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Abstract: Multiple source satellite datasets, including the Gaofen (GF) series and Zhuhai-1 hyper-
spectral, are provided to detect and monitor the floods. Considering the complexity of land cover
changes within the flooded areas and the different characteristics of the multi-source remote sensing
dataset, we proposed a new coarse-to-fine framework for detecting floods at a large scale. Firstly, the
coarse results of the water body were generated by the binary segmentation of GF-3 SAR, the water
indexes of GF-1/6 multispectral, and Zhuhai-1 hyperspectral images. Secondly, the fine results were
achieved by the deep neural networks with noisy-label learning. More specifically, the Unet with the
T-revision is adopted as the noisy label learning method. The results demonstrated the reliability
and accuracy of water mapping retrieved by the noisy learning method. Finally, the differences in
flooding patterns in different regions were also revealed. We presented examples of Poyang Lake
to show the results of our framework. The rapid and robust flood monitoring method proposed is
of great practical significance to the dynamic monitoring of flood situations and the quantitative
assessment of flood disasters based on multiple Chinese satellite datasets.

Keywords: flood mapping; multiple-source; Chinese satellites; summer flood

1. Introduction

Floods are the most dangerous, common, and serious natural calamity, causing more
mortality and property damage than other disasters [1–3]. According to the 2019 World Risk
Report, flood disasters were the worst form of disaster, accounting for almost 5000 deaths
in 2019 and 4913 deaths between 2009 and 2018 (https://reliefweb.int/report/world/
natural-disasters-2019 (accessed on 30 June 2019)). It also caused a substantial economic
loss (36.8 billion US dollars in 2019) and affected 60 million people worldwide. In 2020,
the Asian summer monsoon’s low-pressure systems were powerful and stable, allowing
more water vapor to flow from the Indian and Pacific oceans to South and East Asia [4].
From June 2020, rainfall had caused floods and landslides that had impacted millions of
people across South and East Asia. The severe floods happened in China, India, and the
west regions of Japan [5].

From June 2020, China’s most severely damaged areas occurred around the Yangtze
River, Huai River, and their tributaries. The Yangtze River’s upper and middle basins and
its tributaries were flooded in June, affecting 14 million people in numerous provinces,
including Sichuan, Hubei, and Hunan. With more rain in July, floods started to extend to
lower regions of the Yangtze basin, such as Jiangxi, Anhui, and Jiangsu. According to the
Chinese Ministry of Emergency Management, by the end of July, flooding had displaced
40 million people across 27 provinces with more than 200 people missing or dead and
500,000 buildings destroyed or damaged [6].

Remote Sens. 2022, 14, 51. https://doi.org/10.3390/rs14010051 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010051
https://doi.org/10.3390/rs14010051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5902-7126
https://reliefweb.int/report/world/natural-disasters-2019
https://reliefweb.int/report/world/natural-disasters-2019
https://doi.org/10.3390/rs14010051
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010051?type=check_update&version=1


Remote Sens. 2022, 14, 51 2 of 15

Due to the exponential growth of remote sensors, several satellites were deployed
to provide vast land coverage data for disaster monitoring and damage assessment [7,8].
These satellites can provide optical and synthetic aperture radar (SAR) images. Optical
image detection is straightforward to investigate since it has similar properties to visual
perception. Considering the spatial and temporal resolutions, free available Landsat-8 and
Sentinel-2 are good choices [9,10]. The main disadvantage of optical is that they cannot
obtain images when meeting the bad weather conditions (e.g., clouds) in the affected
areas. Unlike optical sensors, SAR sensors are active sensors that work throughout every
environment and at any time of day, enabling monitoring disasters by rain and cloud.
China has constructed, launched, and operated many series of high-resolution spacecraft
independently over the last decade, notably the GaoFen (GF) series, which include both
optical and SAR satellites [11]. Many new companies, such as Chang Guang Satellite
Technology Co., Ltd., Changchun, China, have developed in the area of commercial satellite
research, satellite development, and utilization [12]. During the flooding periods, both the
GF series and the commercial satellites provide many images to support the flood mapping.

Flood detection technologies have been intensively examined in recent decades based
on optical and SAR pictures in varying resolutions [13–15]. Typical approaches to map flood
inundation include: (1) extract the water bodies from pre-disaster and post-disaster images
and then detect the changes [16–18]; (2) directly identify pixel-wise or object-wise changes
from the pre-disaster and post-disaster images [19,20]. The highly absorptive capacities of
water in short wave infrared spectrum (SWIR) and near-infrared (NIR) spectrum and their
combinations (resulting in normalized difference water index, NDWI) are exploited in the
optical images [21,22]. However, optical imagery cannot split water and cloud shadows
with low SWIR and NIR reflectance values. In SAR images, the water is easily identified
because of lower backscatter values than other classes. Inundated vegetation and floods in
metropolitan areas may generate an increase in backscatter during flooding because of a
“double bounce” effect [23].

Deep learning and computer vision advances are already having a substantial impact
on the current status of remote sensing [24,25]. Deep learning techniques, particularly
convolutional neural networks (CNN), are even more accurate in categorizing land cover
and image scene since 2015, and their application has increased significantly [26]. Most
approaches, however, are used for urban and vegetated coverage. Very few studies are paid
attention to water detection, in particular for flood mapping [27]. For instance, Li et al. [28]
developed active self-learning CNNs based on the intensity and coherence of TerraSAR-X
for mapping the urban flood. Rahnemoonfar et al. [29] combined densely connected CNN
and RNN to detect the floods using UAV images. In [30], the pre-disaster and post-disaster
Sentinel-1/2 and post-disaster VHR optical datasets are fused with the CNN to predict
the high-resolution flood mapping result. Then, large-scale Sentinel-1/2 flooding datasets,
such as Sen1Floods11, are presented to aid in the operationalization of deep learning
methods [31].

In this paper, we proposed a new coarse-to-fine framework for detecting floods at
a large scale. Firstly, the coarse results of the water body were generated by the binary
segmentation of GF-3 SAR, the water indexes of GF-1/6 multispectral, and Zhuhai-1
hyperspectral images. Secondly, the fine results were achieved by the deep neural networks
with noisy-label learning. The U-net with the T-revision [32] is adopted as the noisy
label learning method. This study is of particular importance because the performance of
deep learning techniques for flood detection is verified in multi-source Chinese datasets,
including multispectral (GF-1 and GF-6), hyperspectral (Zhuhai-1), and SAR (GF-3) images.
Another contribution of this paper is to use noisy label learning to improve the performance
of flood detection.

2. Study Area and Datasets
2.1. Study Area

The middle and lower reaches of the Yangtze River (shown in Figure 1) are located
to the north of the Nanling Mountains, south of the Huai River in the Qinling Mountains,
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east to the East China Sea and the Yellow Sea, and west to Wushan. The administrative
divisions include Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Zhejiang, and Shanghai, with
spans 108°22′ 123°10′E and 24°29′ 35°20′N. There are various types of landforms in the
region, including plains, such as the Yangtze River Delta Plain, as well as mountains
such as Dabie Mountain, Xuefeng Mountain, and Luoxiao Mountain. The mountains are
interspersed with vast hills and basins. The Yangtze, Huai, Xiang, Han and Gan rivers with
an average annual runoff of more than 50 billion cubic meters are distributed. The five
major lakes in China Poyang Lake, Dongting Lake, Taihu Lake, and Hongze Lake are also
located in the regions of The Yangtze, Huai, Xiang, Han and Gan rivers. From June to July
2020, extreme rainfall and climate events occurred in the middle and lower reaches of the
Yangtze River. Heavy rain warnings were issued for 41 consecutive days. The precipitation
in the basin reached 410.4 mm, an increase of 45.3% over the same period of the previous
year. Rivers and lakes continued to exceed the historical water level.

Figure 1. Study area and used datasets in this work.

2.2. Datasets

In this work, we mainly used the multispectral (GF-1 and GF-6), SAR (GF-3), and
Hyperspectral (Zhuhai-1) images as the data source of post-disaster. China High-resolution
Earth Observation System (CHEOS), which consists of seven optical/microwave satellites
(refer to GaoFen, GF), was approved by the Chinese government in 2010. The cameras
used in GF-1 include two 2 m Pan/8 m MS cameras and four 16 m MS medium-resolution
and wide-field cameras. GF-3 can obtain full-polarization, dual-polarization, and single-
polarization imagery with the imaging bandwidth 0f 5–650 km and a resolution of 1–500 m.
GF-6 is equipped with one 2 m panchromatic/8 m MS camera and one 16 m MS medium-
resolution and wide-view camera. GF series are competent for many applications such
as flood mapping. The Zhuhai-1 Hyperspectral satellite has been launched and managed
by Zhuhai Orbita Aerospace Science and Technology Co., Ltd., as a commercial remote
sensing microsatellite constellation. The Zhuhai-1 Hyperspectral datasets we used include
32 bands with a resolution of 10 m. The main parameters of GF-1/6, GF-3, and Zhuhai-
1 hyperspectral are given in Table 1. The used spectral bands of GF-1/6 and Zhuhai-1
hyperspectral are listed in Table 2.
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Table 1. The primary characteristics of the Remote-Sensing products employed in this study.

Satellite Date Mode Bands Lat/Lon Spatial Resolution (m)

GF-3 2020-7-9 Dual-Polarization HH, HV 118.2E/30.4N 5
GF-3 2020-7-9 Dual-Polarization HH, HV 118.5E/29.4N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 115.8E/25.2N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.0E/26.1N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.2E/27.0N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.4E/27.9N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.6E/28.8N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.8E/29.7N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 116.9E/30.6N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 117.1E/31.6N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 117.3E/32.5N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 117.5E/33.4N 5
GF-3 2020-7-11 Dual-Polarization HH, HV 117.7E/34.3N 5
GF-3 2020-7-13 Dual-Polarization HH, HV 116.6E/29.7N 5
GF-3 2020-7-13 Dual-Polarization HH, HV 116.9E/28.7N 5
GF-3 2020-7-13 Dual-Polarization HH, HV 115.9E/28.2N 5
GF-3 2020-7-13 Dual-Polarization HH, HV 116.2E/29.4N 5
GF-3 2020-7-13 Dual-Polarization HH, HV 116.4E/30.2N 5
GF-3 2020-7-25 Dual-Polarization HH, HV 117.5E/31.6N 5

GF-1 2020-2-18 Wide Field of View (WFV) 4 bands 116.0E/27.9N 16
GF-1 2020-2-18 Wide Field of View (WFV) 4 bands 116.4E/29.6N 16
GF-1 2020-6-16 Wide Field of View (WFV) 4 bands 116.5E/29.3N 16
GF-1 2020-4-16 Wide Field of View (WFV) 4 bands 116.5E/28.9N 16

GF-1D 2020-7-25 Panchromatic and multispectral (PMS) 4 bands 116.6E/28.5N 8
GF-1D 2020-7-25 Panchromatic and multispectral (PMS) 4 bands 116.7E/29.1N 8
GF-6 2020-7-25 Panchromatic and multispectral (PMS) 4 bands 117.7E/31.3N 8

Zhuhai-1 2020-3-15 Hyperspectral 32 bands 115.5E/28.8N 10
Zhuhai-1 2020-7-17 Hyperspectral 32 bands 115.5E/28.8N 10

Table 2. The spectral bands of GF-1, GF-1D, GF-6 and Zhuhai-1 hyperspectral used in this study.

Satellite Model Bands

GF-1 WFV/PMS B1: 450–520 nm, B2: 520–590 nm, B3: 630–690 nm, B4: 770–890 nm

GF-6 PMS B1: 450–520 nm, B2: 520–600 nm, B3: 630–690 nm, B4: 760–900 nm

Zhuhai-1 Hyperspectral 400–1000 nm (32 bands with spectral resolution of 2.5 nm)

3. Methods

Multiple source datasets, especially post-flood SAR images, are obtained when the
flood happens. If the pre-flood and post-flood images have different spectral and spatial
characteristics or from various sensors (e.g., GF-1 and GF-3), the traditional change detec-
tion may fail to produce accurate flood mapping. However, the coarse water extraction
or flood detection result can be easily obtained from different source images. We need to
consider an effective way to produce better performance flood detection results based on
the coarse results. In order to alleviate this problem, this paper proposes a coarse-to-fine
flood detection based on noisy label learning. The main content includes image preprocess-
ing, coarse flood extraction, fine flood extraction based on deep learning, and noisy-label
learning. The overall technical process is shown in Figure 2. In the image preprocessing
stage, for the optical datasets, radiation calibration and atmospheric correction are applied.
For both optical and SAR datasets, we apply the image filter to remove the speckle noise.

In the coarse flood extraction stage, we extract the water bodies from pre-flood and
post-flood datasets. For different sensors types, we use different methods. For instance, for
the GF-3 SAR images, we define the combinations of threshold to separate the water from
backscattering. For the optical images, such as GF-1/6 and Zhuhai-1 hyperspectral, we use
the different water indices to extract the water. Then, the coarse flood map is obtained from
the difference between the pre-flood and post-flood water results. In the stage of fine flood
extraction, we stacked the features from pre-flood and post-flood datasets and adopted
the coarse flood mapping results obtained from the previous stage as the training set. The
noisy-label learning technique is used to redefine and improve classification performance.
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Figure 2. The main flowchart of flood detection.

3.1. Image Preprocessing

We used the GF-1/6 L1A, GF-3 L2, and Zhuhai-1 hyperspectral L1B datasets in this
work. For the GF-1/6, we adopted radiation calibration and atmospheric correction, which
is based on 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) model, in
the PIE software for the preprocessing. For more details of PIE software, please refer
to the official website (https://www.piesat.cn/en/index.html) (accessed on 2 August
2021). GF-3 L2 and Zhuhai-1 hyperspectral L1B datasets are already preprocessed after
relative radiation correction and system-level geometric correction by the data provider.
Furthermore, a median filter (window size: 3 × 3) is used to reduce the noise of all images.

3.2. Coarse Flood Extraction

For GF-3 SAR, the cross-polarized band mainly reflects the volume scattering in-
formation, which is less sensitive to specular reflection. Due to the smooth surface and
homogeneity of the water body, the noise level in the cross-polarized image is low, and
the intra-class variance is slight. Compared with the same-polarization data, water and
non-water bodies’ overlapping area is smaller and more separable, which is more suitable
for extracting water. Therefore, this paper uses VH cross-polarization band to extract water
information of GF-3 SAR images. Due to the complexity of land covers, the interference of
a large number of mountainous shadows, and the relatively small proportion of large-scale
water bodies, it is not easy to obtain an effective water-land segmentation threshold through
the statistical analysis of the global backscattering coefficient histogram. In this case, we
selected the specific local areas, including Poyang lake and Caohu Lake. Then, the OSTU
algorithm obtains the optimal threshold to extract the water and land in the study area,
respectively. Concerning the backscattering differences between water bodies and land in
specific areas in GF-3 images, the VH polarized backscattering coefficient is used to define
the global threshold of water. Such method is already used for extracting the water from
Sentinel-1 datasets [20,33].

Given the misidentification of water bodies caused by the low backscattering in the
shadow area of the mountain, Shuttle Radar Topography Mission (SRTM) can be used to
extract slope information to mask the non-water body areas. Theoretically, continuous
stagnant water exists in areas with small slopes, while mountain shadows exist in large
ones. Taking into account the slope characteristics of the flood detention area and the slope
conditions of the shadow area formed by the GF-3 image incidence angle range [27.18◦,
39.10◦], the slope threshold in this paper is set to be 8◦. This threshold can effectively
mask the shadow area of the mountain caused by SAR side-view imaging and retain the
information of the flood detention area. Height above Nearest Drainage (HAND) [34] is a
terrain index based on the drainage network. A previous study showed the advantages
of using HAND maps for flood mapping to remove false positive surface water detection
which are located high above the nearest drainage line [35]. In terms of employing the
HAND model mask, the Yangtze River’s middle and lower reaches receive abundant
rainfall and dense water networks. The HAND threshold can be selected with an immense

https://www.piesat.cn/en/index.html
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value to reduce the leakage identification of flooded areas. Therefore, the HAND threshold
is determined to be a shadow area of a flat area where the vertical distance between the
mask and the nearest water is greater than 20 m.

For the GF-1/6, only RGB and NIR bands exist. The traditional method is to calculate
the normalized difference water index (NDWI) [36]. However, ensuring the accuracy
of water body information extraction is challenging due to shadows, dense vegetation,
and impervious surface areas. To solve the challenge, Xu [21] proposed modified NDWI
(MNDWI) based on green and SWIR bands. For challenging situations such as shade
and dense vegetation, Chen et al. [37] suggested a method for extracting information
about water bodies based on the tasseled cap transformation. Zhang and Crawford [38]
developed a method using RGB bands to extract visible floodwater. To understand a
feasible floodwater delineation technique, we measure the spectral features of both water
and land cover categories in Figure 3. On GF-1/6 datasets, it was discovered that visible
floodwater has a distinct spectral character (i.e., greater values of the green and blue
bands). To this end, we develop a novel information spectral water index (WI), based on
the differences between the values of RGB and NIR bands (B_g, B_r, B_b, B_nir):

WI = (Bg − Br) ∗ (Bb − Bnir) (1)

Figure 3. Spectral reflectance of Water, vegetation and impervious surface area in the study area of
Dongting lake.

For the hyperspectral datasets, Xie et al. [39] developed a new hyperspectral difference
water index to separate urban water bodies from the dark buildings and shadows using
airborne hyperspectral images. Figure 4 shows the reflectance curves of water, vegetation,
dark buildings, and bright buildings. The wavelength from band 1 to 32 is from 443 nm to
940 nm with the interval of 10 nm–20 nm. From band 17 to 32, the reflectance of water is
lower than those of dark buildings and vegetation. The spectral curves of water suggest
that the spectral shape and amplitude are suitable for classifying water for an entire image.
Thus, we adopted the NDWI suitable for hyperspectral bands (NDWI_HIS) to extract
the water:

NDWIHIS =
(
∫ 10

5 R(bi)d(bi)−
∫ 32

17 R(bi)d(bi))

(
∫ 10

5 R(bi)d(bi) +
∫ 32

17 R(bi)d(bi))
(2)

where bi means the index of band in the hyperspectral images. R(bi) means the DN value
of ith-band. Similar to the findings in [39], we manually set the threshold (0.2) to separate
the water. The parts with values lower than the threshold are treated as water.
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Figure 4. Spectral reflectance of Water, vegetation, dark and bright buildings of the HSI in the
study area.

3.3. Fine Flood Extraction

The water results produced by the approaches as mentioned above contain varying
degrees of noise, and the performance of flood between the difference of pre-disaster
and post-disaster water is susceptible to massive label noise. In order to improve the
performance, many methods [40] are proposed to solve the noisy-label setting. In this
work, we adopt the T-revision [32], which learns the accurate labels from noisy labels by a
transition matrix, to redefine the water results.

Let X ∈ Rd be the feature space and Y = 1, 2, . . . , C, where C is the number of classes.
(X, Y) and (X, Ŷ) denote the true and noisy labels. In order to learn the transition matrices
(T), the anchor points (i.e., the probability is equal to one or close to one of the true class)
in the clean data domain is defined. Given an x, if the probability P(Y = i|X = x) = 1,
for k 6== i, P(Y = k|X = x) = 0. Then, T can be obtained via estimating the noisy class
probabilities for anchor points:

Tij = P(Ŷ = j|X = x) =
C

∑
k=1

TkjP(Y = j|X = x) (3)

The main flowchart, which is shown in Figure 5, include the following steps:

1. input the noisy label datasets to the neural network to learn the probability P(Ŷ|X)
by minimizing the unweighted loss without a noise adaption layer.

2. initialize T (Equation (3)) by using the samples with the highest learned probabilities.
3. in order to further exploit the true transition matrix T, a slack variable4T is added to

the initialization T.
4. learn the neural network with T by minimizing the weighted loss.

The water extraction results of pre-flood and post-flood are redefined using the T-
revision, and the final flood is derived from the difference of redefined water results of
pre-flood and post-flood.

For the T-revision method, we followed the setting in [32], the SGD with momentum
0.9, weight decay 10−4 and an initial rate of 10−2 is used to estimate the translation matrix.
In the revision part, we use the same settings as the previous one. Then, the learning rate is
divided by ten after the 40th epoch and 80th epoch, and the total epoch is 100. Then, the
optimizer and learning rate is switched to Adam and 5× 10−7 to fine-tuning T and a slack
variable4T. The batch size is set to be 16, and only horizontal random flips are used for
the data argumentation. It should be emphasized that the number of bands used for GF-3
SAR, GF-1/6 multispectral, and Zhuhai-1 hyperspectral is 2, 4, and 32, respectively.
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Figure 5. The main flowchart of T-revision.

4. Experimental Results and Analysis
4.1. Coarse Water Extraction

Figure 6 has shown the GF-3 SAR VH band and statistics of DN values in Poyang Lake
and Chao Lake. This figure shows that the optimal threshold to separate water and non-
water derived from OSTU methods is 130 and 134, respectively. Regarding the DN values
difference between water bodies and land in GF-3 images, the optimal global threshold
of the VH band is 130. Then, the coarse water is extracted based on the combination of
optimal global threshold, slope, and HAND threshold.

Figure 6. The GF-3 SAR HV band and statistics of DN values in Poyang Lake and Chao Lake.

Figure 7 has shown the water indexes and their statistics of GF-1 multispectral and
Zhuhai hyperspectral datasets. This figure shows that using the optimal value of 0 is easy
to separate the water and non-water in GF-1 datasets. However, the optimal value of
hyperspectral is not straightforward to find. We manually set the threshold to −0.1.
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Figure 7. The statistics of WI values of GF-1 and Zhuhai-1 hyperspectral datasets.

Figures 8–10 have shown the coarse water results of GF-3 SAR, GF-1 multispectral and
Zhuhai-1 hyperspectral datasets using the above-mentioned methods. From the figures, the
method successfully extracts the main water body areas (with the overall accuracies over
80%). However, speckle noise and thin clouds fail to delete the majority of the erroneous
information in all circumstances. Some regions were categorized as water, possible dark
things, or asphalt when looking at building locations. Many of the incorrect parts were
classified as shadows on the mountains. In the following, we introduce deep learning with
noisy-label learning to remove such noise parts.

Figure 8. Coarse water extraction of GF-3 SAR.
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Figure 9. Coarse water extraction of GF-1 multispectral.

Figure 10. Coarse water extraction of Zhuhai-1 hyperspectral.

4.2. Fine Water Extraction and Accuracy Evaluation

For all the datasets, we cut the images into multiple patches with the size of 256× 256
and 32 × 32 for SAR/multispectral and hyperspectral, respectively. For the semantic
segmentation network, we use the U-net with the encoder of Efficient-B0 by considering the
performance and computational complexity (https://github.com/qubvel/segmentation_
models.pytorch (accessed on 1 October 2020)).

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
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Five hundred samples were selected from the study area with, respectively, low,
medium, and high water densities, to evaluate the accuracy of the water extraction results.
The overall accuracy (OA) and Kappa coefficients are used as the measures (seen the
results in Table 3). From this table, the fine results significantly improved the extraction
performance. Taking the GF-1 MSI image as an example, the OA and Kappa of the coarse
result are 82.45% and 78.67%. The fine result with Unet improved the two measures to
86.95% and 82.41%. With the support of the powerful capability of T-revision, the results
were finally achieved at 94.27% and 91.72%, respectively.

Table 3. OA and kappa (%) of fine water extraction results.

Methods GF-1 MSI GF-3 SAR Zhuhai-1 HSI

Coarse results 82.45 (78.67) 83.56 (81.54) 85.21 (81.79)
Fine results with Unet 86.95 (82.41) 91.37 (89.64) 89.18 (85.33)
Fine results with Unet and T-revision 94.27 (91.72) 95.74 (92.16) 93.24 (91.72)

Figures 11–13 show the fine water extraction results from the Unet with or without
T-revision. Unexpectedly, the categorization using Unet produced the best results in the
accuracy analysis and revealed no misleading information. Despite this, several minor
water objects and rivers were not detected as water. When we include the T-revision to
redefine the water, such rivers, small water objects, and the boundary of large water areas
are maintained.

Figure 11. Fine water extraction of GF-3 SAR datasets.

Figure 12. Fine water extraction of GF-1 multispectral.
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Figure 13. Fine water extraction of Zhuhai hyperspectral.

4.3. Flood Detection

In this section, we selected two pairs to show the flood mapping areas in the study
area. The first one (seen in Figure 14), which is mainly located at the Poyang lake, includes
the pre-flood with GF-1 (acquired on 2020-2-18) and the post-flood with GF-3 (acquired on
2020-7-11). The latter one (seen in Figure 15), which is located in the rural area of Jiangxi
province, is the pre-flood with hyperspectral (acquired at 2020-3-15) and the post-flood
hyperspectral (acquired at 2020-7-17) datasets.

As can be shown in Figure 14, the main change area is the boundary of Poyang Lake,
which is caused by the heavy rain during the summer season. The results in Figure 15
indicated that the flood area includes the boundary in the river, the farmland and causes the
collapse of the built-up areas. It should be noted that our proposed framework is suitable
for different source images to extract the water and flood in an effective way. In this case,
we can provide the rapid damage mapping in 2–3 h with multi source datasets when the
flood disaster happens. If time-series datasets are provided, our proposed framework can
also provide the trend of flood during the period of disaster, which may useful for the flood
warning. Furthermore, such framework can be easily extended to the other disasters.

Figure 14. Flood mapping based on the pre-flood GF-1 multispectral and post-flood GF-3 SAR
datasets.
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Figure 15. Flood mapping based on the pre- and post-flood Zhuhai-1 hyperspectral datasets.

5. Conclusions

In order to make an emergency response of flood mapping in a large area, this work
introduced the new flood mapping flowchart based on the multi-source Chinese satellite
datasets. The main conclusions and contributions are summarized as follows:

1. For different source images, we design different methods to extract the coarse water
bodies. For instance, we introduce an effective binarization segmentation (OSTU) for
SAR images. For multispectral and hyperspectral datasets, we define the different
water indexes to extract the water bodies.

2. To improve the results, we introduced the noisy label learning to remove the noise and
redefine the misclassified water bodies from the previous coarse methods. More specif-
ically, the T-revision method is adopted and slightly improves the extraction results.
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