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Abstract: Hyperspectral images (HSIs), acquired as a 3D data set, contain spectral and spatial
information that is important for ground–object recognition. A 3D convolutional neural network
(3DCNN) could therefore be more suitable than a 2D one for extracting multiscale neighborhood
information in the spectral and spatial domains simultaneously, if it is not restrained by mass
parameters and computation cost. In this paper, we propose a novel lightweight multilevel feature
fusion network (LMFN) that can achieve satisfactory HSI classification with fewer parameters and
a lower computational burden. The LMFN decouples spectral–spatial feature extraction into two
modules: point-wise 3D convolution to learn correlations between adjacent bands with no spatial
perception, and depth-wise convolution to obtain local texture features while the spectral receptive
field remains unchanged. Then, a target-guided fusion mechanism (TFM) is introduced to achieve
multilevel spectral–spatial feature fusion between the two modules. More specifically, multiscale
spectral features are endowed with spatial long-range dependency, which is quantified by central
target pixel-guided similarity measurement. Subsequently, the results obtained from shallow to deep
layers are added, respectively, to the spatial modules, in an orderly manner. The TFM block can
enhance adjacent spectral correction and focus on pixels that actively boost the target classification
accuracy, while performing multiscale feature fusion. Experimental results across three benchmark
HSI data sets indicate that our proposed LMFN has competitive advantages, in terms of both
classification accuracy and lightweight deep network architecture engineering. More importantly,
compared to state-of-the-art methods, the LMFN presents better robustness and generalization.

Keywords: hyperspectral image (HSI) classification; 3D convolution; lightweight network;
target-guided fusion; multilevel feature fusion

1. Introduction

Hyperspectral remote sensing integrates imaging and spectrum technology to acquire
rich information in both the spatial and spectral dimensions. In particular, the spectral data
are in great abundance, when compared with high-resolution and multispectral images [1].
The almost continuous spectral curve provides excellent conditions for accurate ground
object classification. Thus, hyperspectral images (HSIs) have attracted extensive attention
in many fields, such as agricultural crop growth, environmental monitoring [2,3], urban
planning, military target monitoring, and other fields [4–6]. However, some interference
factors, including equipment and transmission errors, light conditions, air components,
and their jointly presented interferences, cause spectral features to be trapped in a state
of high-dimensional non-linearity, increasing the difficulty of carrying out effective ob-
jects recognition.

Many shallow machine learning approaches, such as linear discriminant analysis
(LDA) [7], support vector machine [8], multinomial logistic regression [9], and dynamic or
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random subspace [10,11], have achieved great success in feature mapping and target recog-
nition, but their use of shallow hidden unit processing restricts their ability to represent
data sets with the complicated high-order non-linear distribution.

Deep neural networks, which benefit greatly from layer-wise feature learning (i.e.,
from shallow to deep), have exhibited excellent performance in the discovery of salient
higher-level contextual information buried in data, and have achieved great success in the
field of computer vision. The same is true for HSIs [12]. The stacked sparse autoencoder
(SSAE) [13–15] and deep belief networks (DBNs) [16] have been introduced for efficient
extraction. With the spatial consistency assumption, the neighboring pixels of each object
are often used as auxiliary information for feature learning. The point-wise fully connected
architecture, however, performs relatively poorly in terms of local spatial structure learning.

Convolutional neural networks (CNNs) utilize a local sliding filter in the spatial di-
mension and have shown a superior ability to learn shallow textures and, particularly, deep
semantic information. Thus, CNNs have attracted widespread attention in discriminative
spectral–spatial feature learning for HSIs. For example, Chen et al. [17] have used a one-
dimensional CNN (1D-CNN), a two-dimensional CNN (2D-CNN), and a three-dimensional
CNN (3D-CNN) for spectral, spatial, and spectral–spatial feature learning, respectively.
Their experimental results showed that the fusion of spatial and spectral features leads to a
better classification performance. Yang et al. [18] have proposed a deep CNN with a two-
branch architecture for spectral and spatial feature learning and fused the respective learned
features through fully connected layers. With the networks becoming deeper for high-order,
non-linear fitting, ResNet [19], DenseNet [20], LSTM [21], and other enhanced models have
been introduced to avoid overfitting and gradient disappearance during parameter training.
These features have also been integrated into the spectral–spatial feature learning of HSIs.
Hyungtae Lee [22] has introduced two residual blocks for deep feature learning and used
multi-scale filter banks in the initial layer to fully exploit the local contextual information.
Mercedes E. Paoletti [23] has proposed the use of deep pyramidal residual networks for
HSI classification, where pyramidal bottleneck residual units are constructed to allow for
faster and more accurate feature extraction. Considering the strong complementary and
correlated information among different hierarchical layers, multiscale fusion has been con-
firmed to be much more efficient for discriminative feature learning. Song et al. [24] have
proposed the use of a deep feature fusion network (DFFN), where a fusion mechanism and
some residual blocks are utilized to maximize feature interactions among multiple layers.
HSIs benefit greatly from hyper-resolution in the spectrum, with which 3D-CNN is more
suitable than 2D-CNN for simultaneous spatial and spectral feature learning. Hence, 3D
cubes from raw HSI were directly input to a 3D-CNN for feature learning [25]. Meanwhile,
various other modifications have emerged, such as the spectral–spatial residual network
(SSRN) [26] and the deep multilayer fusion dense network (MFDN) [27]. One major draw-
back of 3D-CNN is the exponential growth of its training parameters, which leads to a high
computational cost, storage burden, and a decline in the model’s generalizability. Thus,
3D filters with kernels of size 1× 1×M were first introduced into the SSRN [26], in order
to reduce the dimensionality of spectral features. Then, filtering is carried out with 3D
kernels of size K × K ×M for spectral–spatial feature learning. The MFDN [27] adopts
a similar spectral processing method, but it extracts spatial features using a 2D-CNN in
parallel; thereafter, dense connections are introduced to fuse the multi-layered features.
Moreover, lightweight 3D network architecture raised great concern in recent years [28–31].
Ghaderizadeh et al. proposed a hybrid 3D-2D convolution network [28] for spectral–spatial
information representation, where PCA and depth-wise 3D-CNN are used to reduce the
parameters and computational cost. Cui et al. proposed a LiteDepthwiseNet (LDN) [31]
architecture for HSI classification, which decomposed the standard 3D-CNN into depth-
wise and group 3D convolution as well as point-wise convolution. Depth-wise separable
3D-CNN can greatly reduce the parameters and computational cost, but the already heavy
communication cost can be doubled. Moreover, double branched feature extraction and
fusion made the problem worse.



Remote Sens. 2022, 14, 79 3 of 20

The aforementioned feature learning networks, extracting spectral–spatial features
either with a front–end framework or in parallel and then merging them together, al-
though showing a satisfactory level of performance, are limited in multiscale spectral–
spatial feature perception and interactions, otherwise suffer certain computation and
communication burden. A heavy network framework serves to dramatically delay its
promotion and application on mobile terminals. It has recently been demonstrated that
parameter reduction is not the only consideration for lightweight model development.
Communication costs and floating point operations (FLOPs) are also noteworthy, where
the former is related to the average reasoning time of a model [32] and the latter represents
its computational power consumption. In this paper, we propose a novel lightweight
multilevel feature fusion network (LMFN) for HSI Classification, which is designed to
achieve spectral–spatial feature learning with enhanced multiscale information interaction
while reducing the computational burden and parameter storage required. The LMFN
contains two main parts, as shown in Figure 1: A lightweight spectral–spatial 3D-CNN and
object-guided multilevel feature fusion. In the first part, a standard 3D-CNN is factorized
into successive 3D point-wise (3D-PW) and subsequent sequential 2D depth-wise (2D-DW)
convolutions. The former focuses on multiscale band correlation learning by layer-wise
perception (from shallow to deep), while the latter concentrates on spatial neighborhood
dependence mapping. In order to encourage multilevel feature fusion while reducing the
flow of interfering information in the neighborhood within the series-mode frame, a target-
guided fusion mechanism (TFM) is constructed between the separate feature extraction
modules, where the front multiscale spectral features are added to the high-level spatial
module along with object-based neighborhood dependency measurement. Additionally,
the TFM can make up for the loss of channel correction and encourage more reasonable
spatial resource allocation. Furthermore, in addition to the long-range skip-connection, we
introduce a residual connection in the spectral module to allow for smooth information cir-
culation from the shallow to deep layers, as well as a multi-scale filter bank at the end of the
spatial module to provide multi-level feature fusion. Our experimental results demonstrate
that the LMFN achieves satisfactory classification accuracy, particularly for HSI data sets
with more spectral bands but stronger noise interference. Additionally, indicator analyses
of Convolutional Input/Output (CIO) [32], FLOPs, and the number of parameters in the
experiment demonstrate that our proposed model has a reasonable execution time.

Conv,BNConv,BN Conv,BN Conv,BN

TFM

Conv GAP FC

1×1×M,1

Spectral Feature Extraction

Spatial Feature Extraction

Classifier

S×S×B,1

Sampling

H×W×B

Conv,BN

Multiscale Fusion

Conv,Gelu

Conv,Gelu

Conv,Gelu

Conv,BN Conv,BN Conv,BN
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Figure 1. Framework of the proposed LMFN for HSI classification. The upper line shows spectral
correlation learning and the lower line concentrates on spatial dependence mapping. TFM blocks are
the object-guided fusion mechanism used for spectral–spatial interactions.
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The rest of this paper is organized as follows: We demonstrate our motivation by
introducing the traditional 3D-CNN, then detail the proposed lightweight convolution
factorization and target-guided fusion mechanism in Section 2. Section 3 reports the
network configuration, experimental results, and corresponding discussions. Section 4
provides some conclusions.

2. Methodology

In this section, we first present the strengths and weaknesses of 3D-CNN in HSI feature
learning. Thereafter, the proposed LMFN is detailed in two parts: The lightweight network
architecture for multilevel feature learning and multiscale spectral–spatial interaction with
the target-guided fusion mechanism.

2.1. Outline of the 3D-CNN for HSI Feature Learning

According to the combination of imaging and spectral technology, hyperspectral data
are saved as a 3D digital cube, denoted as a tensor H ∈ RH×W×B, with spatial size H ×W
and spectral band number B (which is generally greater than one hundred). Its extremely
high resolution prompts the spectrum to be better for mining the physical properties of
ground objects, allowing for more accurate recognition. However, high-resolution image
acquisition systems tend to corrupt the data with lots of noise, leaving the HSI with
high-order non-linearity. Deep neural networks have excellent ability to approximate
complex functions, especially CNNs for image data tasks. The 2D-CNN, with outstanding
advantages in high-level spatial feature learning, has been widely used for natural image
recognition purposes. Spectral information has received less attention, in relation to the
2D-CNN. This is principally attributed to the use of digital color images with only red,
green, and blue channels, which provides a limited contribution to object recognition.
The high-resolution spectra present in HSIs have led to new proposals, as well as new
challenges, in ground object recognition.

In a standard 2D-CNN, as seen in Figure 2a, Cl convolution kernels F l
i,c ∈ RK×K

with a kernel size of K × K perform one-on-one Multiply–Add operations on Bl input
channels in Xl ∈ RHl×Wl×Bl in a sliding-window manner, from top left to bottom right
(⊗ indicates this operation), and with a default protocol where Cl is equal to the input
size Bl . The obtained Cl output slices are then accumulated to produce one feature map
Xl+1

i . The 2D-CNN focuses on spatial local perception and feature recombination, but pays
less attention to spectral local perception. This processing can easily result in spectral
information loss when compressing all of the convolutional results into one presentation
for the subsequent layer, and the global perception on the spectral domain ignores the
local dependence, which is relatively stronger than the spatial dependence used in HSIs.
In order to focus on spectral–spatial multiscale perception simultaneously and equally,
a 3D-CNN is a better choice. Different from the 2D-CNN, the 3D-CNN performs local
convolution in three directions (as seen in Figure 2b) with kernel G l

i,c ∈ RK×K×M, which
adds another dimension to F l

i,c and M < Bl . The difference in kernel size brings distinct
compositions to the input Xl and output Xl+1, where all channels are 3D tensors, but not
2D matrices. Figure 2b shows the case of a single channel (i.e., Cl = 1). From the different
operations, the 3D-CNN has significantly increased parameter counts and computational
cost, compared with the 2D-CNN; for example, it has M times more parameters when
set with the same input–output channels and ignoring the offsets. A similar situation
occurs for CIO and FLOPs, where 3D-CNN increases the communication cost by Bl times
when setting the padding process for all convolution operations. Its computational cost is
M× Bl+1 times that of the 2D-CNN.
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l+1th layer

K×K

One of the Cl+1 
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(a) 2D Convolution on multiple channels
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One 3D filter

Single channel

Hl

Wl

(b) 3D Convolution on single channel

Figure 2. Schematic illustration of 2D and 3D convolution.

Depth-wise separable convolution factorizes the traditional 2D-CNN into two parts:
depth-wise convolution (DW) and point-wise convolution (PW). This factorization dras-
tically reduces the number of parameters and computational burden of 2D-CNNs, while
maintaining almost the same feature learning effect [33]. Decoupling 3D-CNN in the same
way although could decrease training parameters and FLOPs, the already large CIO will
be doubled. For lightweight 3D spectral–spatial convolution, we separate the 3D-CNN
into successive 3D point-wise convolution (PW) and 2D depth-wise convolution (DW),
as seen in Figure 3. We aimed to discover multiscale local correlations among the spatial
and spectral spaces in the HSI simultaneously and learn discriminative features, while
having fewer possible parameters and less computation.

S×S×B,Ce Ce,1×1×M

S×S×B S×S×B

Ce=B,K×K

3D-PW Convolution DW Convolution

Figure 3. Schematic illustration of lightweight 3D spectral–spatial feature learning with two parts:
3D-PW and DW convolution.

2.2. Lightweight 3D Convolution for Spectral–Spatial Feature Learning

Due to the extremely limited number of HSIs for training deep segmentation models,
object recognition in HSIs is usually seen as a pixel-wise classification task. Thus, a 3D
patch Z = {z1, z2, . . . , zN} ∈ RS×S×B with a spatial size of S× S and N neighboring pixels
is split out as an input, in order to help in identifying the center pixel on the basis of the
neighborhood consistency assumption and auxiliary spatial information. For lightweight
multiscale perception from the spectral and spatial domains, we separate spectral–spatial
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feature extraction into two modules—spectral correlation learning (top line in Figure 1)
and spatial feature mapping (bottom line)—in an end-to-end manner.

In the spectral feature extraction module, 3D filters G l ∈ R1×1×M (1 < M < B) are
introduced to perform the convolution operation, where the depth M is less than the band
number B. This is called 3D-PW. Deep CNNs abstract and conceptualize object represen-
tation by combining features from shallow textures to deep semantic information, where
an important concept is the receptive field. To extract higher-order semantic information
from the spectrum, we use five 3D-PW layers for neighborhood relationship mining with a
gradual increase in the receptive field. All convolutions are set with the same kernel size
and slide with stride 1; except for the first layer, which has stride 2 for dimension reduction.
Figure 1 shows the receptive field size of each layer as M = 7 and K = 5, where Rl

e is the
size of the spectral dimension and Rl

a is the spatial receptive field. In the spectral module,
the value of Rl

a remains unchanged from 1, as none of the spatial neighborhood perception
is presented here. In consideration of the relatively simple local directional information
in the spectrum, and to achieve a more lightweight network, only one 3D kernel is used
in each 3D-PW layer, which means Cl = Cl+1 = 1(l = 1, 2, . . . , 5), and the output Xl has
the same size (S× S× dB/2e) when the paddings are set for all convolutions. Experiments
showed that including more 3D filters in each layer does not contribute to a greater classifi-
cation accuracy. To alleviate the “Distortion” in the original spectral information during
feature composition, and to prevent model degradation as the network deepens, we added
shortcut connections between layers to aggregate low-level features from the feed-forward
network to high-level layers, ensuring the deep layer has more (or, at least, no less) image
information than the shallow one. Additionally, batch normalization (BN) follows each
3D-PW convolution, in order to enhance the generalizability and convergence behavior of
the model. For further details about the settings, please see Figure 1.

In the spatial correlation learning module with lightweight architecture, we exclusively
focused on each feature map but left channel correlations to the preceding spectral module.
Thus, DW convolution was introduced to extract spatial features. Unlike the 2D-CNN,
which produces a new representation by grouping features from the previous layer, DW
applies a single convolutional kernelHl

i ∈ RK×K, i = 1, 2, . . . , Cl specifically to each input
channel Xl

i (as seen in Figure 3), and produces one corresponding feature representation
in the l + 1th layer. To ensure that the spatial module possesses a large spectral receptive
field for multiscale fusion, the spatial module is followed by the foregoing spectral module.
With the originally limited spatial neighborhood in the input patch, there are only three
DW layers for layer-wise perception and padding is set for all convolutions. In the spatial
module, the value of Rl

e remains unchanged as the last 3D-PW layer, as none of the channel
neighborhood perception is presented here, but the spatial receptive field is enlarged along
with the layer-wise DW convolution.

With this decomposition, our network backbone is much more lightweight. For com-
parison with the 3D-CNN on an equal basis, we carried out once-through spectral–spatial
convolution with one 3D-PW spectral module and one DW spatial module (as illustrated in
Figure 3), with the same filter size as detailed in Section 2.1. This combined block produced
the following number of parameters:

M + Cl × K2, (1)

where M represents the 3D-PW convolution and Cl × K2 represents the DW convolution.
The computational cost was

2× Hl+1 ×Wl+1 × (M× Bl+1 + Cl × K2) (2)

FLOPs, in total. Both indicators had lower values than the original depth-wise sep-
arable convolution, which can mainly be attributed to the use of only one 3D filter in
the 3D-PW for local spectral recombination. Our decoupled spectral–spatial convolution
achieved a much better effect than the standard 3D-CNN, even when we set the 3D-PW
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part with the same filter bank. More specifically, our proposed model produced about
1/K2 + 1/(M× Cl+1) the parameters and 1/K2 + 1/(M× Bl+1) the computational cost of
the 3D-CNN. Factorization of 3D-CNN into 3D-PW and DW caused our method to require
twice the communication cost for the CIO, compared with the standard 2D-CNN, but this
increase is acceptable, compared with the traditional 3D-CNN (Bl times that of 2D-CNN).

2.3. Target-Guided Fusion Mechanism

The separation of the spectral and spatial modules can easily lead to information
loss as the network deepens, especially when spatial filtering follows the spectral module.
Meanwhile, the large size of the spectral-spatial receptive field at the end of the network
framework causes the feature to be insensitive to local finer perception. Moreover, DW
convolution filters each input feature map independently, giving fast response and per-
formance, but it tends to break the correlations between channels. Direct addition of the
foregoing multiscale spectral features which with the smallest spatial receptive field, to the
depth-wise spatial module, can compensate for the problem mentioned above. However,
the intact spatial adjacent relationship may cause irrelevant information and especially the
noise flow into the deep layers. A target-guided fusion mechanism (TFM), therefore, is
proposed to enhance adjacent spectral correction and focus on pixels which actively boost
the target classification accuracy, while performing multiscale feature fusion. The primary
line is formulated as

X̃a = Ye + Xa, (3)

where Ye denotes the calculated target-based response from one feature bank Xe in the spec-
tral module, and Xa is a feature tensor from the spatial convolution module. The spectral
module contains features with incremental receptive fields in the spectral domain but with
unaltered neighborhood perception in the spatial domain, while the spatial module has the
reverse situation. Thus, we added Ye sequentially to the spatial module to achieve spectral–
spatial fusion. X̃a is the obtained multiscale feature from one set of spectral–spatial features.

As mentioned earlier, a block of neighborhood members around the center pixel xi
are split out to assist with target classification. These neighbors inevitably contain some
pixels unrelated to the center target, particularly for ground surface objects with limited
contributions to high-level outlines. This means that not all the neighborhood information
has a positive effect on network performance improvement. Hence, before feature fusion,
pairwise-dependent relationships are built between xe

i and its neighborhood xe
j in Xe from

the spectral layer, and the tensor Ye is produced to guide spatial convolution, paying close
attention to areas that should be of concern. This is formulated as:

ye
j = d

(
xe

i , xe
j

)
xe

j , j : xe
j ∈ N (xe

i ), (4)

where N
(
xe

i
)

is the set of N neighbors (N = S2) around xe
i , and Ye = [ye

1, ye
2, . . . , ye

N ] is
the output of TFM, with the same size as Xa, to be fused. The function d

(
xi, xj

)
measures

the correlation between xi and xj: the larger the value, the higher the correlation and,
thus, the greater the influence of the weight on the center point. We chose the Cosine
distance to measure the similarity. The target-guided fusion mechanism can be seen as a
2D convolution on Xe (as seen in Figure 4), and the kernel F 1 ∈ RB×1×1 is generated by
the feature at the input center; that is, F 1 = xi. Then, TFM can be formulated as:

X̃a = S(F 1 ⊗ Xe)� Xe + Xa, (5)

where⊗ and� indicate 2D convolution and scalar multiplication, respectively. The sigmoid
function S(·) is designed here with two main considerations: (1) It can compress the
obtained similarity value into [0, 1], in order to produce a controllable weighting coefficient;
(2) it will heighten the areas of attention by stretching the two extreme values (positive
or negative) to the saturated zone, thus preventing further noise passing through when
information flows from the previous layers.
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Figure 4. Schematic illustration of the object-guided spectral–spatial fusion mechanism (TFM).

We can conclude that one TFM block increases Hl × Wl × (Bl + 1) CIO and
3× Hl ×Wl × Bl FLOPs from the dependence measurement and point-wise multiplication,
and has about 1/(2× Cl) the communication cost and 3/(2× Cl × K2 × M × Cl+1) the
computational cost of the 3D-CNN, on the basis of the previous analysis.

The 3D-PW and DW convolution operations can be regarded as feature mapping in
spectral and spatial spaces independently, while the TFM is responsible for interaction and
circulation of the information, with clear division of the two. As little burden is produced,
in terms of parameters storage and computational cost, we present three TFMs on the end of
each identity residual block for long range skip-connection and multiscale spectral–spatial
fusion, as shown in Figure 1. After the 3D interactive feature learning, a multi-scale filter
bank (with kernel size of 1× 1, 3× 3, K × K) and GELU activation are introduced for
local multi-level convolution of the input feature, using 1× 1 filters to address channel
correlations. Finally, a global average pooling (GAP) and fully connected (FC) layer are
introduced for probability prediction of object classification.

3. Experiments and Discussion

In this section, we evaluate the LMFN against three public HSI benchmark data sets
through a parameter analysis and performance comparison with several recent state-of-the-
art approaches.

3.1. Data Description

The Indian Pines (IN) data set was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over the agricultural Indian Pine test site in northwestern
Indiana in 1992. The IN contains 200 spectral bands (after removing 20 noisy bands) with
wavelengths ranging from 0.2 to 2.4 µm and image size of 145 × 145 pixels with a spatial
resolution of 20 m/pixel. This data set has a greater number of spectral bands but more
noise disturbance in the experimental data. Sixteen different objects with 10,249 pixels in
total are labeled in this data set. Figure 5 shows its false-color images and the corresponding
ground-truth, respectively.

The University of Pavia (UP) data set was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor over the university campus in Pavia, Northern Italy
in 2001. The UP has 103 spectral bands (after removing 12 noisy bands), with wavelengths
ranging from 0.43 to 0.86 µm and image size of 610 × 340 pixels with a spatial resolution
of 1.3 m/pixel. This data set contains nine labeled classes with a total of 42,776 pixels,
and it has an abundant spatial structure. Figure 6 shows its false-color images and the
corresponding ground-truth, respectively.

The KSC data set was collected by AVIRIS in Florida in 1996. This data set contains
images with size of 512 × 614 pixels, with a spatial resolution of 18 m/pixel and 13 labeled
classes in the ground-truth. After removing the noisy bands, 176 spectral features were
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retained for ground object recognition in our experiments. Figure 7 shows the false-color
image and corresponding ground-truth for this data set.
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Corn-notill

Corn-mintill

Corn

Grass-pasture

Grass-trees

Grass-pasture-mowed

Hay-windrowed

Soybean-notill

Soybean-mintill

Soybean-clean

Wheat

Woods

Buildings-Grass-Trees-Drives

Stone-Steel-Towers

Oats

(a) (b)

Figure 5. (a) False-color image and (b) ground truth for the IN data set.

(a) (b)
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Meadows
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Trees

Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

Figure 6. (a) False-color image and (b) ground truth for the UP data set.
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Oak/Broadleaf
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Graminoid marsh
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Salt marsh
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Water

Spartina marsh

(a) (b)

Figure 7. (a) False-color image and (b) ground truth for the KSC data set.

3.2. Experimental Settings

During the course of implementing LMFN, we employed the cross-entropy loss
method for category prediction and stochastic gradient descent (SGD) to update the model
parameters. We used an initial learning rate of 0.01, a weight decay of 0.0001, and a momen-
tum of 0.9. In particular, when the loss updating ground to a halt, we reduced the learning
rate to one-half of its current state. Through experimental observations, we set all training
epochs to 100 and batch sizes to 32 for the IN, UP, and KSC data sets.

In relation to the experimental data sets with uneven scales, different proportions
of labeled samples in each HSI were allocated to the training and testing sets for model
optimization and performance evaluation. Specifically, we randomly selected 10%, 3%,
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and 5% of the labeled samples in the IN, UP, and KSC data sets for model training, re-
spectively, and the other 90%, 97%, and 95% of labeled samples were used for testing.
Before model training, the original HSI data were first standardized and mapped to [0, 1]
for dimensionless transformation in each spectral band. The overall accuracy (OA), av-
erage accuracy (AA), and kappa coefficient (Kappa) were used as quantifiable indicators
to validate the classification performance. All results are reported as the mean and stan-
dard deviation of ten runs, and we provide OA plots as a function of the parameters
to be analyzed. All experiments were performed on a machine equipped with an Intel
Xeon W-2133 CPU and an NVIDIA GeForce RTX 2080Ti graphics card. The experimental
software environments used were Python 3.8.3, PyTorch 1.7.0, and CUDA 11.0. Code is
available at: https://github.com/JXUST-HyperSpectralImage/LMFN.git ( accessed on 13
December 2021).

3.3. Parameter Analysis

In our proposed LMFN, the main parameters influencing model performance are the
input patch size for neighborhood information assistance, the kernel size in the 3D-PW
module for spectral feature extraction, and the number of TFM blocks for spectral–spatial
interactions. To better show the details of the proposed model, an example with specific
parameters is shown in Table 1, where the input data are a 3D cube of size (9× 9× 200, 1).

Table 1. Implementation details for an example of the LMFN.

Layer Name Kernel Size Group Stride Input Size Output Size

Input − − − − (200× 9× 9, 1)

Spectral Module

Conv3D,BN (7× 1× 1) 1 (2, 1, 1) (200× 9× 9, 1) (100× 9× 9, 1)
Conv3D,BN (7× 1× 1) 1 (1, 1, 1) (100× 9× 9, 1) (100× 9× 9, 1)
Conv3D,BN (7× 1× 1) 1 (1, 1, 1) (100× 9× 9, 1) (100× 9× 9, 1)
Conv3D,BN (7× 1× 1) 1 (1, 1, 1) (100× 9× 9, 1) (100× 9× 9, 1)
Conv3D,BN (7× 1× 1) 1 (1, 1, 1) (100× 9× 9, 1) (100× 9× 9, 1)

Spatial Module
Conv2D,BN,TFM (5× 5) 100 (1, 1) (9× 9, 100) (9× 9, 100)
Conv2D,BN,TFM (5× 5) 100 (1, 1) (9× 9, 100) (9× 9, 100)
Conv2D,BN,TFM (5× 5) 100 (1, 1) (9× 9, 100) (9× 9, 100)

Mutltiscale Module
Conv2D,GELU (5× 5) 100 (1, 1) (9× 9, 100) (9× 9, 100)
Conv2D,GELU (3× 3) 100 (1, 1) (9× 9, 100) (9× 9, 100)
Conv2D,GELU (1× 1) 100 (1, 1) (9× 9, 100) (9× 9, 100)

Global
Average
Pooling

− − − (9× 9, 100) (1× 1, 100)

Fully
Connected − − − (1× 100) (1× 16)

3.3.1. Influence of the Input Patch Size

As described in Section 2.2, a 3D patch Z ∈ RS×S×B centered with object pixels is split
out as the input of LMFN for spectral–spatial feature learning. Generally, with a larger input
patch size S, more spatial information is included to assist in classification; however, this
increases the computational burden. Additionally, we cannot ensure that all neighborhoods
with a wide range can play a positive role in promoting classification accuracy.

Before analyzing this parameter, we set the 3D-PW convolutional kernel size and TFM
block number to 1× 1× 7 and 3, respectively, for all HSI data sets. Table 2 shows the OA
results when the patch size was an odd number ranging from 5 to 13. We can see that the
classification accuracy of both IN and UP increased and then became stable when S was
larger than 9× 9. A different situation occurred for the KSC data set: the accuracy reached
a peak when S = 9, but began to decline after that. This may be attributed to the smaller
land area that the objects covered in the KSC, and neighborhoods in over-large patches
may have disturbed center object recognition. To balance the classification precision and

https://github.com/JXUST-HyperSpectralImage/LMFN.git
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computational cost, we set the patch size to S = 9. Thus, Z ∈ R9×9×B was the input of the
LMFN for all experimental data sets.

Table 2. Classification performance of all three data sets with the input patch size of the LMFN
ranging from 5× 5 to 13× 13, in terms of OA (%). The best results are highlighted in bold font.

Patch Size IN UP KSC

5× 5 93.66± 1.20 95.60± 0.49 96.45± 0.64
7× 7 95.35± 0.67 96.81± 0.34 97.02± 0.55
9× 9 96.25± 0.47 97.31± 0.29 97.65± 0.42

11× 11 96.95± 0.65 97.41± 0.21 95.85± 0.47
13× 13 96.73± 0.43 97.35± 0.38 96.23± 0.58

3.3.2. Influence of the Kernel Size in the 3D-PW

In our LMFN, for HSI classification, we focused more on spectral feature learning.
Thus, 3D-PW convolutions were proposed for filtering purely in the spectral dimension,
and the 3D filter was defined as G l ∈ R1×1×M in Section 2.2. The parameter setting of M
may affect the model’s performance in terms of feature learning, especially when the HSI
data sets were obtained using different sensors, leading to diverse spectral resolutions.

We evaluated the influence of the kernel size when M ranged from 5 to 13 with the
patch size set to S = 9 and the TFM block number set to 3 for all the data sets. Table 3
shows the OA results as a function of the kernel size 1× 1× M. We observed that the
performance of the proposed LMFN gradually improved as the value of M increased for
IN, while the OA results appear to be relatively stable for the UP and KSC data sets. This
may indicate that our model—especially the TFM, as a self-supervised block in multiscale
feature learning—is robust against the convolutional kernel size, which is desirable in
deep learning-based methods. To balance between classification accuracy and parameter
number, we set the kernel size in the 3D-PW convolution to 1× 1× 7 for all experiments,
producing a filter bank that contains very few parameters for training.

Table 3. Results for all three experimental data sets, in terms of OA(%), as a function of kernel size in
3D point-wise convolution. The best results are highlighted in bold font.

Kernel Size IN UP KSC

1× 1× 5 95.79± 0.68 97.16± 0.24 96.51± 0.54
1× 1× 7 96.47± 0.46 97.14± 0.39 96.50± 0.46
1× 1× 9 96.65± 0.18 97.06± 0.29 96.57± 0.60
1× 1× 11 96.74± 0.33 97.45± 0.19 96.54± 0.58
1× 1× 13 96.84± 0.44 97.53± 0.24 96.62± 0.67

3.3.3. Influence of the TFM Block Number

The TFM is an important component of our proposed LMFN. It is a block for center
target-focused supervised learning and spectral–spatial interaction. Thus, the more TFM
blocks introduced to LMFN, the better the feature learning performance. The experimental
results reported in Table 4 further indicate this as the TFM number gradually increased
from the deep to shallow layers: “0” indicates that the TFM was not introduced into the
backbone lightweight network, while “3” indicates that three TFM blocks were added (see
Figure 1). Both of the other parameters were set as before.

The results show that the classification accuracy had a comparatively large improve-
ment when the TFM block started from scratch, and the results tended to be stable (as
the number was greater than 1); except for the KSC, which showed a slightly larger en-
hancement. This demonstrates that features from the deep layer are more important for the
recognition of ground-objects trapped in a highly non-linear distribution, and multi-scale
fusion gives the network better performance. The introduction of the TFM block only
increases the number of training parameters and computational cost by small amounts;
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thus, we added three TFMs on the end of all the identity residual blocks for spectral–
spatial interaction.

To confirm the effectiveness of TFM in feature fusion, we further compared it with
a fusion mechanism which adds Xe directly to Xa without object guidance (NoT-FM for
short). From the OA results of classification as in Table 4, we can find that TFM performs
uniformly better than NoT-FM, whether with one connection in the deep layer or three
numbers of multiscale fusion from deep to shallow layers. Furthermore, more notably,
NoT-FM made the results even worse than no spectral–spatial fusion between the two
modules in the IN data set. That is probably because the noise was enlarged and flowed
from the shallow to the deep layers and thus it disrupted the contextual perception in the
spatial module. Our proposed TFM can avoid this problem by target guidance. We added
these experimental results and analyses in our new manuscript.

Table 4. Classification performance of the three data sets, considering the TFM number in the
backbone lightweight framework ranging from 0 to 3 and comparison with a fusion mechanism of
NoT-FM in terms of the OA (%). The best results are highlighted in bold font.

TFM Number 0 1 2 3

IN 95.64± 0.86 96.34± 0.65 96.38± 0.69 96.50± 0.54
UP 94.19± 1.40 97.09± 0.50 97.14± 0.38 97.54± 0.25

KSC 92.92± 2.49 95.75± 0.89 96.44± 0.42 97.65± 0.40

NoT-FM
Number 0 1 2 3

IN 95.64± 0.86 94.66± 0.90 94.86± 0.93 95.86± 0.80
UP 94.19± 1.40 96.51± 0.41 96.82± 0.46 96.95± 0.27

KSC 92.92± 2.49 94.53± 2.82 94.99± 1.31 95.24± 0.81

3.4. Comparison with State-of-the-Art Methods

We compared our proposed LMFN with some state-of-the-art methods for a valid-
ity analysis. In consideration of the 3D convolution, spectral–spatial fusion, residual
connection, and multiscale fusion strategies adopted in our deep model, we employed
CDCNN [22], 3DCNN [34], SSRN [26], DFFN [24], and MFDN [27] for comparison, which
contain these components to varying degrees, while SVM was used as the baseline. More
specifically, the CDCNN uses multiscale 2D filters in the initial layer, followed by two
residual blocks for spectral feature learning. The 3DCNN can process spectral and spatial
information simultaneously with a lower computational cost. The SSRN first extracts
spectral features by 3D convolution, followed by 2D convolution for spatial feature learn-
ing. Additionally, residual connections are introduced in both parts. The MFDN extracts
spectral and spatial information in a similar manner to the SSRN, except that PCA di-
mensional reduction is introduced before spatial learning, and both parts have a parallel
framework. Finally, the learned spectral and spatial features are concatenated together for
feature fusion using a 3D dense convolution block. DFFN is an exclusive 2D-CNN network
with residual learning that performs feature extraction on the spatial dimension after PCA
processing, and multiple level features from each residual block are summed and fused
together for HSI classification. In addition, in consideration of the light and self-attention
processing in our model, recent publications that studied the attention mechanism and
parameter reduction were also considered for comparison here. More precisely, we took
into account the following methods: CBW [35], FGSSCA [36], LDN [31], S2FEF-CNN [29],
and S3EResBoF [30]. The CBW is a novel plug-and-play compact band weighting (CBW)
module—a lightweight module with only 20 parameters—which can evaluate spectral
band weighting by adjacent correlations and recalibrate HSIs for further feature learning.
The FGSSCA integrates a spectral attention module and a spatial attention module by
pooling information squeeze operations, in order to provide the same level of information
recalibration. Then, the generated HSIs are grouped to learn spatial–spectral features sepa-
rately. The LDN is a two-branch, lightweight deep network that decomposes a standard 3D
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convolution into a 3D group convolution and point-wise convolution to reduce the number
of parameters. The S2FEF-CNN is a lightweight network where each S2FEF block uses 1D
convolution to extract spectral features and 2D convolution to extract spatial features, re-
spectively, and then fuses the obtained features by multiplication. The S3EResBoF does not
lightweight the deep model from convolution operations but replaces the general pooling
method with bag of features [30] to reduce the parameters in the fully connected layer.

In the experimental implementation, the SVM parameters obtained through five-fold
cross-validation, and parameters in all other comparison methods were set as given in the
corresponding references. All comparative deep-learning-based methods set individual
network parameters for different data sets; thus, we determined parameter settings through
experiments and referred to the existing data for the experimental data sets that were not
shared. For our LMFN, as previously analyzed, we set the same parameters for all data
sets, where Z ∈ R9×9×B was the input, the kernel size in 3D-PW convolution was 1× 1× 7,
and three TFM blocks were added to the deep model. For fair comparison, we used the same
number of randomly selected samples for the optimization of all models, as described in
Section 3.2. All experimental results were averaged after repeating each method ten times.

3.4.1. Comparison of Parameter Numbers and Computation Efficiency

The main purpose of this paper was to design a lightweight network. Thus, we first
summarized the parameter storage, computational cost, and communication cost of each
method, as presented in Table 5, where FLOPs are reported for the computational cost,
CIO values represent the communication cost, and the training time and testing time
are reported in terms of the overall running consumption. All models were counted in
the state of optimal accuracy and were trained with samples at the same scale. It can
be seen that LMFN required the least number of parameters, and saved almost 98% in
storage compared with the most heavy model, MFDN, within each group in the table;
a similar situation was observed for FLOPs. LMFN was not the best in terms of CIO
and, thus, was slightly more computationally time-consuming, but it was acceptable
when compared with the least time-consuming method, especially when compared with
the MFDN, which is competitive in terms of classification accuracy. One of the most
competitive methods is the CBW, which presented an excellent performance for most
of the indicators, except for having relatively more FLOPs. Nonetheless, the CBW was
found to be relatively sensitive to data properties and unfavorable in terms of its general
applicability, for which we will provide further explanation later. The three lightweight
models, LDN [31], S2FEF-CNN [29], and S3EResBoF [30], although all contain a competitive
number of parameters, need a large amount of the CIO and FLOPs, especially FLOPs of
LDN is hundreds more than ours. Methods other than the CBW either achieved a relatively
worse classification performance or gained a superior classification accuracy by sacrificing
storage, computation, or communication. It is worth noting that our LMFN has a similar
backbone to SSRN, but the lightweight processing and object-guided fusion mechanism
provide the LMFN greater advantages, in terms of both storage and computing burden,
with a more outstanding classification accuracy. As a whole, although our proposed LMFN
did not perform the best for all indicators, it was comparable and reasonable, in terms of
lightweight execution.
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Table 5. Comparison of running time, parameter number, FLOPs, and CIO of different deep models
on three datasets. OAs are provided here for comprehensive performance evaluation. The best results
are highlighted in bold font.

Model CDCNN 3DCNN SSRN DFFN MFDN CBW FG-
SSCA LDN S2FEF S3EResBoF LMFN

IN

Training Time (m) 7.05 0.43 13.98 2.10 82.03 0.30 42.50 214.08 6.32 10.96 2.27
Test Time (s) 11 1 5 3 12 1 43 527 9 3 12

Parameters (M) 1.05 0.05 0.34 0.38 3.96 2.76 0.03 0.05 0.03 0.25 0.01
FLOPs (M) 25.35 4.41 95.00 234.67 214.02 11.41 84.76 384.68 15.05 233.14 1.42

CIO (M) 0.31 0.51 6.21 5.20 6.38 0.56 13.19 134.20 22.60 6.06 0.56
OA (%) 81.06 84.81 94.88 84.85 94.99 96.95 97.72 96.64 94.03 97.42 96.50

UP

Training Time (m) 6.83 0.52 13.25 0.75 27.80 0.28 41.93 102.05 4.60 14.37 2.40
Test Time (s) 73 3 34 33 88 6 193 2724 31 22 17

Parameters (M) 0.61 0.04 0.19 0.47 3.31 2.76 0.02 0.03 0.01 0.22 0.01
FLOPs (M) 14.47 2.27 48.61 250.44 148.03 10.65 42.41 195.32 4.83 108.55 0.74

CIO (M) 0.29 0.19 3.36 5.20 4.04 0.38 7.00 68.05 7.26 2.58 0.29
OA (%) 90.59 93.43 93.65 97.30 99.46 99.27 97.48 97.19 93.78 97.23 97.54

KSC

Training Time (m) 3.52 0.10 3.67 0.28 21.72 0.18 10.72 38.82 1.87 3.30 0.52
Test Time (s) 160 5 64 46 171 12 489 6871 123 55 30

Parameters (M) 0.94 0.04 0.20 0.38 3.80 2.76 0.03 0.04 0.02 0.22 0.01
FLOPs (M) 22.65 3.87 40.57 234.85 197.55 11.22 74.17 337.34 13.24 108.55 1.25

CIO (M) 0.31 0.45 3.74 5.31 5.80 0.51 12.21 117.66 19.89 2.58 0.49
OA (%) 84.44 89.07 93.12 95.79 99.21 95.38 94.17 98.21 89.70 98.57 97.15

3.4.2. Classification Results

Classification results for the three data sets are reported in Tables 6–8. It can be ob-
served that the MFDN performed better than the other comparative methods for the UP and
KSC data sets, while the FGSSCA performed best on the IN data set. Our proposed LMFN
was behind the best results by 1.22%, 1.92%, and 2.06%, respectively, in the OA results for
the three data sets. The LMFN performed more consistently than the CDCNN, 3DCNN,
SSRN, and the purely 2D convolution network DFFN. What is even more remarkable is
that the 3DCNN achieved better classification accuracy than DFFN for the IN, but showed
worse results on both the UP and KSC data sets. This is because the 3DCNN can focus
and balance on both the spectral and spatial features, while the DFFN places emphasis
on spatial filtering. Consequently, the 3DCNN, with fewer layers, performs better when
the experimental data contain richer spectral information, but performs worse than the
DFFN when the spatial structure facilitates better ground object identification. However,
our method was compatible with both of these extremes. The network architecture of
SSRN was similar to ours when no TFM block was added to the backbone; thus, it obtained
pretty much the same results as the LMFN with no TFM in Table 4, but it required more
parameters and had a greater computational burden. This further confirms the effectiveness
of our proposed TFM block and lightweight LMFN.

Furthermore, our model was inferior to the MFDN on the UP and KSC data sets. This
was because the MFDN also puts more emphasis on spectral information, where 3D dense
convolutions with a kernel size of 1× 1× 7 are introduced for spectral feature learning.
Despite achieving the best results, this success, in terms of accuracy, called for many more
parameters and a greater computational burden, as mentioned earlier. Significantly, the IN
data set has more spectral bands but a worse spatial resolution, with strong noise and
disturbances. At this point, our proposed TFM block performed better, in terms of noise
suppression and spectral–spatial fusion. Compared with the attention mechanism network,
the CBW performed better than our method on HSIs that contain objects with a wide
spectrum difference, such as IN and UP, but performed worse when the ground objects
had similar spectral information, such as the KSC, having an extensive marsh. Our LMFN
behaved better, in this respect, which indicates that first-hand spectral learning with the
3D-PW could reduce information corruption, compared with the CBW, which extracts band
correlations after spatial squeezing. The same situation presented for the FGSSCA further
illustrates this point. In comparison with the lightweight model, the LDN and S3EResBoF
perform slightly better than our model on IN and KSC datasets. This demonstrates that a
deep network with a more complicated structure will be stronger in fitting high-order non-
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linear distribution. S2FEF-CNN requires a large number of training samples to optimize the
parameters. Thus, it underperforms in classification accuracy in the small sample condition.

Table 6. Performance comparison with state-of-the-art methods, in terms of classification accuracy,
for the IN data set. The best results are highlighted in bold font.

Class SVM CDCNN 3DCNN SSRN DFFN MFDN CBW FGSSCA LDN S2FEF S3EResBoF LMFN

1 57.58 46.82 63.70 99.26 76.68 98.34 96.19 98.00 95.06 91.71 92.08 94.47
2 71.20 74.66 79.59 94.34 85.67 96.83 97.13 98.08 96.89 96.43 98.52 96.89
3 66.41 65.91 73.56 90.19 72.36 95.85 96.64 98.51 95.99 90.86 92.57 95.89
4 56.06 72.55 67.36 89.55 71.24 86.77 97.66 98.43 98.39 78.05 97.53 95.57
5 89.01 90.48 93.04 98.36 74.17 96.06 98.60 98.36 97.97 93.28 94.41 97.38
6 92.53 95.59 97.43 99.29 90.11 94.52 96.97 98.48 95.94 97.10 98.91 99.35
7 78.56 75.23 83.22 93.28 50.85 100.00 98.29 96.22 98.72 78.63 88.08 93.64
8 96.48 95.98 96.99 99.97 95.59 99.92 99.71 99.84 99.50 99.78 99.68 99.87
9 52.05 10.40 65.50 99.44 17.39 95.59 51.65 92.23 50.67 71.27 61.42 89.17

10 70.74 76.62 80.71 92.42 78.29 94.76 96.05 96.51 96.04 92.56 96.92 95.46
11 77.70 80.82 84.26 94.50 94.78 98.40 98.23 98.10 98.19 95.50 98.91 97.19
12 72.34 68.28 74.09 90.08 80.69 94.44 94.08 97.06 94.44 85.00 92.62 94.09
13 97.38 96.16 98.71 98.88 85.90 95.74 99.44 99.89 99.46 98.22 99.45 99.57
14 92.96 92.76 94.47 98.22 91.33 93.73 97.75 97.33 97.42 96.95 99.67 96.50
15 64.79 70.52 76.93 92.98 31.57 51.15 87.29 91.03 84.78 88.25 95.95 86.71
16 89.40 84.66 91.39 93.87 71.22 98.99 95.66 98.04 95.25 96.03 95.42 95.22

OA(%) 78.96 81.06 84.81 94.88 84.85 94.99 96.95 97.72 96.65 94.03 97.42 96.50
AA(%) 76.58 74.84 82.56 95.29 71.43 93.19 93.83 97.26 93.42 90.60 93.89 95.45

Kappa(%) 75.88 78.32 82.61 94.15 82.66 94.27 96.53 97.40 96.18 93.16 97.05 96.00

Table 7. Performance comparison with state-of-the-art methods, in terms of classification accuracy,
for the UP data set. The best results are highlighted in bold font.

Class SVM CDCNN 3DCNN SSRN DFFN MFDN CBW FGSSCA LDN S2FEF S3EResBoF LMFN

1 85.98 91.40 95.51 94.35 96.67 99.58 99.49 98.27 97.70 94.91 99.32 97.88
2 91.45 95.45 96.28 96.13 99.41 99.94 99.86 98.75 99.05 96.76 97.93 98.83
3 63.39 75.90 84.51 87.38 92.86 98.81 96.53 94.50 96.57 89.62 96.94 93.95
4 87.71 94.76 96.97 97.03 92.80 98.20 98.73 96.53 91.63 89.31 92.28 98.22
5 99.03 99.74 99.76 99.74 93.76 99.07 99.87 99.05 92.27 97.39 97.67 99.54
6 74.61 82.16 86.73 88.77 98.37 99.87 99.54 98.61 99.86 88.19 99.79 98.38
7 59.09 85.06 92.56 96.11 96.49 99.29 99.78 97.11 98.56 91.64 99.51 97.36
8 75.19 79.70 86.29 86.72 97.71 98.43 97.05 94.55 98.53 89.76 96.75 93.88
9 99.86 98.75 99.04 97.02 81.65 97.49 99.57 96.28 75.24 92.28 90.50 98.26

OA(%) 85.32 90.59 93.42 93.65 97.30 99.46 99.27 97.48 97.19 93.78 97.23 97.54
AA(%) 82.48 89.21 93.07 93.70 94.41 98.96 98.94 97.07 94.38 92.21 96.74 97.37

Kappa(%) 80.49 87.45 91.27 91.55 96.42 99.29 99.03 96.68 96.28 91.74 96.39 96.75

Table 8. Performance comparison with state-of-the-art methods, in terms of classification accuracy,
for the KSC data set.The best results are highlighted in bold font.

Class SVM CDCNN 3DCNN SSRN DFFN MFDN CBW FGSSCA LDN S2FEF S3EResBoF LMFN

1 89.48 92.74 95.25 96.50 97.93 99.51 99.61 98.57 97.50 94.92 99.93 99.55
2 79.24 80.15 87.47 86.15 92.76 99.12 92.65 92.35 97.47 75.81 99.08 96.76
3 78.52 52.86 61.75 82.30 87.22 97.60 83.36 88.15 97.79 77.32 97.38 94.32
4 57.59 51.28 52.60 74.27 83.46 94.78 74.53 71.58 92.24 63.09 87.51 79.67
5 54.58 56.04 57.72 59.59 89.44 95.33 65.48 48.54 84.49 72.67 80.14 70.05
6 50.07 53.75 68.42 72.14 90.73 97.86 86.71 78.62 95.79 77.31 99.49 97.24
7 69.30 56.68 76.16 66.92 93.39 98.72 84.49 80.14 99.24 79.76 99.42 91.12
8 83.88 85.59 92.23 95.81 87.71 99.68 99.04 98.33 97.78 87.31 100.00 99.38
9 90.50 91.95 96.85 97.62 97.66 99.94 99.61 99.94 100.00 95.38 99.96 99.95

10 92.34 89.63 95.43 99.29 99.90 99.86 99.90 99.72 100.00 92.04 100.00 99.87
11 95.05 98.32 98.27 98.66 99.94 100.00 99.82 99.33 100.00 94.80 100.00 99.85
12 84.54 81.49 92.36 97.58 99.87 99.99 99.23 98.33 100.00 90.93 99.94 99.55
13 98.62 99.99 99.85 99.99 100.00 100.00 100.00 100.00 100.00 99.78 100.00 99.90

OA(%) 85.48 84.44 89.07 93.12 95.79 99.21 95.38 94.17 98.21 89.70 98.57 97.15
AA(%) 78.75 76.19 82.64 86.68 93.85 98.55 91.11 88.74 97.10 84.70 97.14 94.40

Kappa(%) 83.82 82.69 87.84 92.33 95.31 99.12 94.85 93.51 98.01 88.52 98.41 96.83

Figures 8–10 show the corresponding visualization results for IN, UP, and KSC, respec-
tively. As can be seen, our LMFN behaved better on the boundary, and was even superior to
MFDN in some cases—for example, in the regions of “Self-Blocking Bricks” and “Bitumen”
in the UP data. This may be ascribed to the input of the 2D spatial convolution module
in MFDN, which has a larger patch size of 27× 27, even though modules for spectral
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learning and feature fusion have made great advances. A similar, but worse, situation was
presented for DFFN and LDN for all data sets; especially LDN, which was overly coarse
even when an input patch size of 25× 25 was used. This may be due to the absence of a skip
connection for information flow from shallow to deep layers in the LDN. In contrast, SSRN,
CBW, FGSSCA, S2FEF, S3EResBoF, and our LMFN showed finer classification boundaries,
which benefited from either multiscale information flow or from self-attention-based su-
pervised learning. Furthermore, the SVM and CDCNN produced more noisy points in the
classification maps. This is principally because SVM only uses spectral features for HSI
classification, while the CDCNN mainly includes a 1× 1 convolution operation and does
not pay adequate attention to spatial correlations. This demonstrated that it is not feasible
to rely on spatial or spectral information alone for HSI classification, and both deserve
significant attention.

3.4.3. Effectiveness with Limited Samples

We further validated the effectiveness of our proposed LMFN under the condition of
limited training samples. Figure 11 exhibits all OA plots from the three experimental data
sets, where the proportion of training samples ranged uniformly from 1% to 15%. It can be
seen that, when more samples were used in model training, a greater classification accuracy
was achieved for all methods. On average, the LMFN was second, in terms of overall
accuracy, with the first position being given to MFDN or CBW. The LMFN performed a
little worse, but gave comparable results to the CBW with the exception being when 1% of
the training set was employed for model optimization on the IN. The cause of this problem
may be that there was only one sample from four classes in the IN for model training at
that level. Once these random samples are burdened with noise interference, feature fusion
by the TFM block may prevent the right decision from being made. It is gratifying that this
can be corrected rapidly by using slightly more training samples.

From the results on the UP data set, it can be observed that the LMFN placed third,
in terms of overall accuracy. Additionally, our method fell behind the 2D spatial convolution
network DFFN when the training samples were employed in a proportion of greater than
10%. This further demonstrates that our method gives slightly unfavorable results when
the experimental data contain more spatial information but relatively fewer spectral bands.
The depth-wise lightweight processing, indeed, prevents the recombination of spatial
information between channels in each layer, which allows it to be lightweight, but has a
certain expense in terms of classification accuracy. When compared with the lightweight
methods, the LMFN performed close to the S3EResBoF on the UP and KSC data sets
and was better than LDN and S2FEF on the IN and UP data sets, in terms of accuracy.
Although the MFDN had the best classification performance on the KSC if we overlook its
computational burden, it is noteworthy that our LMFN was competitive with CBW and
FGSSCA, two feature squeeze-based self-attention methods, especially under the conditions
of having limited training samples. In short, our proposed LMFN was stable and adaptable
to all data sets, and its classification performance was comparable, although it was not
the best.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 8. Classification maps for the IN data set obtained by (a) SVM, (b) CDCNN, (c) 3DCNN,
(d) SSRN, (e) DFFN, (f) MFDN, (g) CBW, (h) FGSSCA, (i) LDN, (j) S2FEF, (k) S3EResBoF, (l) LMFN,
and (m) Ground truth.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 9. Classification maps for the UP data set obtained by (a) SVM, (b) CDCNN, (c) 3DCNN,
(d) SSRN, (e) DFFN, (f) MFDN, (g) CBW, (h) FGSSCA, (i) LDN, (j) S2FEF, (k) S3EResBoF, (l) LMFN,
and (m) Ground truth.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

Figure 10. Classification maps for the KSC data set obtained by: (a) SVM, (b) CDCNN, (c) 3DCNN,
(d) SSRN, (e) DFFN, (f) MFDN, (g) CBW, (h) FGSSCA, (i) LDN, (j) S2FEF, (k) S3EResBoF, (l) LMFN,
and (m) Ground truth.

(a) (b) (c)

Figure 11. OA results of all the compared methods with varying proportions of training samples
(from 1 to 15%) on the (a) IN, (b) UP, and (c) KSC data sets.

4. Conclusions

In this paper, we introduced a lightweight deep learning framework with a target-
guided fusion mechanism for HSI classification. The proposed LMFN decouples the
standard 3D convolution into successive 3D-PW convolution and 2D-DW convolution for
specific spectral and spatial feature learning, respectively. Meanwhile, the target-guided
fusion mechanism was proposed as a bridge for spectral–spatial interaction among the two
separate modules. This center-pixel-guided method, while in multiscale feature fusion,
enhanced adjacent spectral correction and spatial attention. Experimental results across
three public HSI benchmark data sets demonstrated that the LMFN has a competitive ad-
vantage, in terms of both classification accuracy and lightweight deep network architecture
engineering, with a certain level of robustness and adaptability. This performance evalu-
ation indicated that the spectral and spatial information in HSIs both deserve significant
attention when carrying out ground–object recognition.
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In the future, we will focus on discovering a lightweight but adaptive dynamic convo-
lution network with more robust attention mechanism that is suited to HSI feature learning
and classification.
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