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Abstract: Recently, approaches based on deep learning are quite prevalent in the area of remote
sensing scene classification. Though significant success has been achieved, these approaches are
still subject to an excess of parameters and extremely dependent on a large quantity of labeled data.
In this study, few-shot learning is used for remote sensing scene classification tasks. The goal of
few-shot learning is to recognize unseen scene categories given extremely limited labeled samples.
For this purpose, a novel task-adaptive embedding network is proposed to facilitate few-shot scene
classification of remote sensing images, referred to as TAE-Net. A feature encoder is first trained on
the base set to learn embedding features of input images in the pre-training phase. Then in the meta-
training phase, a new task-adaptive attention module is designed to yield the task-specific attention,
which can adaptively select informative embedding features among the whole task. In the end, in
the meta-testing phase, the query image derived from the novel set is predicted by the meta-trained
model with limited support images. Extensive experiments are carried out on three public remote
sensing scene datasets: UC Merced, WHU-RS19, and NWPU-RESISC45. The experimental results
illustrate that our proposed TAE-Net achieves new state-of-the-art performance for few-shot remote
sensing scene classification.

Keywords: scene classification; few-shot learning; meta-learning; pre-training; task-adaptive attention

1. Introduction

Remote sensing scene images taken by satellite consist of abundant semantic infor-
mation of land-cover objects, which have been widely used in various fields, containing
urban planning [1], traffic control [2], disaster detection [3], agricultural and environmental
modeling [4,5], and other areas [6–9]. For remote sensing images, scene classification aims
to divide unseen samples into corresponding scene classes according to the contained
semantic information, which has recently attracted growing attention. By contrast, few-shot
scene classification of remote sensing images is more inclined to divide remote sensing
images into corresponding scene classes with only few labeled samples [10], which has
quite vital significance in those areas where only few labeled samples are available. Few-
shot scene classification has enormous potential in various fields, containing ecological
monitoring, environmental monitoring, road detection, and so on, which can significantly
decrease the burden of data collection and manual labeling.

In recent years, deep learning makes great success in traditional remote sensing
image recognition [11–15], which typically acquires large amounts of labeled data in the
training procedure. To achieve excellent performance, methods based on deep learning
tend to contain a great deal of prior knowledge and sophisticated network structure [16,17].
Nevertheless, when training samples are insufficient, the models based on deep learning
are susceptible to overfitting and deviation of feature representation [18]. Specifically, in
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real remote sensing scenarios, collecting and labeling remote sensing data is pretty time-
consuming and laboursome [19]. Moreover, massive computing resources are consumed in
the training procedure of the model due to millions of learnable parameters, which further
increases the burden on researchers.

Inspired by the way humans classify an object into one of several novel categories, few-
shot learning is presented to address a series of few-shot tasks, which aims to make models
quickly adapt unseen classes with only limited labeled samples [10]. In general, there are
three lines of thinking to resolve the issue of few-shot learning: metric learning [20], meta-
learning [21], and transfer learning [22]. In terms of metric learning, the similarity between
the query sample and support sample is calculated by a distance function (e.g., Euclidean
distance or cosine similarity) and then is compared to judge whether they are from the
same class, where the higher the similarity between samples, the greater the probability
of deriving from the same class. Recently, various approaches based on metric learning
are proposed [23–27], where diverse similarity metrics are employed to address problems
of few-shot classification. The goal of meta-learning is to learn how to learn [28], which
plays a role in guiding the model to learn how quickly adapt to unseen tasks. For example,
Zhai et al. [29] develop a scene classification model on the basis of meta-learning for remote
sensing images, called LLSR, which aims to rapidly recognize unseen categories with
few labeled samples. Hence, few-shot learning is generally regarded as a special case of
meta-learning. As for transfer learning, the line of thinking is to train a model on similar
tasks, typically known as pre-training, and then apply the pre-trained model with massive
prior knowledge into new tasks.

In view of big scales and unique attributes of remote sensing images, some well-
designed neural networks [30] are employed to encode images to acquire deep features
with abundant semantic information in earlier work, such as AlexNet, GoogLeNet, VGG16,
and so on. Nevertheless, when labeled samples are insufficient, the trained deep neural
network typically suffers from overfitting, which is particularly obvious in the few-shot
scenarios. Recently, a majority of proposed approaches for few-shot learning have focused
more on improving feature representation. In RS-MetaNet, Li et al. [31] propose a training
scheme based on meta tasks for few-shot classification of remote sensing images, which
can prompt the model to learn how to capture a task-level distribution. In DLA-MatchNet,
Li et al. [32] introduce spatial attention and channel attention into the feature extractor to
learn robust feature representations, and a learnable matcher is developed to adaptively
calculate similarity scores between the samples. In addition, Jiang et al. [33] present
a multi-scale metric learning method based on the feature pyramid construction, called
MSML, which aims to incorporate multi-scale features to improve feature representation of
samples. These methods have been verified to improve the scene classification performance
of remote sensing images, but in the case of extremely few available samples for each
category, the improvement is not obvious.

The methods mentioned above focus more on employing image-level or class-level
features for few-shot image classification, which does not fully excavate discriminative
information from the perspective of the entire task. In terms of problems of scene classi-
fication, the model may not properly distinguish the correct category of the image when
the feature extractor can not capture discriminative features [34]. In particular, in the tasks
of few-shot scene classification, there are plenty of similar areas between the images from
different categories [35], which further increases the difficulty of few-shot scene classi-
fication. Figure 1 presents the scene classification task in the 6-way 1-shot scenario. It
is observed from Figure 1 that images in the first row have analogical texture features,
and images in the second row have nearly approximate backgrounds, which shows that
there are many similar feature areas between various categories. That is to say, the shared
semantic features among all categories are not really critical for classifying an unseen
sample. Furthermore, a remote sensing image may contain multiple different scene objects,
which also has an enormous influence on the scene classification performance of the model.
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Figure 1. Illustration of few-shot remote sensing scene classification with only one labeled image.

To address the aforementioned issues, a task-adaptive embedding network based on
meta-learning is proposed for few-shot remote sensing scene classification, which targets
to learn task-relevant semantic features to enhance the discrimination between different
scenes in few-shot tasks. In our proposed architecture, a pre-training scheme is employed
to learn an effective feature encoder, which aims to make models learn generic feature
representations for various scenes. Then, in meta-training stage, a task-adaptive attention
module is employed to explore discriminative semantic features from the perspective of
the whole task, which enhances weights of salient semantic features and reduces weights
of common semantic features shared by diverse scenes. Finally, in the meta-testing stage,
new scene categories can be predicted by the trained model. Experimental results on
three challenging scene datasets verify state-of-the-art performance of our TAE-Net in
few-shot settings.

The primary contributions of this paper are overall summarized as follows:

• A task-adaptive embedding network based on meta-learning, called TAE-Net, is
proposed to enhance the generalization performance of the model for unseen remote
sensing images in few-shot settings. The proposed TAE-Net can learn generic feature
representations by combining pre-training with meta-training, which can allow models
to quickly adapt to new categories with extremely few labeled samples.

• A task-adaptive attention module is developed to capture task-specific information,
which can remove the effect of task-irrelevant noises. The proposed task-adaptive
attention module aims to adaptively and dynamically pick out discriminative semantic
features for diverse tasks.

• Comprehensive experiments on three public remote sensing scene classification
datasets verify effectiveness of our proposed model, which exceeds existing state-
of-the-art few-shot scene classification approaches and acquires new state-of-the-art
performance of few-shot scene classification.

2. Related Work

In this section, the work related to our research is reviewed from two perspectives:
remote sensing scene classification and few-shot learning.

2.1. Remote Sensing Scene Classification

In the past decades, remote sensing scene classification has been sufficiently researched
due to its broad application prospects, which aims to divide images into corresponding
scene categories. In recent years, approaches based on deep learning have made consider-
able progress in the area of remote sensing; particularly, plenty of approaches based on the
convolutional neural network (CNN) are proposed [36–38]. To solve the issue of intra-class
difference and inter-class similarity in remote sensing images, Cheng et al. [39] design
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discriminative CNN (D-CNN). Zhang et al. [40] design a CNN-CapsNet for remote sensing
scene classification, which consists of CNN for extracting features and CapsNet for classify-
ing features. Wang et al. [35] design an attention recurrent CNN in an end-to-end manner
for remote sensing scene classification, which can capture high-level semantic features and
remove irrelevant information. Sun et al. [41] develop a gated bidirectional model based on
CNN to implement remote sensing scene classification, which can incorporate multilayer
convolutional features and eliminate the distraction information. Pires de Lima et al. [42]
study the performance of CNN combined with transfer learning on remote sensing scene
classification tasks, which confirms that transfer learning from natural images to remote
sensing images is effective. To constrain the distribution of the training data belonging
to the same category, Xie et al. [43] design a scene classification network with intra-class
constraint; besides that, label augmentation is employed to label each augmented sample
with a joint label. Considering the considerable complexity of current CNN, Shi et al. [44]
construct a lightweight network that combines the attention mechanism and multi-branch
feature fusion strategy for remote sensing scene classification.

2.2. Few-Shot Learning

In recent years, methods based on deep learning have made considerable progress in
various areas, especially in fields where a large amount of computing resources and labeled
data can be obtained. Nevertheless, methods based on deep learning are susceptible to
insufficient data. To resolve the issue, few-shot learning is proposed, which has achieved
outstanding success. The goal of few-shot learning is to learn to recognize new categories
from only limited labeled data, which is typically regarded as a special meta-learning. Subse-
quently, some representative few-shot learning methods are introduced, which are divided
into two main branches: metric-based approaches and optimization-based approaches.

Metric-based approaches: This line of work targets to solve few-shot image classifica-
tion problems through learning to compare. The line of thinking aims to learn a feature
encoder that transforms input images into embedding representations suitable for com-
paring; when encoded in the feature space, the similarity between the support sample and
the query sample can be calculated explicitly through a common pairwise metric, such as
cosine similarity or Euclidean distance. Siamese network [23] is proposed to learn generic
embedding features, which is employed to achieve the binary classification task. By an at-
tention mechanism, matching network [24] transforms support samples into embedding
space, where the query sample is classified through a nearest-neighbor classifier using
cosine similarity. Likewise, prototypical network [25] also learns a metric rule to conduct
few-shot classification over embeddings, which calculates Euclidean distance between
the category-mean embedding and the query embedding. Instead of common metrics,
relation network [26] presents a parameterized relation module as a learnable metric. In-
spired by prototypical network, Oreshkin et al. [45] introduce a metric-based framework,
called TADAM, that integrates three helpful improvements for few-shot learning, that is,
task conditioning, metric scale, and auxiliary task co-training. By adding unlabeled data
into each few-shot task, Ren et al. [46] carry out few-shot classification of prototypical
network in the semi-supervised setting. Three schemes are tried to improve the prototype
representation of each category. MetaOptNet [21] indicates that discriminative linear clas-
sifiers, such as support vector machine, may be preferable to nearest neighbor classifiers
(e.g., cosine similarity or Euclidean distance) in few-shot settings. Compared with nearest
neighbor classifiers, linear classifiers can find more appropriate decision boundaries by
negative samples.

Optimization-based approaches: Another family of method is typically known as
learning to learn (i.e., meta-learning), which aims to learn generic parameter initialization
and then make the model quickly adapt to new tasks by a few gradient steps. Finn et al. [47]
propose a model-agnostic architecture based on meta-learning, called MAML, which aims
at learning a suitable parameter initialization that can be applied to any neural network.
In other words, that network can fast adapt to any unseen few-shot task by only a few
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parameter updating steps. In addition, considering the complexity of the algorithm, the au-
thors also introduce a first-order variant of MAML, which can speed up the model opti-
mization by removing second-order derivatives. Likewise, Reptile [48] is also first-order
variant of MAML, which employs a Taylor series expansion to perform first-order gradient
optimization. A lot of variants [49–52] of MAML are based on an analogous idea that, given
appropriate parameter initialization, the model can quickly adapt to the novel task with
a few gradient steps. However, these methods suffer from a key challenge that internal
optimization contains as massive parameters as external optimization. Additionally, a criti-
cal controversy is whether only an initialization condition guarantees quick adaption for
various few-shot tasks. Further, whether the upper limit of model performance is affected
by this initialization condition.

Recently, several approaches based on pre-training (i.e., transfer learning) have achieved
competitive performance [53–55] as methods based on meta-learning make noteworthy
progress in few-shot image classification. Additionally, some methods based the graph
neural network are also developed for few-shot learning [56,57]. Our study is more inclined
to the first kind of work, that is, employing pre-training to extract good embedding features
and learning an appropriate similarity metric by encoding task-specific information.

3. Proposed Method
3.1. Overall Architecture

In this work, a task-adaptive embedding network is proposed to tackle scene classifi-
cation tasks in few-shot settings, which is depicted in Figure 2. The overall architecture is
composed of pre-training, meta-training, and meta-testing. A feature encoder is first pre-
trained on the base set Dbase to map inputs to embedding space suitable for comparison.
To be specific, a common neural network model is trained on all base classes by minimizing
generalization error. To obtain the trained feature encoder, the fully connected (FC) layer
is removed. Next, a meta-learning model H is trained across a cluster of episodes in the
meta-training phase. Specifically, different from previous works [54,55], fϕ is not frozen
to further fine-tune; instead, it is employed to initialize parameters in the meta-learning
model and is optimized by minimizing the cross-entropy loss. For each episode, a relation
matrix R is calculated to obtain the embedding relation between the support image and the
query image. Then, the task-adaptive attention module gθ yields the task attention matrix
A, which can adaptively pick out the discriminative embedding features for a certain query
embedding feature within the support set, like visual recognition of humans. It’s worth not-
ing that, instead of independent entity, the task attention centers on the relations between
the embedding features. Subsequently, the task attention matrix A is incorporated into the
relation matrix R by an element-wise multiplication to eradicate noises, such as the relation
formed by the similar embedding features within a task, and strengthen the discriminative
embedding features. The predicted scores can be then obtained from the incorporated
relation matrix using the sum operation. In the meta-testing phase, the meta-learning
model H is evaluated across a cluster of episodes, which are sampled at random from the
novel set Dnovel .

3.2. Problem Formulation

In the few-shot settings, remote sensing scene classification can be referred to as a set
of N-way K-shot M-query tasks, which indicates that only K labeled samples are used to
recognize M unseen samples from N scene classes. A N-way K-shot M-query task T is also
known as an episode. Therein, M samples without labels and K samples with labels are
derived from each class, and accordingly, a support set consists of N × K labeled samples
and a query set consists of N × M samples. To be specific, when M is set to 1, the quantity
of all samples in the query set is equivalent to the total quantity of classes. Figure 3
presents the illustration of 5-way 1-shot classification tasks. The dataset for few-shot scene
classification is split into three disjoint subsets, that is, base set Dbase, validation set Dval ,
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and novel set Dnovel . The overall process contains the meta-training phase, meta-validation
phase, and meta-testing phase. The specific details are described below.

Different with standard supervised learning, there are extremely few labeled samples
available in few-shot learning, which makes it difficult for the model to learn enough
prior knowledge. Therefore, intra-class relationship learning and knowledge transfer
become quite vital for few-shot scene classification of remote sensing images. In the
meta-training phase, the support set S = (xi, yi)(i = 1, 2, 3, . . . , N × K) and query set
Q = (xj, yj)(j = 1, 2, 3, . . . , N ×M) are sampled from Dbase, where xi represents the i-th
sample and yi represents its ground truth label. Furthermore, the parameters in the model
are iteratively updated through back propagation. After massive iterations, a well-trained
feature encoder can be learned.

The validation phase aims to adjust the hyper-parameters in the model. In the meta-
validation phase, Dval is also divided into the support set S and the query set Q, where
the support set is employed to predict labels of query samples. In addition, only forward
propagation is performed in the meta-validation phase, which indicates that the parameters
in the model are not updated through back propagation.

In the few-shot scene classification, the categories used in the meta-testing phase are
new, which indicates that classes in Dnovel are distinct from those of Dbase and Dval . Query
samples in Dnovel are predicted by a well-trained model given the support set that only
contains N classes and K labeled samples per class. The class corresponding to the largest
predicted probability is determined as the label of the query sample.

Base Class
all classes CNN

f
( | )baseC W

Pre-Training Phase

Y

Base Class

randomly 

sampled 5 

classes

1S

1Q

2S

2Q

  
f

f
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Y

Y

Task-Adaptive 

Attention Module
Task Attention
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( | )novelH S

( | )baseH S
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Figure 2. The overall architecture and details of the task-adaptive embedding network (shortened to
TAE-Net).



Remote Sens. 2022, 14, 111 7 of 19

airplane church cloud desert ? ? ? ? ?freeway

freeway ship stadium church palace ? ? ? ? ?

railway harbor palace mountain desert ? ? ? ? ?

freeway forest intersection parking lot river ? ? ? ? ?



Support set Query set

novel

1

2

m



base

Figure 3. Illustration of data partition of remote sensing scene classification in the 5-way 1-shot setting.

3.3. Pre-Training of Feature Encoder

In the pre-training stage, a feature encoder fϕ with learnable parameters ϕ is trained
on the base set Dbase, which transforms the input sample into the embedding feature with
the shape of 5 × 5 × 64. For a fair comparison, a neural network with 4 convolutional
blocks is employed to train a classification model on all base categories. Then, to obtain
well-trained fϕ, the fully connected layer and the softmax layer are removed in the neural
network. The above process is described in detail as follows. Before starting training,
all input samples from Dbase are adjusted to the size of 84 × 84. The entire setting of
the pre-training model we adopt, presented in Figure 4, is formed from an encoder and
a classifier. The encoder contains 4 convolutional blocks (Conv-4), each of which contains
3 × 3 convolution with 64 kernels, followed by BatchNorm with a momentum value of
0.1, Leaky ReLU activation function, and 2 × 2 max-pooling. Furthermore, the classifier
is made up of a fully connected layer and a softmax layer. To optimize the overall pre-
training model, a common cross-entropy loss function is selected as the loss metric in this
work. After pre-training, the classifier in the pre-training model is removed to get the
encoder for extracting features. Therefore, by inputting a sample into the pre-training
model, a embedding feature with the shape of 5 × 5 × 64 can be yielded by the encoder.

Figure 4. Structure and parameters of the pre-training model.
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3.4. Meta-Training with Task-Adaptive Attention Module

The goal of meta-learning is to enhance generalization performance through learning
meta-konwledge from multiple tasks, also known as episodes, which is a quite popular
method for solving few-shot tasks. In the N-way K-shot setting, a meta-learning model
H(·|S) is trained by minimizing the N-way loss. To this end, a set of episodes are sampled
at random from the base set. Each episode contains K labeled samples for each class,
which means that there are N × K support samples in total for training and N × M query
samples for testing. Even though each episode only contains a few support samples for
training, the model H(·|S) shares the same parameters over multiple episodes. As a result,
training H(·|S) across plenty of episodes contributes to decreasing the model demand
for data. In the meta-training procedure, the validation set Dval is employed to select
hyperparameters of H(·|S). Figure 2 presents corresponding meta-training process.

For an episode, a sample x from S
⋃

Q first is inputted into the feature encoder fϕ

to attain an embedding representation fϕ(x) ∈ RW×H×C. Generally, each input sample is
represented as WH C-dimensional embedding features. Thus, the entire support set can
be denoted as NKWH C-dimensional support embedding features, that is, ZS = fϕ(S) ∈
RNKWH×C and each query image can be denoted as WH C-dimensional query embedding
features, that is, Zq = fϕ(q) ∈ RWH×C. Next, the relation matrix R of these embedding
features can be formulated as follows:

Ri,j = s(Zq
i , ZS

j ) (1)

where i ∈ {1, 2, 3, . . . , WH}, j ∈ {1, 2, 3, . . . , NKWH} and s(·, ·) is a similarity function.
In this paper, Gaussian similarity function is selected to calculate similarity. Different
from prior work that is based on class-level [58] or image-level [26] relation, our proposed
approach aims to construct task-level relation while sustaining discriminative relations.

Moreover, a convolution block fυ consisting of two 1 × 1 convolution layers is applied
to the embedding features extracted by the feature encoder. Then another relation matrix
R
′

is calculated by the following operation:

R
′
i,j = s( fυ(Zq

i ), fυ(ZS
j )) (2)

where i ∈ {1, 2, 3, . . . , WH}, j ∈ {1, 2, 3, . . . , NKWH}. For relation matrix R
′
, each row

denotes the adaptive subspace relation of each space position in the query image to all space
positions of all support images. Furthermore, to eradicate the noises (e.g., the irrelevant
relations), a threshold λ is applied to the relation matrix R

′
, which can generate task

attention A by the following operation:

Ai,j =
M(R

′
i,j)

∑j M(R′i,j)
(3)

M(x) =
{

1, i f x > λ
0, otherwise.

(4)

As shown in Equation (3), the universal embedding features tend to exist in multiple
categories in the whole task, which will greatly reduce the attention they receive. Hence,
their corresponding attention value will also relatively smaller. Additionally, considering
that the impact of each irrelevant noise is small, but the total number is quite large, which
still has a considerable effect on the distribution of task attention. To this end, Equation (4)
is adopted to filter the task attention, which can select informative relations and eliminate
negligible relations.

Considering that the threshold λ is fixed in Equation (4), it can not handle different
query features flexibly. For this purpose, a task encoder with the adaptive threshold λ

′
is

proposed, as shown in Figure 5. Unlike Equation (4), a transformer, consisting of three fully
connected layers, is employed to adaptively yield the threshold λ

′
for each C-dimensional
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embedding feature of the query image. Meanwhile, considering that Equation (4) is indif-
ferentiable, a variant M

′
of the sigmoid function is adopted to approximate it:

M
′
(x) = 1/(1 + expβ(λ

′−x)) (5)

where λ
′

is the adaptive threshold of x, and x represents one of the elements in A. Concep-
tually, when β takes a large enough value, M

′
is equivalent to M.

Subsequently, a weighted relation matrix A⊗R can be calculated by a Hadamard prod-
uct between A and R. Then, the predicted score belonging to the c-th category is attained
by gathering the weighted relation between the query sample q and the c-th category:

Scorec =
1

WH

WH

∑
i=1

rc
KWH

∑
j=rc

1

(A⊗ R)i,j (6)

where rc
t denotes that the t-th relation of KWH relations belonging to the c-th category in

the NKWH relations of all support samples. Hence, the final predicted probability P of the
query image q can be formulated as follows:

P(y = c|q) = exp(Scorec)

∑N
c′=1

exp(Scorec′ )
(7)

where N represents the total quantity of categories in the N-way K-shot setting.

Embedding Features

S

q

1
×

1
 co

n
v

transformer 

Relation Matrix Task Attention

'

g

Adaptive Threshold

' ( )

1
×

1
 co

n
v

Figure 5. The schematic of task-adaptive attention module.

3.5. Meta-Testing

At the end of meta-training, a novel set Dnovel is typically utilized to estimate the
generalization performance of the trained model H(·|Sbase). It is worth noting that all
classes in Dnovel have never appeared in the meta-training stage. In the meta-testing stage,
a set of new episodes are stochastically sampled from Dnovel , also known as meta-testing
set Dtest

T = {Ti}I
i=1. Here, T consists of Snovel and Qnovel . Then, given the novel support set

Snovel , categories of samples from Qnovel can be predicted by the trained model H(·|Sbase).

4. Results and Discussions

In this section, dataset description and experimental settings are first presented. Then,
several state-of-the-art methods for few-shot learning are compared with our proposed
approach and the corresponding experimental results are presented below. Moreover,
we also conduct a series of ablation experiments to investigate the impact of different
components on model performance, containing the pre-training strategy, task-adaptive
attention mechanism, and the number of shots.
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4.1. Dataset Description

The UC Merced land-use dataset [59] consists of 21 categories with a total of 2100 scene
images, each of which corresponds to 100 land-use images containing 256 × 256 pixels. Fur-
thermore, all scene images are of RGB color space. The scene categories contain agricultural,
airplane, baseball diamond, beach, buildings, chaparral, and other scenes. This dataset was
published by UC Merced Computer Vision Laboratory in 2010, including various urban
area imageries from the United States Geological Survey. In this dataset, 10 categories are
deemed as the base set, 5 categories are considered as the validation set and the remaining
6 categories are considered as the novel set. In the experiments, the shapes of all images are
adjusted to 84 × 84 to fit our proposed feature encoder for feature extraction.

The WHU-RS19 dataset [60] is also composed of remote sensing scenes, which was
published by Wuhan University. It consists of 19 scene categories in total, and the quantity
of samples for each category is more than or equal to 50 images. A total of 1005 images are
contained in this dataset. The entire dataset is divided into three subsets, namely, a base
set containing 9 classes, a validation set containing 5 classes, and a novel set containing
5 classes. In order to adapt to our proposed feature encoder, the pixel sizes of all scene
images are adjusted to 84 × 84.

The NWPU-RESISC45 is a quite popular scene dataset in the domain of remote sensing,
and was published by Cheng et al. [61] in 2017. It contains 45 scene classses and each class
has 700 scene images, which consists of a total of 31,500 images, as shown in Figure 6.
Each scene image is of 256 × 256 pixels. The scene classes include airplane, beach, circular
farmland, dense residential, parking lot, and other scenes. These scene data are gathered
by experts from Google Earth, and the spatial resolution of each pixel varies between
close to 30 and 0.2. The entire dataset is split into 3 subsets, namely, a base set containing
25 classes, a validation set containing 10 classes, and a novel set containing 10 classes.
In the experiments, the pixel sizes of all scene images are adjusted to 84 × 84 , which is to
adapt to the designed feature encoder. The segmentation details of the three scene datasets
mentioned above are presented in Table 1.

Table 1. The segmentation details of UC Merced dataset, WHU-RS19 dataset, and NWPU-
RESISC45 dataset.

Datasets Base Validation Novel

Agricultural;
Baseball diamond;

Buildings; Airplane; Beach;
Parking lot; Forest; River;

UC Merced Harbor; Runway; Golf course;
Medium residential; Intersection; Mobile home park;

Dense residential; Storage tanks; Sparse residential;
Chaparral; Tennis court;
Freeway;
Overpass;

Airport;
Bridge;

Football field; Beach; Meadow;
Desert; Forest; Pond;

WHU-RS19 Mountain; Farmland; River;
Industrial; Park; Viaduct;

Port; Railway station; Commercial;
Residential;

Parking;
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Table 1. Cont.

Datasets Base Validation Novel

Airplane;Church;
Baseball diamond;

Bridge;Beach;
Cloud;Freeway; Commercial area; Airport;
Desert;Island; Overpass; Dense residential;

Chaparral; Industrial area; Basketball court;
Harbor;Lake; Railway station; Circular farmland;

Meadow;Mountain; Snowberg; Intersection;
NWPU-RESISC45 Palace;Ship; Runway; Forest;

Railway;Stadium; Storage tank; Ground track field;
Wetland; Terrace; Parking lot;

Golf course; Thermal power station; Medium residential;
Mobile home park; Tennis court; River;
Sparse residential;

Sea ice;
Roundabout;

Rectangular farmland;

airplane baseball diamond beach bridge rectangular farmland cloudchurch desert freeway

golf course harbor

island

lake meadow palacerailway

chaparral wetlandroundabout sea iceship sparse residentialstadium commercial area industrial area

overpass railway station storage tankterracesnowbergrunway tennis court thermal power station

circular farmland

airport basketball court parking lotforestdense residential medium residentialground track field intersection

river

mountain mobile home park

Figure 6. Scene images (with 84 × 84 pixels) derived from 45 categories in the NWPU-RESISC45
dataset [61]. Airport, basketball court, circular farmland, dense residential, forest, ground track
field, intersection, medium residential, Parking lot, and river are selected as the novel set for perfor-
mance evaluation.
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4.2. Experimental Settings

In this section, the network architecture and hyperparameter setup are described in detail.
To make a fair comparison with other work, the same backbone as other methods [24–26], a 4-
layer convolutional network (Conv-4), is employed as our encoder to extract embedding
features, which consists of 4 convolution modules, as depicted in Figure 4. For each
convolution module, there is a convolutional layer with 64 kernels whose size is 3 × 3,
a batch normalization operation, a Leaky ReLU nonlinearity activation function, and a
2 × 2 max-pooling layer. The padding and stride sizes are both set to 1 in the convolutional
layer while for the 2 × 2 max-pooling, the padding and stride sizes are separately set to 0
and 2. For each batch normalization operation, the momentum factor is set to 0.1 and the
value of epsilon ε is set to 0.00001. The learning rate η is initialized to 0.001. In addition, all
comparison models adopt the cross-entropy loss to evaluate generalization performance.
The models are optimized by Adam Optimizer, where β1 and β2 are separately set to 0.9
and 0.999 to adjust exponential decay rates. The pixel size of each image is adjusted to
84 × 84. Classification accuracy is employed to evaluate the performance of all models,
which is formalized as:

Accuracy =
1
L
L
∑
t=1

ut

V
(8)

where L denotes the total quantity of tasks, ut denotes the quantity of samples that are
correctly classified in the t-th task, and V denotes the total quantity of samples in the task.

For traditional deep learning, an epoch indicates that the whole dataset passes the
neural network by the forward propagation once. For few-shot learning, each episode
randomly sampled from the dataset. Though there are only a few labeled images per
episode, when the total quantity of episodes is more enough, all samples have been
probably sampled in the whole dataset. In our work, an epoch consists of 5000 episodes.

Pre-training is done with Dbase containing 10, 9, and 25 categories for UC Merced, WHU-
RS19, and NWPU-RESISC45 experiments, separately. For the meta-learning (i.e., meta-training
and meta-testing) stage, 5 novel classes are randomly chosen from Dtrain per episode, and 1
or 5 samples (i.e., shots) from 5 randomly chosen novel classes makes up the support set.
Following the protocol of few-shot learning [25,62], the query set contains 15 samples per class
in each episode. The PyTorch framework is adopted to implement our proposed TAE-Net,
which is run with four NVIDIA Tesla V100 GPUs (32G × 4).

4.3. Experimental Results
4.3.1. Experimental Results on UC Merced Dataset

In few-shot scenarios, the classification results on the UC Merced dataset are pre-
sented in Table 2, where classification accuracies are acquired by averaging the results
of 600 episodes randomly sampled on the novel set with 95% confidence interval. In the
experiments, nine other few-shot scene classification approaches of remote sensing images
are employed to make a comparison, in which average accuracies with 95% confidence
interval are reported. For Table 2, it is observed that our proposed TAE-Net performs
best with accuracies of 60.21% and 77.44% in the scenarios of 5-way 1-shot and 5-way
5-shot , outperforming the accuracies of RS-MetaNet with 2.98% and 1.36% improvements,
separately. Compared to DLA-MatchNet, the proposed TAE-Net has 6.45% and 14.43%
improvements in the scenarios of 5-way 1-shot and 5-way 5-shot, separately. In addition,
our proposed TAE-Net exceeds TPN with 6.85% improvement in the 5-way 1-shot scenario
and 9.21% improvement in the 5-way 5-shot scenario, separately. The proposed TAE-Net
achieves higher classification accuracies than existing state-of-the-art methods. In con-
sequence, it is illustrated that our proposed TAE-Net can take full advantage of a small
amount of information from limited samples, which promotes the performance of scene
classification in the cases of limited labeled samples.
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Table 2. Classification accuracies and standard deviations (%) of 5-way 1-shot and 5-way 5-shot on
the UC Merced dataset. The best results per scenario are marked in bold.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet [24] 46.16 ± 0.71 66.73 ± 0.56
Prototypical Network [25] 52.62 ± 0.70 65.93 ± 0.57

MAML [47] 43.65 ± 0.68 58.43 ± 0.64
Meta-SGD [52] 50.52 ± 2.61 60.82 ± 2.00

Relation Network [26] 48.89 ± 0.73 64.10 ± 0.54
TPN [56] 53.36 ± 0.77 68.23 ± 0.52
LLSR [29] 39.47 57.40

RS-MetaNet [31] 57.23 ± 0.56 76.08 ± 0.28
DLA-MatchNet [32] 53.76 ± 0.60 63.01 ± 0.51

TAE-Net (ours) 60.21 ± 0.72 77.44 ± 0.51

The proposed TAE-Net is capable of learning the task-specific feature representation
by task encoder, which eliminates the deviation of embedding features posed by limited
labeled samples. Additionally, pre-training scheme is developed for feature embedding,
which can provide the feature encoder of the model with better initialization parameters.

4.3.2. Experimental Results on WHU-RS19 Dataset

Comparative experiments on the WHU-RS19 dataset are performed in few-shot cases,
and the corresponding experimental results are presented in Table 3. All experimental
results are the average of 600 episodes with 95% confidence interval. It can be seen that our
proposed few-shot classification approach achieves the accuracies of 73.67% and 88.95%
in the 5-way 1-shot scenario and 5-way 5-shot scenario, separately. From Table 3, it is
observed that the proposed TAE-Net achieves superior performance over Prototypical
Network, with 2.79% improvement in the 5-way 1-shot scenario and 3.33% improvement
in the 5-way 5-shot scenario.

Compared with experimental results in the 5-way 1-shot scenario, the performance of
scene classification is better than that in the 5-way 1-shot scenario, which illustrates that
prior knowledge is more significant. In our proposed TAE-Net, task-adaptive attention
module integrates task-specific information into the relationship matrix, which can seek
out more informative prior knowledge from extremely limited labeled samples. Hence,
the proposed TAE-Net can significantly improve the classification performance of remote
sensing scene images in few-shot cases.

Table 3. Classification accuracies and standard deviations (%) of 5-way 1-shot and 5-way 5-shot on
the WHU-RS19 dataset. The best results per scenario are marked in bold.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet [24] 60.60 ± 0.68 82.99 ± 0.40
Prototypical Network [25] 70.88 ± 0.65 85.62 ± 0.33

MAML [47] 46.72 ± 0.55 79.88 ± 0.41
Meta-SGD [52] 51.54 ± 2.31 61.74 ± 2.02

Relation Network [26] 60.54 ± 0.71 76.24 ± 0.34
TPN [56] 59.28 ± 0.72 71.20 ± 0.55
LLSR [29] 57.10 70.65

DLA-MatchNet [32] 68.27 ± 1.83 79.89 ± 0.33
TAE-Net (ours) 73.67 ± 0.74 88.95 ± 0.53

4.3.3. Experimental Results on NWPU-RESISC45 Dataset

Experimental results on the NWPU-RESISC45 dataset are presented in Table 4, where
all evaluation results are the average accuracies on 600 episodes. In Table 4, it is distinctly
observed that the proposed TAE-Net obtains best performance with classification accuracies
of 69.13% and 82.37% in the 5-way 1-shot scenario and 5-way 5-shot scenario, respectively.
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Compared with DLA- MatchNet, our proposed TAE-Net achieves more superior perfor-
mance, with 0.33% and 0.74% improvements in the scenarios of 5-way 1-shot and 5-way
5-shot. Additionally, the proposed TAE-Net exceeds RS-MetaNet with 16.35% improvement
in the 5-way 1-shot scenario and 10.88% improvement in the 5-way 5-shot scenario. Besides,
the proposed TAE-Net also obtains greater improvements than other methods. The reason
for achieving such significant improvements is that our proposed TAE-Net can reduce the
interference between similar embedding features while focusing more on enhancing the
discrimination between informative embedding features.

Table 4. Classification accuracies and standard deviations (%) of 5-way 1-shot and 5-way 5-shot on
the NWPU-RESISC45 dataset. The best results per scenario are marked in bold.

Method 5-Way 1-Shot 5-Way 5-Shot

MatchingNet [24] 54.46 ± 0.77 67.87 ± 0.59
Prototypical Network [25] 50.82 ± 0.84 74.38 ± 0.59

MAML [47] 37.36 ± 0.69 45.94 ± 0.68
Meta-SGD [52] 60.63 ± 0.90 75.75 ± 0.65

Relation Network [26] 58.61 ± 0.83 78.63 ± 0.52
TPN [56] 66.51 ± 0.87 78.50 ± 0.56
LLSR [29] 51.43 72.90

RS-MetaNet [31] 52.78 ± 0.09 71.49 ± 0.81
DLA-MatchNet [32] 68.80 ± 0.70 81.63 ± 0.46

TAE-Net (ours) 69.13 ± 0.83 82.37 ± 0.52

4.4. Ablation Study

To further validate the effectiveness of our proposed TAE-Net on few-shot scene
classification of remote sensing images, a sequence of ablation experiments are performed
to analyze the role of each module in our framework and presented as follows.

4.4.1. Effect of Pre-Training Strategy

Before meta-training, pre-training is introduced to improve the feature representation
ability of the model in few-shot settings, which can give the model a good initialization.
To illustrate the effect of pre-training, experiments with and without pre-training are
conducted, in which several cases containing different shots are designed for comparison.
Experimental results on UC Merced dataset are depicted in Figure 7.

Figure 7. Classification accuracies with different number of shots on UC Merced dataset.
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In Figure 7, it can be seen that the classification accuracy without pre-training is only
58.17% in the 5-way 1-shot scenario, which is markedly lower than our proposed TAE-Net
by approximately 2%. Likewise, the classification accuracy without pre-training is 74.32%
in the 5-way 5-shot scenario, which is obviously lower than our proposed TAE-Net by
approximately 3%. Besides, the proposed method with pre-training is superior to that with-
out pre-training in the settings of different shots by a large margin. It can be demonstrated
that pre-training before meta-training helps to improve the performance of few-shot scene
classification, which can yield a feature encoder with good initialization parameters.

4.4.2. Effect of Task-Adaptive Attention Module

In our proposed approach, a task-adaptive attention module is designed to enhance
discriminative embedding features and weaken common embedding features shared by
diverse scenes, which can strengthen the discrimination between embedding features from
different categories and reduce the distraction of irrelevant information. To verify the effect
of the task-adaptive attention module, an ablation experiment is conducted on UC Merced
dataset. The results of the ablation experiment for the task-adaptive attention module is
depicted in Figure 8. It is observed that when the task-adaptive attention module is ablated,
the classification performance of the model notably degenerates in various numbers of
shots settings. As the task-adaptive attention module is removed, the model is inclined to
treat equally noncritical embedding features and discriminative embedding features, which
makes it difficult for the model to pay more attention to informative features. Moreover,
it is also noticed that the task-adaptive attention module has a growingly significant
contribution to classification performance as the number shots increases. For example,
in the case of 5-way 1-shot, the classification accuracy of the model improves by 10% when
the task-adaptive attention module is adopted. By contrast, the classification accuracy of the
model increases by nearly 13% in the case of 5-way 5-shot when the task-adaptive attention
module is adopted. It is verified that our proposed task-adaptive attention module can
significantly improve the classification performance of the model in few-shot settings,
since it enhances the discriminability between embedding features belonging to diverse
categories and reduces the impact of irrelevant information on classification.

Figure 8. 5-way accuracies of the ablation analysis of task-adaptive attention module. When task-
adaptive attention module is removed, the classification performance of the model degenerates
dramatically in all scenarios.

To intuitively illustrate the effect of the task-adaptive attention module, 5-way 1-shot
classification experiments are carried out on the UC Merced dataset. Figure 9 visualizes
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corresponding experimental results, including validation accuracies and losses in the cases
of with the task-adaptive attention module and without the task-adaptive attention module.
The number of epochs ranges from 1 to 350 with the step size of 1. As can be seen in
Figure 9, in the meta-training stage, the validation losses with the task-adaptive attention
module are smaller than that without the task-adaptive attention module, and the best
validation accuracy obtained by our method is higher than that without the task-adaptive
attention module.

1 
 

 

                (a)                                   (b) 
         Figure 9. Validation losses and accuracies on the UC Merced dataset in the scenarios of 5-way 1-shot.
(a) shows the validation losses, and (b) shows the validation accuracies.

4.4.3. Effect of Shots

To further validate the 5-way classification performance in the case of different number
of shots, a series of experiments are performed on two public datasets, that is, UC Merced
and NWPU-RESISC45. Figure 10 presents the corresponding experimental results, where
our model is provided with 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 labeled support images. It is
observed from Figure 10 that the classification accuracy significantly improved as the
quantity of shots increases from 1 to 5. Nevertheless, the classification performance of the
model does not benefit a lot as the number of shots keeps on increasing. It demonstrates that
our proposed TAE-Net is well-suited to scene classification tasks in the case of extremely
limited labeled samples.

Figure 10. The influence of different shots on 5-way accuracies is presented with 95% confidence
interval, in which the experiments are performed on UC Merced and NWPU-RESISC45.
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5. Conclusions

In this paper, a task-adaptive embedding network based on meta-learning is proposed
for remote sensing scene classification in few-shot settings, which aims to extract more
informative embedding features from the perspective of the entire task. Our proposed
approach first adopts Conv-4 as an encoder to learn embedding representation from the
base set. Next, in the meta-training phase, the whole model is optimized by task-adaptive
embeddings. To be specific, a task-adaptive attention mechanism is developed to adaptively
filter irrelevant information and retain discriminative information in a certain task, which
can avoid distraction from the general features shared by different categories. Experiments
on three popular scene datasets illustrate that our proposed approach exceeds existing state-
of-the-art few-shot approaches and achieves new state-of-the-art performance. Moreover,
a series of ablation experiments are performed to investigate the influence of the pre-
training strategy, task-adaptive attention mechanism, and the number of shots.

In the current work, we only use labeled data for few-shot scene classification, while
ignoring the impact of unlabeled data on classification performance. Hence, an attractive
research focus is the improvement of the performance of few-shot remote sensing scene
classification under the semi-supervised setting, which will be the topic of future research.
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