain data sampling techniques, such as Near-Miss and Condensed Nearest
Neighbor Rule, can be employed to determine the most useful samples to train a model.
We strongly believe that Prototypical Networks in the context of urban damage assessment
deserve more exploration. The number of shots, the prototyping function and the distance
function are parameters to experiment with, and that could improve the existing results.

6. Conclusions

This study employed Very-High Resolution pan-sharpened satellite imagery and
Machine Learning in order to identify the level of structural destruction induced by a
catastrophic earthquake incident. Aiming to approximate a real case scenario, where
the available labeled post-event data are limited, and the pre-event data are possibly
nonexistent, the different explored possibilities tackle data insufficiency and imbalance by
implementing Few-Shot Learning strategies and pave the way for a new approach to the
difficult problem of multi-class damage classification that is formulated upon limited data.

The classification of an imbalanced dataset can be solved either by adjusting the weight
matrix, in a way trying to normalize the number of examples for every class (cost-sensitive
learning) or by selecting the same number of representatives for each class to build the
training set. For a balanced Deep CNN training, three different models were created:
Model 1 with cost-sensitive learning, Model 2 with undersampling and Model 3 with
oversampling. For Model 4, a 50-shot ProtoNet was trained. This process resulted in four
models, each having been trained with a different dataset in terms of the total number
of examples and the class proportions. Nevertheless, all models were evaluated based
on the same balanced set of completely unseen data. The first method was eventually
inefficient in our case while using a balanced dataset when training image classification
models immediately added up to the overall performance. Undersampling may cause a
loss of decisive information for the classification process, and thus, it is not as considerable
as oversampling for training a Deep CNN model. However, for Prototypical Networks,
randomly picking a few samples per class was enough for creating the most effective and
efficient model.

The four models were compared using precision, recall and f-score. Model 4, built
upon Prototypical Networks, showed the most consistent performance according to the
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three metrics, although Model 3 (data oversampling in the pre-processing stage) exhibited
almost equally good results for most classes. Taking a closer look, all four approaches have
a different impact on each class. It can be argued that such an eminently imbalanced dataset
cannot fully support the training of a multi-class predictive model with cost-sensitive
learning since Model 1 is entirely unable to detect the minority class. As stated before,
undersampling also leads to dismissing valuable information and hence, the resulting
Model 2 has a limited predictive ability over certain classes but performs very well for the
minority class. Oversampling seems to be more competent for creating a Deep CNN-based
predictive model but has a borderline performance for the majority class. Model 4 seems to
achieve a robust performance for all classes, being able to correctly predict more than half
of their instances. Consequently, Model 4 was used for creating damage assessment maps
to provide an idea of the model’s practical applicability.

The predictions of Model 4 were overlaid with the satellite imagery and compared
with the true polygon labels to obtain a qualitative impression of how close the output of the
model is to reality. Even though the model is in the right direction for damage assessment,
it would not be advisable to base on it an estimation about how gravely an area was affected
(Figures 6–8). Improvements must still be made so that the possible misinterpretations
between No damage and Destroyed buildings are eliminated. This phenomenon seems less
frequent for polygons of a larger area.
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