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Abstract: Cloud recognition is a basic task in ground meteorological observation. It is of great sig-
nificance to accurately identify cloud types from long-time-series satellite cloud images for improv-
ing the reliability and accuracy of weather forecasting. However, different from ground-based cloud 
images with a small observation range and easy operation, satellite cloud images have a wider cloud 
coverage area and contain more surface features. Hence, it is difficult to effectively extract the struc-
tural shape, area size, contour shape, hue, shadow and texture of clouds through traditional deep 
learning methods. In order to analyze the regional cloud type characteristics effectively, we con-
struct a China region meteorological satellite cloud image dataset named CRMSCD, which consists 
of nine cloud types and the clear sky (cloudless). In this paper, we propose a novel neural network 
model, UATNet, which can realize the pixel-level classification of meteorological satellite cloud im-
ages. Our model efficiently integrates the spatial and multi-channel information of clouds. Specifi-
cally, several transformer blocks with modified self-attention computation (swin transformer blocks) 
and patch merging operations are used to build a hierarchical transformer, and spatial displacement 
is introduced to construct long-distance cross-window connections. In addition, we introduce a 
Channel Cross fusion with Transformer (CCT) to guide the multi-scale channel fusion, and design 
an Attention-based Squeeze and Excitation (ASE) to effectively connect the fused multi-scale chan-
nel information to the decoder features. The experimental results demonstrate that the proposed 
model achieved 82.33% PA, 67.79% MPA, 54.51% MIoU and 70.96% FWIoU on CRMSCD. Com-
pared with the existing models, our method produces more precise segmentation performance, 
which demonstrates its superiority on meteorological satellite cloud recognition tasks. 

Keywords: cloud recognition; semantic segmentation; transformer; meteorological satellite cloud 
image; attention mechanism 
 

1. Introduction 
According to the global cloud cover data provided by the International Satellite 

Cloud Climatology Project (ISCCP), more than 66% area above the earth is covered by a 
large number of clouds [1]. Cloud, an important member of the climate system, is the most 
common, extremely active and changeable weather phenomenon. It directly affects the 
radiation and water cycle of the earth-atmosphere system, and plays an important role in 
the global energy budget and water resources distribution [2,3]. Therefore, cloud obser-
vation is a significant content in meteorological work. It is fundamental for weather fore-
casting and climate research to correctly identifying such elements as cloud shape, cloud 
amount and cloud height, as well as the distribution and change of clouds, which also 
plays a key role in navigation and positioning, flight support and national economic de-
velopment [4]. There are four main types of cloud observation: ground-based artificial 
observation, ground-based instrument observation, aircraft or balloon observation and 
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meteorological satellite observation. It is noted that the cloud classification standards of 
ground-based observation and meteorological satellite observation are different. For 
ground observation, the cloud type is determined according to the cloud base height and 
cloud shape. For satellite observation, cloud classification is usually based on the spectral 
characteristics, texture characteristics and spatio-temporal gradient of the cloud top. 
Ground-based artificial observation mainly relies on meteorologists, easily restricted by 
factors such as insufficient observation experience. Ground-based instrument observation 
also has the disadvantages of large nighttime errors and a limited observation area. Air-
craft or balloon observation is too time-consuming and costly to apply to daily operations. 
Meteorological satellites are widely used for large-scale and continuous-time observations 
of clouds and the earth’s surface. With the continuous development of satellite remote 
sensing technology and imaging technology, the quality, spatial resolution and timeliness 
of cloud images has greatly improved. The new generation of geostationary satellites, 
such as the Himawari-8 and Himawari-9 satellites [5] in Japan, the GEOS-R satellite [6] in 
the United States, and the FY-4A satellite [7] in China, can meet higher observation re-
quirements. Since satellite cloud images cover a wide area and contain more surface fea-
tures, they are more suitable for describing the cloud information and changes in a large 
range. Cloud recognition based on satellite cloud images has become an important appli-
cation and research hotspot in the remote sensing field. 

In our work, we focus on the overall cloud type distribution in China. Zhuo et al. 
built a ground-based cloud dataset of Beijing, China, which was collected from August 
2010 to May 2011 and annotated by meteorologists from the China Meteorological Ad-
ministration. It contains eight cloud types and the clear sky [8]. Zhang et al. used three 
ground-based cloud datasets, captured in Wuxi, Jiangsu Province and Yangjiang, Guang-
dong Province, China. The datasets were labeled by experts from the Meteorological Ob-
servation Center of China Meteorological Administration, Chinese Academy of Meteoro-
logical Sciences and the Institute of Atmospheric Physics, Chinese Academy of Sciences. 
They all contain six cloud types and the clear sky [9]. Fang et al. used the standard ground-
based cloud dataset provided by Huayunshengda (Beijing) meteorological technology 
limited liability company, which was labeled as 10 cloud types and the clear sky [10]. Liu 
et al. used the multi-modal ground-based cloud dataset (MGCD), the first one composed 
of ground-based cloud images and multi-modal information. MGCD was annotated by 
meteorological experts and ground-based cloud-related researchers as six cloud types and 
the clear sky [11]. Liu et al. selected the FY-2 satellite cloud image dataset. FY-2 is the first 
operational geostationary meteorological satellite of China. The experimental dataset was 
collected from June to August 2007 and annotated by meteorological experts with richly 
educated and trained experience as six cloud types, ocean and land [12]. Bai et al. used 
Gao Fen-1 and Gao Fen-2 satellite cloud image datasets for cloud detection tasks. Gaofen 
is a series of Chinese high-resolution Earth imaging satellite for the state-sponsored pro-
gram, China High-resolution Earth Observation System (CHEOS). The images and the 
manual cloud mask were acquired from the National Disaster Reduction Center of China. 
The majority of the images contain both cloud and non-cloud regions. Cloud regions in-
clude small-, medium-, and large-sized clouds. The backgrounds are common underlying 
surface environments including mountains, buildings, roads, agriculture, and rivers [13]. 
Cai et al. used the FY-2 satellite cloud image dataset, which was labeled as four cloud 
types and the clear sky, but it is only suitable for image-level classification, not pixel-level 
classification [14]. 

The coverage of the ground-based cloud image is relatively small, and it is impossible 
to show the overall cloud distribution of China in a single image. The existing China re-
gion satellite cloud image datasets have the limitations of fewer cloud types and a lack of 
pixel-level classification. Therefore, we construct a 4km resolution meteorological satellite 
cloud image dataset covering the entire China region and propose a novel deep learning 
method to accurately identify the cloud type distribution in China, so that researchers can 
analyze the temporal and spatial distribution characteristics of cloud amount, cloud water 
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path and cloud optical thickness in China from the perspective of different regions and 
different clouds. 

Cloud recognition methods mainly include threshold-based methods, traditional ma-
chine learning methods, and deep learning methods. Threshold-based methods [15–17] 
determine appropriate thresholds for different sensors through specific channels of the 
image (reflectivity, brightness temperature, etc.) to identify cloud regions in a fast calcu-
lation speed. However, they ignore the structure and texture of the cloud, for which is 
difficult to determine an appropriate threshold for the situation with many cloud types. 
In contrast, machine learning methods [18–25] are more robust. They first classify regions 
with the same or similar pixels into one class, and then analyze the spectral, spatial and 
texture information of the image with pixel-based or object-oriented methods. The texture 
measurement, location information, brightness temperature, reflectance and NDVI index 
are fed into SVM, KNN and Adaboost algorithms as features to realize automatic cloud 
classification. However, the traditional machine learning methods also have great limita-
tions. Most features are extracted manually, and the accuracy is comparatively low when 
processing high-resolution images, which makes it difficult to distinguish clouds from 
highly similar objects. 

Many studies show that deep learning methods can adaptively learn the deep fea-
tures of clouds and have higher detection accuracy than traditional machine learning 
methods [26–31]. Liu et al. introduced a neural network for satellite cloud detection tasks, 
and conducted experiments on the FY-2C satellite cloud image dataset. Its nadir spatial 
resolution is 1.25 km for visible channels, and 5 km for infrared channels. Their model 
improved the results greatly not only in pixel-level accuracy but also in cloud patch-level 
classification by more accurately identifying cloud types such as cumulonimbus, cirrus 
and clouds at high latitudes [12]. Cai et al. also constructed a convolution neural network 
for satellite cloud classification on the FY-2C satellite images, which could automatically 
learn features and obtain better classification results than those of traditional machine 
learning methods [14]. Liu et al. presented a novel joint fusion convolutional neural net-
work (JFCNN) to integrate the multimodal information, which learns the heterogeneous 
features (visual features and multimodal features) from the cloud data for cloud classifi-
cation with robustness to environmental factors [32]. Zhang et al. proposed transfer deep 
local binary patterns (TDLBP) and weighted metric learning (WML). The former can han-
dle view shift well, and the latter solves the problem of an uneven number of different 
cloud types [9]. Zhang et al. developed a new convolutional neural network model, 
CloudNet, to perform cloud recognition tasks in a self-built dataset Cirrus Cumulus Stra-
tus Nimbus, which can accurately identify 11 cloud types, including one cloud generated 
by human activities [33]. Lu et al. proposed two segnet-based architectures, P_Segnet and 
NP_Segnet, for the cloud recognition of remote sensing images, and adopted parallel 
structures in the architectures to improve the accuracy of cloud recognition [34]. Fang et 
al. trained five network models by fine-tuning network parameters and freezing weights 
of different network layers based on the cloud image dataset provided by standard 
weather stations after data enhancement, and used five network migration configurations 
on the enhanced dataset. Experiments showed that the fine-tuned densenet model 
achieved good results [10]. Liu et al. proposed a novel method named multi-evidence and 
multi-modal fusion network (MMFN) for cloud recognition, which can learn extended 
cloud information by fusing heterogeneous features in a unified framework [11]. Zhang 
et al. presented LCCNet, a lightweight convolutional neural network model, which has 
the lower parameter amount and operation complexity, stronger characterization ability 
and higher classification accuracy than the existing network models [35]. According to the 
analysis above, the existing research results still have the following two deficiencies: 1. 
Most cloud recognition methods are designed on ground-based cloud images, which can 
only be used to study local cloud distribution and changes without universality; 2. Cur-
rent cloud recognition methods based on deep learning cannot fully capture the context 
information in images, and their feature extraction ability must be improved. 
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Context information is the key factor for improving image segmentation perfor-
mance, and the receptive field roughly determines how much information can be utilized 
by the network. Existing deep learning cloud recognition methods are mostly imple-
mented based on a convolutional neural network (CNN). However, relevant studies [36] 
show that the actual receptive field of CNN is much smaller than its theoretical receptive 
field. Therefore, the limited receptive field seriously restricts the representation ability of 
the model. To solve this problem, Transformer [37] is introduced into semantic segmen-
tation tasks. Its characteristic is that it not only keeps the spatial resolution of input and 
output unchanged, but also effectively captures the global context information. Axial-
DeepLab [38] is the first independent attention model with large or global receptive fields, 
which can make good use of location information without increasing the computational 
cost and serve as the backbone network for semantic segmentation tasks. However, Axial-
DeepLab uses a specially designed axial attention, which has poor scalability to standard 
computing equipment. By comparison, SETR [39] is easier to use with standard self-atten-
tion. It adopts a structure similar to Vision Transformer (VIT) [40] for feature extraction 
and combines with a decoder to restore resolution, achieving good results on segmenta-
tion tasks. Given the balance between computation cost and performance, we build a hi-
erarchical transformer in encoder and divide the input image into windows, so that self-
attention can be calculated in sub-windows to ensure a linear relationship between com-
putational complexity and the size of the input image. We conduct attention operations 
along the channel axis between the encoder and decoder, so that the decoder can better 
integrate the features of the encoder and reduce the semantic gap. 

In summary, the research on deep learning satellite cloud recognition methods is of 
great significance and application value for improving the accuracy of weather forecast, 
the effectiveness of climate model prediction and the understanding of global climate 
change. We construct a China region meteorological satellite cloud image dataset (CRM-
SCD) based on the L1 data product of FY-4A satellite and the cloud classification results 
of Himawari-8 satellite. CRMSCD contains nine cloud types and the clear sky (cloudless) 
and conforms to the world Meteorological Organization standard. In this paper, we pro-
pose a cloud recognition network model based on the U-shaped architecture, in which the 
transformer is introduced to build the encoder and encoder–decoder connection, and the 
attention mechanism is designed to integrate the features of both the encoder and decoder. 
Consequently, we name it as U-shape Attention-based Transformer Net (UATNet). UAT-
Net has more powerful extracting capabilities of spectrum and spatial information fea-
tures and stronger adaptabilities to the changing characteristics of clouds. In addition, we 
propose two models of different sizes to fit varying requirements. 

To summarize, we make the following major contributions in this work: 
(1) We propose the UATNet model and introduce a transformer into meteorological sat-

ellite cloud recognition task, which solves the problem of CNN receptive field limi-
tation and captures global context information effectively while ensuring the compu-
ting efficiency. 

(2) We use two transformer structures in UATNet to perform attention operations along 
the patch axis and channel axis, respectively, which can effectively integrate the spa-
tial information and multi-channel information of clouds, extract more targeted 
cloud features, and then obtain pixel-level cloud classification results. 

(3) We construct a China region meteorological satellite cloud image dataset named 
CRMSCD and carry out experiments on it. Experimental results demonstrate that the 
proposed model achieved a significant performance improvement compared with 
the existing state-of-the-art methods. 

(4) We discover that replacing batch normalization with switchable normalization in the 
convolution layers of a fully convolutional network and using encoder–decoder con-
nection in the transformer model can significantly improve the effect of cloud recog-
nition. 
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2. Materials and Methods 
2.1. Data Introduction 

In this paper, we use the images taken by the FY-4A meteorological satellite as the 
data source, and the cloud classification product of the Himawari-8 satellite as the label 
type, and construct the meteorological satellite cloud image dataset over China region 
through cropping and data enhancement. In the cloud classification product, there are 9 
types of clouds: cirrus (Ci), cirrostratus (Cs), deep convection (Dc), altocumulus (Ac), al-
tostratus (As), nimbostratus (Ns), cumulus (Cu), stratocumulus (Sc) and stratus (St). In 
addition, it also includes the clear sky, the mixed value and the invalid value. 

FY-4 satellite is the second generation of China’s geostationary meteorological satel-
lite series used in quantitative remote sensing meteorology, with greatly enhanced capa-
bilities for high-impact weather event monitoring, warning, and forecasting. Following 
on from the first generation, it offers several advances over the FY-2 [41]: detection effi-
ciency, spectral band, spatial resolution, time resolution, radiation calibration and sensi-
tivity [42]. It is equipped with multi-channel scanning imaging radiometer, interferomet-
ric atmospheric vertical sounder, lightning imager and space environment monitoring in-
struments. The scanning imaging radiometer mainly undertakes the task of obtaining 
cloud images. AGRI, a key optical sensor on FY-4A, has 14 spectral bands (increased from 
five bands on FY-2) and has significantly improved capabilities for cloud, convective sys-
tem, land surface, environmental observations, and even data assimilation [43]. FY-4 not 
only observes clouds, water vapor, vegetation, and the land surface, just as the FY-2 can, 
but also has the ability to capture aerosols and snow. It can also clearly distinguish be-
tween different cloud forms and high/middle water vapor. Different from the limitation 
of the single visible light channel of FY-2, FY-4 generates color satellite cloud images for 
the first time, ideally generating regional observation images in one minute. In dataset 
construction, we select 4KML1 data of the China region taken by the imager of FY-4A 
satellite L1 data product. The band, spatial resolution, sensitivity, and usage of different 
channels are presented in Table 1, where ρ  = reflectivity, S/N = signal to noise, NEΔT = 
noise equivalent differential. 

Table 1. FY-4A AGRI specifications. 

Channel 
FY-4A AGRI 

Main Application 
Band (μm) Spatial Resolution (km) Sensitivity 

Visible light and near 
infrared 

0.45~0.49 1.0 S/N ≥ 90( ρ  = 100%) Aerosol, visibility 
0.55~0.75 0.5~1.0 S/N ≥ 200( ρ  = 100%) Vegetation, fog, cloud 
0.75~0.90 1.0  S/N ≥ 5 ( ρ  = 1%) @0.5K Vegetation, aerosol 

Shortwave infrared 
1.36~1.39 2.0 

S/N ≥ 200( ρ = 100%) 
Cirrus 

1.58~1.64 2.0 Cloud, snow 
2.1~2.35 2.0~4.0 Cirrus, aerosol 

Midwave infrared 3.5~4.0 (high) 2.0 NEΔT ≤ 0.7 K (300 K) Cloud, fire 
3.5~4.0 (low) 4.0 NEΔT ≤ 0.2 K (300 K) Land surface 

Water vapor 5.8~6.7 4.0 NEΔT ≤ 0.3 K (260 K) Upper-level water vapor 
6.9~7.3 4.0 NEΔT ≤ 0.3 K (260 K) Mid-level water vapor 

Longwave infrared 

8.0~9.0 4.0 NEΔT ≤ 0.2 K (300 K) Water vapor, cloud 

10.3~11.3 4.0 NEΔT ≤ 0.2 K (300 K) Cloud, surface tempera-
ture 

11.5~12.5 4.0 NEΔT ≤ 0.2 K (300 K) Cloud, water vapor, sur-
face temperature 

13.2~13.8 4.0 NEΔT ≤ 0.2 K (300 K) Cloud, water vapor 
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Himawari-8 is a new generation of Japanese geostationary meteorological satellites 
that carry state-of-the-art optical sensors with significantly higher radiometric, spectral, 
and spatial resolution than those previously available in geostationary orbit. It captures a 
full-disk image every 10 min, and the observation range is from 60°S to 60°N and from 
80°E to 160°W. As listed in Table 2, the satellite has 16 observation spectral bands, includ-
ing 3 visible light bands, 3 near-infrared bands and 10 infrared bands. The Himawari-8 
cloud classification product we selected is based on meteorological properties, and is gen-
erated by threshold judgment of the fundamental cloud product and the advanced 
Himawari imager data. The fundamental cloud product contains cloud mask (including 
surface condition data), cloud type and cloud top height. The advanced Himawari imager 
data refers to the brightness temperature of bands 08, 10 and 13 [44]. 

Table 2. Himawari-8 specifications. 

Channel 
Himawari-8 

Main Application 
Band(μm) Spatial Resolution (km) 

Visible light  
0.43~0.48 1.0 Vegetation, aerosol 
0.50~0.52 1.0 Vegetation, aerosol 
0.63~0.66 0.5 Low clouds, fog 

Near infrared 
0.85~0.87 1.0 Vegetation, aerosol, cirrus 
1.60~1.62 2.0 Cloud phase 
2.25~2.27 2.0 Particle size 

Shortwave infrared 3.74~3.96 2.0 Low clouds, fog, fire, land 

Water vapor 
6.06~6.43 2.0 Upper-level water vapor 
6.89~7.01 2.0 Mid-level water vapor 
7.26~7.43 2.0 Low-level water vapor 

Infrared 

8.44~8.76 2.0 Cloud phase, SO2 
9.54~9.72 2.0 O3 

10.3~10.6 2.0 Cloud, cloud top infor-
mation 

11.1~11.3 2.0 
Cloud, sea-surface tempera-

ture 

12.2~12.5 2.0 Cloud, sea-surface tempera-
ture 

13.2~13.4 2.0 CO2, cloud top height 

In order to enrich the cloud types of the dataset, we observe the image data products 
of the FY-4A satellite, and then adjust the study area based on the territory of China. The 
study area ranges in longitude from 80°E to 139.95°E and in latitude from 5°N to 54°N. 
The location of the study area is illustrated in Figure 1. 
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Figure 1. Location of the study area. 

2.2. Data Processing 
Based on FY-4A satellite data and Himawari-8 observation data, we carried out de-

tailed preprocessing work. First, we screened FY-4A satellite data on a time scale based 
on solar illumination, and simultaneously performed projection transformation and geo-
metric correction on a spatial scale. Then, the processed data were aligned with Himawari-
8 observation data. Finally, the final dataset CRMSCD was obtained by cropping the 
China region and converting the file format. The detailed data processing flow is shown 
in Figure 2. 

 
Figure 2. Data processing flow. 

2.2.1. Time Alignment 
FY-4A satellite L1 data products are based on Coordinated Universal Time (UTC). 

According to the mapping between UTC and Beijing time, 03:30 and 04:30 in UTC corre-
spond to 11:30 and 12:30 in Beijing time. During this period, the sun was fully illuminated, 
and the images could not be blocked by shadows, which was convenient for subsequent 
experimental research. Hence, we selected FY-4A images taken at 03:30 and 04:30. The 
sampling interval of FY-4A satellite was about 14 times per hour; the sampling interval 
of Himawari-8 satellite was 6 times per hour. Therefore, we selected the Himawari-8 sat-
ellite cloud classification results of the most recent earth observation time relative to the 
FY-4A image for time alignment. The data alignment method is illustrated in Table 3. 
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Table 3. Data alignment. 

Geostationary Orbit Satellite FY-4A Himawari-8 

Data Product Name 
FY4A-_AGRI--_N_REGC_1047E_L1-_FDI-

_MULT_NOM_20200710033000_20200710033417_4000M
_V0001.HDF 

NC_H08_20200710_0330_L2C
LP010_FLDK.02401_02401.nc 

Time alignment 20200710033000_20200710033417 20200710_0330 

2.2.2. Projection Transformation 
In spatial scale, we performed projection transformation on FY-4A data, and read FY-

4A AGRI first-level data (HDF image), according to the specified latitude and longitude 
range and spatial resolution. Related indicators are presented in Table 4. 

Table 4. FY-4A-related indicators of National Satellite Meteorological Center. 

ea  (km) eb  (km) h  (km) λD   /LOFF COFF   /LFAC CFAC   

6378.1 6356.8 42164 2 (104.7)deg rad
0500 M 10,991.5 0500 M 81,865,099 
1000 M 5495.5 1000 M 40,932,549 
2000 M 2747.5 2000 M 20,466,274 
4000 M 1373.5 4000 M 10,233,137 

In the table, ea  is the semi-major axis of the earth; eb  is the short axis of the earth; 
h  is the distance from the earth’s center to the satellite’s barycenter; Dλ  is the longi-
tude of the satellite’s suborbital point; /LOFF COFF  is the line/column offset; 

/LFAC CFAC  is the line/column scaling factor; 2 (104.7)deg rad  indicates the ra-
dian corresponding to the angle of 104.7°; ‘0500 M’, ‘1000 M’, ‘2000 M’, and ‘4000 M’ indi-
cate the file resolution. 

According to the specified range of latitude and longitude, we convert geographic 
longitude and latitude into geocentric longitude and latitude. Moreover, the geocentric 
coordinate system is converted to a plane rectangular coordinate system, then x , y are 
converted into line and column . The formula is as follows: 

16[ ] 2 [ ]line LOFF resolution y LFAC resolution−= + ⋅  (1)

16[ ] 2 [ ]column COFF resolution x CFAC resolution−= + ⋅  (2)

where resolution is specified as 4000M. 

2.2.3. Dataset Construction 
Table 1 lists the 14 channels of FY-4A AGRI and their corresponding main applica-

tions. According to the main applications, the 9 channels, corresponding to visible light 
and near infrared, short-wave infrared, medium-wave infrared and long-wave infrared, 
play a crucial role in cloud recognition tasks. Therefore, we selected the data of 14 chan-
nels to make the standard dataset. 

In a specific operation, according to the file channel number corresponding to 4000 
M resolution and the line and column number of the full-disc data in the China region, 
we performed data extraction and geometric calibration. The geometric calibration values 
included digital quantization number (dn), reflectance, radiation brightness and bright-
ness temperature. The channel number and the number of line and column corresponding 
to each resolution are listed in Table 5. 
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Table 5. The channel number and the number of line and column. 

Resolution Ratio Channel Number 
The Line and Column Number of the 

Full-Disc Data 
0500 M Channel02 21,984 

1000 M 
Channel01, Channel02, 

Channel03 10,992 

2000 M Channel01–Channel07 5496 
4000 M Channel01–Channel14 2748 

We referred to the official lookup table and coefficients to calculate the values of the 
different channels. According to the both of these, Channel01-Channel06 indicate the re-
flectivity. Channel07-Channel14 indicate the brightness temperature according to the 
lookup table, and radiation according to the coefficient. We made a geometric calibration 
for numerical indices, and converted the Hierarchical Data Format (HDF) file of FY-4A 
and the Network Common Data Format (NetCDF) file of Himawari-8 into Tag Image File 
Format (TIFF) files. The calibrated resolution of FY-4A’s 3D scanner was 0.05°. According 
to the designated learning area and the calibrated resolution, we cropped the generated 
TIFF file to obtain the standard experimental dataset CRMSCD as the China region mete-
orological satellite cloud image dataset. 

CRMSCD contains FY-4A daily images and corresponding Himawari-8 labels at 3:30 
and 4:30 from 1 January 2020 to 31 July 2020. We select the data at 4:30 on 10 July 2020 to 
present the visualization results of our dataset. The meteorological satellite cloud image 
and the corresponding label are shown in Figure 3. 

  
(a) (b) 

Figure 3. CRMSCD visualization results: (a) FY-4A images at 4:30 on July 10, 2020; (b) Himawari-8 
labels at 4:30 on July 10, 2020. The color corresponding to the label value is located in the lower right 
corner of (b). 

We take the data from 11 July to 31 July as the test set, and the remaining sample data 
are shuffled and randomly divided into the training set and verification set according to 
the ratio of 7 to 3. The final dataset contains 426 images of 1200 × 981 pixels. 

2.3. UATNet 
Deep learning cloud recognition methods are mostly improved based on the CNN 

architecture. The actual receptive field of CNN is much smaller than its theoretical recep-
tive field, which seriously restricts the representation ability of the model. Therefore, we 
propose an end-to-end deep learning network UATNet to learn the mapping from image 
patch sequences to corresponding semantic labels. The specific structure of UATNet is 
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shown in Figure 4. Two different transformer structures, a hierarchical transformer com-
puted with shifted windows (swin transformer) [45] and channel transformer, are intro-
duced into the encoder and encoder–decoder connection of the U-shaped architecture, 
which conduct attention operations along the patch axis and the channel axis to effectively 
integrate spatial information and multi-channel information of clouds. Different from 
CNN, the transformer can obtain the global receptive field without stacking. In this sec-
tion, we describe the two transformer structures in detail. 

 
Figure 4. The architecture of UATNet. CCT and ASE are Channel-wise Cross fusion Transformer 
and Attention-based Squeeze and Excitation, respectively. 

2.3.1. Encoder Architecture 
UATNet encoder extracts high-level semantic features and transforms low-dimen-

sional features into abstract high-dimensional feature vectors. E1~E5 in Figure 4 illustrate 
the specific framework of UATNet encoder. In our encoder architecture, there are four 
stages, which are denoted as stage1~stage4 according to the increase in network depth. 
Each stage contains two parts: patch merging and an even number of consecutive swin 
transformer blocks, in which swin transformer blocks are several transformer blocks with 
modified self-attention computation applied on the patch tokens. 

The size of the input image is 14 × H × W. We change the channel dimension of the 
input image to C dimension (C is set to 64 in implementation) by 3 × 3 convolution, and 
then input it into stage1. In stage1, the images are divided with the size of C × H × W into 
a set of non-overlapping image patches through patch partition, where the size of each 
image patch is 2 × 2, the characteristic dimension of each image patch is 14 × 2 × 2 = 56, 

and the number of image patches is 
2 2
H W× . Then, we stretch the grid containing 

2 2
H W×  patches into a sequence and call a trainable linear projection function to further 

map each vectorized patch to a potential 2C-dimensional embedding space to obtain the 
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one-dimensional image patch tokens of the image and input them into an even number of 
consecutive transformer blocks. The operation of stage2~stage4 is roughly the same as 
stage1. In stage2~stage4, patch merging is used instead of patch partition to merge the 
input according to 2 × 2 adjacent patches, and the dimensions of the linear projection func-
tion mapping are 4C, 8C and 8C, respectively. Since the patch partition of stage1 is equiv-
alent to the merging operation of adjacent patches on a single pixel (1 × 1 image patch), 
we also mark this operation as patch merging in Figure 4. As the network depth increases, 
patch merging can be used to construct a hierarchical transformer. 

Tokens are fed into a Multi-head Self Attention (MSA), followed by a Multi-Layer 
Perceptron (MLP). We conduct the Layer Normalization (LN) before each MSA and MLP, 
and residual joins after each MSA and MLP. The sliding window mechanism is adopted 
in each MSA module to divide the input feature maps into non-overlapping windows, 
and then perform self-attention calculation in different windows, each of which contains 
16 × 16 patches. To encode the spatial information of each position, we learn a special 
position embedding based on the relative position bias of the patch in the window, and 
add it to the image patch tokens. The relative position along each axis lies in the range 
[−15, 15]. Although the self-attention mechanism in the transformer is disordered, spatial 
location information related to the original location information is embedded in the input. 

As illustrated in Figure 5, we used a shifted window partition similar to swin trans-
former to solve the information exchange problem of different windows, and alternately 
used Window-based Multi-head Self-Attention (W-MSA) and Window-based Multi-head 
Self Attention with spatial displacement (SD W-MSA) in two consecutive transformer 
structures. W-MSA uses regular window partitioning from the upper left corner. SD W-
MSA adopts a windowing configuration that is shifted from that of the preceding layer, 
by displacing the windows by (8, 8) pixels from the regularly partitioned windows. Since 
the number of patches in the window is much smaller than that in picture, the computa-
tional complexity of W-MSA has a linear relationship with the image size. The partition 
method of shifting windows introduces connections between adjacent non-coincidence 
windows of the upper layer, greatly increasing the receptive field. 

 
Figure 5. Two successive swin transformer blocks in encoder. W-MSA and SD W-MSA are Window-
based Multi-head Self-Attention and Window-based Multi-head Self Attention with spatial dis-
placement, respectively. 

Spatial displacement [46] reshapes the spatial dimension based on the window size 
and the number of tokens, and stretches it into a sequence. We introduce spatial displace-
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ment in SD W-MSA to package inputs from different windows by spatial dimension trans-
formation, and then establish a long-distance cross-window connection. After the self-at-
tention operation, we use spatial alignment [46] to adjust tokens to the original position 
so that the features and the image are spatially aligned. To reduce the number of calcula-
tions, we combine window division with spatial displacement, and combine window-to-
image conversion with spatial alignment. 

2.3.2. Feature Fusion of Encoder and Decoder 
Figure 4 shows the visualization process of encoder–decoder feature fusion. E1~E5 

are feature maps of encoder, and D1~D4 are feature maps of decoder. In this section, we 
introduce the process in detail. 

We tokenized the output feature maps of the transformer layers at 4 different scales 
corresponding to E1~E4 in encoder, and reshaped the features into flattened 2D patches 

with patch sizes , , ,
2 4 8
P P PP 

 
 

, respectively, so that the patches can be mapped to the 

same areas of the encoder features at four scales. We used the 4 layers of tokens 

( 1, 2,3,4)kT k = , 2 k
HW C
k

kT R
×

∈  as queries, and then concatenate the tokens of four lay-

ers kT  to obtain ( )1 2 3 4, , ,T Concat T T T T =  as the key and value. We input the 

( 1, 2,3,4)kT k =  and T  into the Channel-wise Cross Fusion Transformer (CCT) [47], 
and used the transformer’s long-distance dependent modeling advantages to fuse four 
different scale encoder features. In order to better assign attention weights and make the 
gradient smoothly propagated, we conducted the attention operation along the channel 
axis rather than the patch axis. 

In the implementation, we set the number of attention heads to 4 and built a 4-layer 
CCT. The four outputs of the 4th layer 1O , 2O , 3O  and 4O , are reconstructed though 
an upsampling operation followed by a convolution layer, and then concatenated with 
the decoder features 1D , 2D , 3D  and 4D , respectively. 

We used the k-th channel transformer output , (1,2,3,4)C H W
kO R k× ×∈ =  and the 

k-th decoder feature map , (1,2,3,4)C H W
kD R k× ×∈ =  as the input of Attention-based 

Squeeze and Excitation (ASE). Figure 6 shows the architecture of ASE, where r  is the 
dimension reduction coefficient. 

 
Figure 6. The architecture of Attention-based Squeeze and Excitation (ASE). 

In ASE, we conducted feature compression of kO  and kD  along the spatial dimen-
sion through a squeeze operation [48] to obtain the global receptive field. Spatial squeeze 
is performed by a global average pooling (GAP) layer: 
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1 1

1( ) ( , ),    ( )H Wc c c C
k k ki j

G O O i j G O R
H W = =

= ∈
×    (3)

1 1

1( ) ( , ),    ( )H Wc c c C
k k ki j

G D D i j G D R
H W = =

= ∈
×    (4)

where c  is the c-th channel, k  is the k-th layer. Then, in order to improve the generali-
zation ability of the model and better learn the nonlinear relationship between different 
channels, we performed an excitation operation [48] to reduce the dimension of feature 
channels, and restore the original dimensions to obtain kO′  and kD′  after using Recti-
fied Linear Unit (ReLU) activation function. We use 1 × 1 convolution in specific opera-
tions: 

1 1 1 1(Re ( ( ( ))))k kO Conv LU Conv G O× ×′ =  (5)

1 1 1 1(Re ( ( ( ))))k kD Conv LU Conv G D× ×′ =  (6)

We calculated the average of kO′  and kD′  to obtain kZ . Here, we use a gating mecha-
nism in the form of a sigmoid to generate weights for each characteristic channel of Z , 
which explicitly models the importance of different channels. After unsqueezing the result 
vector kZ , we multiplied it by kO  to obtain ˆ

kO  through ReLU activation function: 

( ( ))k kscale unsqueeze Zσ=  (7)

ˆ Re ( )k k kO LU O scale= ⋅  (8)

where ( )σ ⋅  is denoted as the sigmoid function; ˆ
kO  and kD  are concatenated in the 

channel dimension. After 3 × 3 convolution operation in series, 1kD −  can be obtained. 

ASE automatically obtains the importance of each feature channel of kZ  through 
learning, and then enhances useful features and suppresses features that are not useful 
for the current task according to their importance, thus achieving adaptive calibration of 
feature channels. Therefore, ASE can integrate encoder fusion features with decoder fea-
tures to solve the problem of semantic inconsistency between encoder and decoder. 

3. Results 
3.1. Implementation Details 

We employ all experiments on CentOS release 7.9 system and use NVIDIA A100-
PCIE GPU card with 40 GB memory for graphics acceleration. Experiments are imple-
mented with PyTorch, an open-source Python machine learning library. We do not use 
any pre-trained weights to train UATNet. For CRMSCD, we set the batch size to 16. The 
input resolution and patch size are set as 512 × 512 and 4. 

To obtain a fast convergence, we also employ the AdamW optimizer, Adam with 
decoupled weight decay, to train our models, where the initial learning rate is set to 0.002, 
combined with polynomial (poly) learning rate decay strategy. The specific formula is as 
follows: 

_ 1
max

poweriterlr base lr
iter

 = × − 
 

 (9)

where _base lr  is the initial learning rate, power  is the decay index, iter  is the cur-
rent training step size, and max iter  is the maximum training step size. When we estab-
lish power  to be equal to 1, the learning rate decay curve is a straight line. When 
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1power > , the decay curve of learning rate becomes concave inward. When 1power <
, the decay curve of learning rate becomes convex outward. Figure 7 shows the decay 
curves under different power values. We compare four power values in the figure, the 
effect is better when the power is 1.5. In practice, we set 1.5power =  for parameter op-
timization. 

 
Figure 7. The decay curves under different power values. 

In practice, we set the epoch number to 400 and employ the focal loss [49] as our loss 
function to train our network. Focal loss can address the class imbalance by reshaping the 
standard cross entropy loss such that it down-weights the loss assigned to well-classified 
examples, the formula is as follows: 

        if 1
( ) (1 ) log( ),    

1    otherwiset t t t t

p y
FL p p p p

p
γα

=
= − − =  −

 (10)

where [0,1]p∈  is the model’s estimated probability for the class with label 1y = , tα  
is a weighting factor to address class imbalance, γ  is a tunable focusing parameter. We 
set 0.4tα =  and 2γ =  in our experiments. Note that we use the same settings and loss 
functions to train all the baselines. In convolution layers, we uniformly use batch normal-
ization and ReLU activation function. 

3.2. Evaluation Indicator 
We use Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), Mean Intersection over 

Union (MIoU), and Frequency Weighted Intersection over Union (FWIoU) as evaluation 
indicators in order to evaluate the performance of UATNet on CRMSCD. The higher the 
evaluation indicators, the better the effect of our models. 

Assuming that there are k + 1 classes of samples (including k target classes and 1 
background class), ijp  represents the total number of pixels that are labeled as class i but 

classified as class j. That is, iip  represents the total number of pixels both classified and 

labeled as class i, ijp  and jip  are false positives and false negatives, respectively. 

(1) Pixel Accuracy (PA) and Mean Pixel Accuracy (MPA) 
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Pixel accuracy (PA) can express the classification accuracy of pixel points and calcu-
late the ratio between the amount of properly classified pixels and their total number. The 
formula is as follows: 

0

0 0

k
iii

k k
iji j

p
PA

p
=

= =

= 
 

 (11)

Mean pixel accuracy (MPA), is an improved version of PA which computes the ratio 
of correct pixels on a per-class basis. MPA is also referred to as class average accuracy. 
The formula is as follows: 

0
0

1
1

k
ii

k
i ijj

pMPA
k p=

=

=
+ 


 (12)

(2) Mean Intersection over Union (MIoU) and Frequency Weighted Intersection over 
Union (FWIoU) 
Intersection over Union (IoU) is a standard metric used for comparing the similarity 

and diversity of sample sets. In semantic segmentation, it is the ratio of the intersection of 
the predicted segmentation with the ground truth, to their union. Mean Intersection over 
Union (MIoU) is the class-averaged IoU. The definition is given in (13): 

0
0 0

1
1

k
ii

k k
i ij ji iij j

pMIoU
k p p p=

= =

=
+ + −

 

 (13)

Frequency Weighted Intersection over Union (FWIoU) is an enhancement of MIoU. 
It sets weights for each class according to its frequency. The weights are multiplied by the 
IoU of each class and summed up. The formula of FWIoU is given in (14): 

0
0 0 0 0

1 k
ii

k k k k
iij ij ji iii j j j

pFWIoU
p p p p=

= = = =

=
+ −


   

 (14)

3.3. Data Augmentation 
The CLTYPE variable of the Himawari-8 NetCDF file stores 12 different cloud stor-

age types. In addition to nine cloud types and the clear sky, it also contains the mixed 
value and the invalid value. The mixed value indicates that the cloud type of the pixel 
cannot be determined, and the invalid value indicates that the cloud image data of the 
pixel is missing. In order to better complete the cloud recognition task, we calculate the 
number of mixed pixels and invalid pixels in the CRMSCD, and the two types do not exist 
in the training set, validation set, and test set after experimental verification. The corre-
sponding value and color information for all types are shown in Table 6. 

Table 6. Annotation and color information of cloud types. 

Cloud Type Annotation Color Information 
Cirrus (Ci) 1 ( ) 255    042    204  

Cirrostratus (Cs) 2 ( ) 255    021    201  

Deep convection (Dc) 3 ( ) 255      0        0   

Altocumulus (Ac) 4 ( ) 204    255    255  

Altostratus (As)  5 ( )  0      255    255  

Nimbostratus (Ns) 6 ( )  0      204    204  
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Cumulus (Cu) 7 ( ) 531    531    255  

Stratocumulus (Sc) 8 ( )  51     021    255  

Stratus (St) 9 ( )  0          0        255  

Clear 255 ( ) 255    255    255  
To reduce the number of parameters and calculations, we perform image cropping 

on CRMSCD, with the cropping size of 512 × 512 and randomly selected positions. The 
size of 512 × 512 matches the clipping size in test, which can reduce the boundary error 
caused by the stitching results, and randomly selected positions are helpful for improving 
the generalization ability of the model. In addition, random flipping (including horizontal 
flipping and vertical flipping) is performed on the training set to avoid overfitting. The 
pixel value range of the input image is adjusted to 0~255. According to Table 6, we convert 
the annotations and then normalize each channel of the image. 

3.4. Experimental Analysis 
3.4.1. UATNet Variants 

To study the relationship between model size and model performance, we propose 
two models of different sizes, UATNet-S and UATNet-B. Swin-T, Swin-S, Swin-B, and 
Swin-L are four different-sized models of swin transformer. The channel numbers of 
UATNet-S and UATNet-B are similar to those of Swin-B, and the layer numbers of UAT-
Net-S and UATNet-B are similar to those of Swin-T and Swin-S, respectively. 

In the two versions, head dimension is set to 32, channel number is set to 128, and 
window size is set to 16. The difference between them is the number of encoder layers and 
the number of attention heads. In UATNet-S, the number of network layers of four stages 
is {2,2,6,2}, and the number of attention heads is {3,6,12,24}. In UATNet-B, the number of 
network layers of four stages is {2,2,18,2}, and the number of attention heads is {4,8,16,32}. 
Table 7 lists the specific settings of the two versions of UATNet. 

Table 7. UATNet variants. 

Model Channel Number Window Size Layers  Head Dimension Heads 
UATNet-S 128 16 { } 2 ,6 ,2 ,2  32 { } 42 ,21 ,6 ,3  

UATNet-B 128 16 { } 2 ,18 ,2 ,2  32 { } 23 ,61 ,8 ,4  

3.4.2. Comparison on CRMSCD 
In the test, we crop each input image to 512 × 512 with a total of 12 image blocks and 

the overlap size of 256. We input the generated image blocks to UATNet for prediction, 
and then stitch the output results together to obtain a 1200 × 981 image, and finally save it 
in HDF format. In our evaluation, we focus on the recognition of cirrostratus, deep con-
vection, altostratus, nimbostratus and stratocumulus, which is more helpful to meteoro-
logical research. 

We compare UATNet with two types of methods for comprehensive evaluation, cov-
ering eight mainstream fully convolutional networks: U-Net [50], UNet3+ [51], PSPNet 
[52], SegNet [53], DeepLabv3+ [54], GSCNN [55], HRNetV2 [56] and HRNetV2 + OCR [57] 
and three state-of-the-art transformer-based segmentation methods, including SETR, swin 
transformer, and UCTransNet. Note that the decoder of swin transformer is implemented 
with Progressive Upsampling (PUP). The experimental results are reported in Table 8, 
where the best results are in bold. 

Table 8. Results of semantic segmentation on CRMSCD test set. The best results are in bold. 

Method 
CRMSCD 

PA (%) MPA (%) MIoU (%) FWIoU (%) 



Remote Sens. 2022, 14, 104 17 of 26 
 

 

U-Net 80.50 65.45 50.56 68.85 
UNet3+ 79.59 60.01 47.25 67.45 
PSPNet 74.55 52.37 39.44 61.17 
SegNet 78.41 60.35 45.98 66.23 

DeepLabv3+ 79.32 62.21 48.20 67.17 
GSCNN 80.96 64.92 51.37 69.22 

HRNetV2 79.62 62.84 48.73 67.55 
HRNetV2 + OCR 80.49 64.23 50.48 68.60 

SETR 69.24 40.34 29.50 54.74 
Swin-T 72.01 47.73 35.53 58.21 
Swin-S 71.65 46.53 34.57 57.71 
Swin-B 71.67 46.46 34.52 57.76 
Swin-L 71.75 47.87 35.30 58.01 

UCTransNet 81.49 66.26 52.62 69.87
UATNet-S 81.82 67.14 53.36 70.35
UATNet-B 82.33 67.79 54.51 70.96

Table 8 illustrates the overall performance and cloud recognition effect of UATNet 
on CRMSCD. Compared with the fully convolutional networks, PA, MPA, MIoU and 
FWIoU gain of UATNet-B range from 1.37% to 7.78%, from 2.34% to 15.42%, from 3.14% 
to 15.07%, from 1.74% to 9.79%, respectively. Compared with the transformer-based mod-
els, PA, MPA, MIoU and FWIoU gain of UATNet-B range from 0.84% to 13.09%, from 
1.53% to 27.45%, from 1.89% to 25.01%, from 1.09% to 16.22%, respectively. The above 
results show that UATNet is effective for pixel-level classification of meteorological satel-
lite cloud images, and all of the evaluation indicators are better than the current state-of-
the-art neural network methods. Furthermore, we summarize the causes for the difference 
between the experimental results and the annotation of Himawari-8: 1. The sampling in-
terval of FY-4A satellite is about 14 times per hour, while the sampling interval of 
Himawari-8 satellite is 6 times per hour. In the time alignment phase, we select the adja-
cent time for data alignment based on sampling interval of the two satellites, as shown in 
Table 3, which causes a certain time error. 2. The Himawari-8 satellite cloud classification 
product (Cloud Type) is classified based on a threshold, and it has noise and errors [44]. 
3. Due to the large time overhead of the segmentation tasks, we make a trade-off between 
the dataset size and the model performance. In our experiments, the epoch is set to 400, 
but our models are not fully converged when the epoch reaches 400. In view of the above 
points, we consider adding more kinds of cloud images in the follow-up research so that 
the network will have a stronger generalization ability and persuasiveness. Hierarchical 
classification is attempted and is firstly divided into four types: the clear sky, high clouds, 
medium clouds, low clouds, and then subdivided each cloud type, which could improve 
the cloud recognition effect. 

To understand the recognition effect of each cloud type, we analyze the class pixel 
accuracy (CPA) of UATNet on the test set, that is, the proportion of correctly classified 
pixels for each class. According to the results, the CPA of the clear sky, cirrostratus and 
deep convection is high—85.18%, 69.91%, and 69.73%, respectively—while the CPA of 
cirrus, cumulus, altocumulus and stratocumulus is low—45.59%, 40.65%, 28.66%, and 
54.61%, respectively. Cirrostratus and deep convection are high and thick clouds with a 
well-defined spectral signature, and thus have a high CPA. The main reasons for the low 
CPA of cirrus, cumulus, altocumulus and stratocumulus clouds are as follows: 1. Samples 
of each cloud type are not representative enough, which makes it difficult to capture key 
features for classification. In fact, the causes of formation of cirrus are diverse. Cirrus 
clouds may be formed by a high-altitude convection, and thus often have the shape of 
cumulus. Cirrus clouds can also be transformed by the uplift of altocumulus or from the 
remaining snow virga of altocumulus in the air. In addition, cumulus and stratocumulus 
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clouds have similar shapes and structures. It is easy to misclassify these associated cloud 
types without capturing the core features; 2. The types of samples are not distributed ho-
mogeneously. The clear sky has the largest sample size, and the average sample size in 
the test set is 437,488, so the clear sky has the best recognition effect. The sample sizes of 
cumulus, altocumulus and stratocumulus are relatively small, and the average sample 
sizes in the test set are 60,060, 76,161, 43,212, respectively, so the corresponding recogni-
tion effect is poor. For this problem, we adopt a focal loss to improve the influence of 
uneven data sample distribution to a certain extent. 

We also train the lighter-capacity UATNet-S, which has a smaller size, fewer param-
eters and a faster speed with little loss above four evaluation indicators. UATNet-S is more 
suitable for a wide range of deployments and applications. 

We visualize the segmentation results of the comparable models in Figure 8, and an-
alyze the experimental results in detail according to Table 8 and Figure 8. 

    
(a)  (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 
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Figure 8. The visual comparison on CRMSCD at 3:30 on 11 July 2020 of (a) Original Image, (b) 
Ground Truth, (c) U-Net, (d) UNet3+, (e) SegNet, (f) DeepLabv3+, (g) GSCNN, (h) HRNetV2, (i) 
HRNetV2+OCR, (j) UCTransNet, (k) UATNet-S and (l) UATNet-B, and the visual comparison on 
CRMSCD at 3:30 on 18 July 2020 of (m) Original Image, (n) Ground Truth, (o) U-Net, (p) UNet3+, 
(q) SegNet, (r) DeepLabv3+, (s) GSCNN, (t) HRNetV2, (u) HRNetV2+OCR, (v) UCTransNet, (w) 
UATNet-S and (x) UATNet-B. The color corresponding to the label value is located in the lower 
right corner of Figure 3b. 

We first discuss the fully convolutional neural network models. PSPNet uses the pyr-
amid pooling module to aggregate global contextual information in the top layer of the 
encoder, but it does not combine the spatial information of the underlying features in the 
decoder, causing a relatively rough segmentation boundary. SegNet is a lightweight net-
work with fewer parameters based on a symmetrical encoder–decoder structure. It re-
places upsampling with unpooling in the decoder, but the segmentation results are not 
accurate enough without considering the relationship between pixels. DeepLabv3+ uses 
xception as the backbone network. Maxpooling is replaced by deep separable convolu-
tion, which is applied to the atrous spatial pyramid pooling and the decoder. Although 
DeepLabv3+ combines multi-scale context information, it does not generate a sufficiently 
refined segmentation boundary. U-Net model is simple, but it makes full use of the un-
derlying features to make up for the loss of the upsampling information. The recognition 
efficiency of U-Net is better than the more complex deeplabv3+. Although UNet3+ intro-
duces the full-scale skip connection, it does not pay different attention to the information 
of different scales, resulting in the slightly worse recognition effect than U-Net. HRNetV2 
augments the high-resolution representation by aggregating the (upsampling) represen-
tations from all the parallel convolutions. On the basis of HRNetV2, HRNetV2+OCR se-
lects the pixels around the target as the context, uses the representation of surrounding 
pixels to obtain the target representation, and achieves better segmentation results. 
GSCNN designs two parallel CNN structures to perform conventional extraction and ex-
traction of image boundary-related information. Due to its sufficient capture of boundary 
information, it obtains the best performance in fully convolutional neural networks. 

Next, we analyze transformer-based segmentation methods. SETR and swin trans-
former require large-scale datasets for pre-training to achieve superior results, while the 
experimental effects of direct training are poor. UCTransNet introduces the channel trans-
former into U-Net structure, which makes up for the semantic and resolution gap between 
low-level and high-level features through more effective feature fusion and multi-scale 
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channel cross-attention, in order to capture more complex channel dependencies, show-
ing good performance on cloud recognition tasks. 

Compared with the above models, our models achieve better results in meteorologi-
cal satellite cloud recognition tasks. The red boxes in Figures 8 k,l,w,x highlight regions 
where the two versions of UATNet perform better than other methods, which shows that 
UATNet generates better segmentation results that are more similar to the ground truth 
than other methods. Our proposed method not only focuses on significant regions of dif-
ferent cloud types, but also produces clear boundaries. In other words, UATNet is capable 
of finer segmentation while retaining detailed shape information. 

3.4.3. Ablation Studies 
To further study the relative contribution of each component of the model, we con-

duct a series of experiments on CRMSCD by removing and modifying different blocks of 
UATNet. 

As shown in Table 9, we conduct an ablation experiment based on the structure of 
the encoder. Compared with “Baseline (encoder like Swin-B)”, “Baseline + spatial dis-
placement“ has performance improvements in PA, MPA, MIoU and FWIoU of 0.70%, 
0.99%, 1.42% and 0.90%, respectively. Research results reveal that introducing spatial dis-
placement operation to our encoder can improve segmentation performance to a certain 
extent. 

Table 9. Ablation experiments of spatial displacement on encoder. 

Method 
CRMSCD 

PA (%) MPA (%) MIoU (%) FWIoU (%) 
Baseline (encoder like Swin-B) 81.63 66.80 53.09 70.06 
Baseline + spatial displacement 82.33 67.79 54.51 70.96 

As shown in Table 10, we also make an ablation experiment based on the feature 
fusion of encoder and decoder. “Baseline + ASE” has a significant improvement in all 
evaluation indicators compared to “Baseline (CCT + skip connection)”. ASE is designed 
to fuse encoder and decoder features, which improves 0.63%, 2.56%, 1.86% and 1.02% in 
PA, MPA, MIoU and FWIoU, respectively, indicating the effectiveness of ASE block. 

Table 10. Ablation experiments of ASE on encoder–decoder connection. 

Method 
CRMSCD 

PA (%) MPA (%) MIoU (%) FWIoU (%) 
Baseline (CCT + skip connection) 81.70 65.23 52.65 69.94 

Baseline + ASE 82.33 67.79 54.51 70.96 

The CCT block can effectively fuse multi-scale and multi-channel features, but simply 
connecting the features of encoder and decoder through the CCT and skip connection 
does not consider the importance of different feature channels, which may damage the 
final performance of the model. According to the importance, the ASE block assigns dif-
ferent weights to different channels by enhancing useful features and suppressing useless 
features. Simultaneously, ASE also introduces nonlinear activation function to improve 
the generalization ability of the model. The results demonstrate that the ASE block can 
effectively mine spatial information and semantic information in images and capture non-
local semantic dependencies. 
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4. Discussion 
4.1. Findings and Implications 

Meteorological satellite cloud images reflect the characteristics and changing pro-
cesses of all kinds of cloud systems comprehensively, timely and dynamically. They also 
become an indispensable reference for meteorological and water conservancy depart-
ments in the decision-making process. Therefore, we construct a China region meteoro-
logical satellite cloud image dataset, CRMSCD, based on FY-4A satellite. It contains nine 
cloud types and the clear sky (cloudless). CRMSCD expands the satellite cloud image da-
tasets in China, making it easier for researchers to make full use of the meteorological 
satellite cloud image information with its wide coverage, high timeliness and high reso-
lution for carrying out cloud recognition research tasks. 

According to the evaluation of experimental results and a visual analysis, our method 
has a higher recognition accuracy with smoother and clearer boundaries than existing im-
age segmentation methods. At the same time, we introduce transformer structure in the 
encoder and encoder–decoder connection, demonstrating the excellent performance of 
transformer. The transformer model shows an excellent performance in semantic feature 
extraction, long-distance feature capture, comprehensive feature extraction and other as-
pects of natural language processing [58–62], which overturns the architecture of tradi-
tional neural network models and makes up for the shortcomings of CNN and recursive 
neural network (RNN). Recently, the use of a transformer to complete visual tasks has 
become a new research direction, which can significantly improve the scalability and 
training efficiency of the model. 

The FY-4A meteorological satellite cloud image contains 14 channels including visi-
ble light and near external light, shortwave infrared, midwave infrared, water vapor and 
longwave infrared, which carry a lot of rich semantic information. We innovatively intro-
duce a transformer into meteorological satellite cloud recognition tasks, and use its pow-
erful global feature extraction capabilities to enhance the overall perception and macro 
understanding of images. The transformer can capture the key features of different chan-
nels and explore the structure, range, and boundary of different cloud types. Features 
such as shape, hue, shadow, and texture are distinguished to achieve more accurate and 
efficient cloud recognition results. Existing visual transformer models, such as SETR and 
swin transformer, etc., require pre-training on large-scale data to obtain comparable or 
even better results than CNN. Compared with the above models, our models obtain ex-
cellent experimental results without pre-training on CRMSCD. Efficient and accurate 
cloud recognition with its high timeliness and strong objectivity provides a basis for 
weather analysis and weather forecasting. In areas lacking surface meteorological obser-
vation stations, such as oceans, deserts, and plateaus, meteorological satellite cloud recog-
nition makes up for the lack of conventional detection data and plays an important role in 
improving the accuracy of weather forecasting, navigation and positioning. 

4.2. Other Findings 
During the experiments, we also find two skills, which can efficiently improve the 

effect of cloud recognition in meteorological satellite cloud images. Therefore, we conduct 
two groups of comparative experiments, and the experimental results are shown in Tables 
11 and 12. For demonstration purposes, we only select a fully convolutional neural net-
work (U-Net) and a transformer-based model (Swin-B). 

Table 11. Experiment of switchable normalization in convolution layers. 

Method 
CRMSCD 

PA (%) MPA (%) MIoU (%) FWIoU (%) 
U-Net (batch normalization) 80.50 65.45 50.56 68.85 

U-Net (switchable normalization) 81.36 65.35 51.98 69.65 
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We use switchable normalization to replace the batch normalization in each convo-
lution layer of U-Net. Experimental results show that the use of switchable normalization 
can significantly improve the effect of U-Net on cloud recognition tasks. The improvement 
is still applicable in other fully convolutional neural networks. 

Table 12. Experiment of skip connection on transformer-based model. 

Method 
CRMSCD 

PA (%) MPA (%) MIoU (%) FWIoU (%) 
Swin-B 71.67 46.46 34.52 57.76 

Swin-B + skip connection 79.29 61.23 47.72 67.08 

According to the experimental results in Table 12, the introduction of encoder–de-
coder connection in Swin-B greatly improves the effect of cloud recognition. 

4.3. Limitations 
Although UATNet has shown superior performance in experiments, it still has two 

limitations. 
First, we only trained and tested UATNet on CRMSCD without verifying it for other 

satellite cloud image datasets, which merely demonstrates the excellent cloud segmenta-
tion effect of UATNet on CRMSCD. The features captured on a single dataset may be 
relatively limited, and the versatility and universality of UATNet were not well verified 
in cloud recognition. 

Second, we calculated the computational complexity of all the above models, includ-
ing the total number of floating-point operations (FLOP) and the parameters of the model. 
As shown in Table 13, the number of calculations and parameters of UATNet were higher 
than most mainstream image segmentation methods compared in the experiment. In 
UATNet, encoder and the feature fusion of encoder and decoder are completed by the 
transformer, and the encoder has a large number of transformer layers, which makes the 
total number of parameters large. Larger calculation scale and total number of parameters 
are a great challenge to computing resources and training duration. 

Table 13. Computational complexity on CRMSCD. 

Method Input Size Parameters (M) Flop (GFLOPS) 
U-Net 

14 × 512 × 512 

29.0 195.7 
UNet3+ 21.1 800.4 
PSPNet 65.7 78.9 
SegNet 29.5 163.4 

DeepLabv3+ 54.5 82.9 
GSCNN 28.3 569.7 

HRNetV2 65.9 223.8 
HRNetV2+OCR 70.4 1319.4 

SETR 31.5 27.7 
Swin-T 40.8 46.0
Swin-S 62.1 67.8
Swin-B 102.3 103.0
Swin-L 215.2 203.1

UCTransNet 66.2 173.5
UATNet-S 97.0 222.1
UATNet-B 137.6 388.5
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4.4. Future Work 
We analyzed the advantages and disadvantages of UATNet in detail. In this section, 

we discuss four possible research directions in the future. 
In future experiments, we will expand the size of the dataset and train our model on 

other satellite cloud image datasets. It can not only enhance the ability of UATNet to learn 
more abundant and more critical features, but also verify the generalization ability and 
universal applicability of UATNet in cloud recognition. 

UATNet has a relatively large number of calculations and parameters, resulting in a 
large consumption of computing resources and a long time for model convergence, which 
is not conducive to model deployment. How to reduce network parameters without losing 
model accuracy and realize the trade-off between calculation speed and calculation accu-
racy is a meaningful research direction. We will try to integrate the ideas of SqueezeNet 
[63], MobileNet [64] and other methods into our model for more refined model compres-
sion. Transfer learning [65,66] and knowledge distillation [67,68] can also be introduced 
into our cloud recognition work. 

The convolution operation in CNN is ideal for extracting local features, but it has 
some limitations in capturing global feature representation. The UATNet encoder uses 
transformer blocks, whose self-attention mechanism and MLP block can reflect complex 
spatial transformation and long-distance feature dependence. The transformer focuses on 
global features such as contour representation and shape description, while ignoring local 
features. In cloud recognition, the fusion of transformer and CNN to improve the local 
sensitivity and global awareness of the model plays an important role in capturing rich 
and complex cloud feature information. 

Finally, we will compare with physics-based algorithms and explore the robustness 
to noise in radiance data and to shifts in co-registration between channels. 

5. Conclusions 
In this paper, we constructed the China region meteorological satellite cloud image 

dataset, CRMSCD, and proposed a meteorological satellite cloud recognition method, 
UATNet, to obtain pixel-level cloud classification results. We innovatively introduced a 
transformer into cloud recognition tasks and solved the problem of limited receptive field 
of CNN-based cloud recognition models, which can effectively capture the global infor-
mation of multi-scale and multi-channel satellite cloud images, while ensuring computa-
tional efficiency. Specifically, UATNet constructs a hierarchical transformer based on swin 
transformer block and patch merging and introduces spatial displacement to build long-
distance cross-window connections. Simultaneously, CCT and ASE blocks are used jointly 
to adaptively fuse the features of the encoder and decoder to bridge the semantic gap of 
feature mapping. UATNet integrates the two transformer structures together to perform 
attention operations along the patch axis and channel axis, respectively, which not only 
effectively integrates the spatial information and multi-channel information of clouds, but 
also smooths the gradient and extract more targeted cloud features. Extensive experi-
ments including cloud recognition and ablation studies were conducted, which demon-
strate the effectiveness of the proposed model. 
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