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Abstract: The Markov random field (MRF) method is widely used in remote sensing image semantic
segmentation because of its excellent spatial (relationship description) ability. However, there are
some targets that are relatively small and sparsely distributed in the entire image, which makes it
easy to misclassify these pixels into different classes. To solve this problem, this paper proposes an
object-based Markov random field method with partition-global alternately updated (OMRF-PGAU).
First, four partition images are constructed based on the original image, they overlap with each other
and can be reconstructed into the original image; the number of categories and region granularity
for these partition images are set. Then, the MRF model is built on the partition images and the
original image, their segmentations are alternately updated. The update path adopts a circular
path, and the correlation assumption is adopted to establish the connection between the label fields
of partition images and the original image. Finally, the relationship between each label field is
constantly updated, and the final segmentation result is output after the segmentation has converged.
Experiments on texture images and different remote sensing image datasets show that the proposed
OMRF-PGAU algorithm has a better segmentation performance than other selected state-of-the-art
MRF-based methods.

Keywords: object-based Markov random field; high spatial resolution remote sensing image;
semantic segmentation; correlation assumption

1. Introduction

Semantic segmentation is an important part of remote sensing image processing,
and its goal is to give a special semantic interpretation to the homogeneous regions in
the image. The semantic segmentation results of remote sensing images can provide a
macro statistical data base for vegetation growth analysis [1], coastline protection [2], urban
development [3,4], etc.

Many methods for semantic segmentation have been proposed [5], which can be roughly
divided into two categories: supervised and unsupervised. The main difference between the
two is whether the classifier requires training samples. The former designs a classifier with
undetermined parameters according to specific rules, and obtains a classifier that can identify
specific categories by identifying training samples. This category contains many methods,
such as: support vector machines (SVMs) [6–8], neural network-based algorithms [9–15],
deep learning [16–22], etc. The latter is based on the image’s own features, directly modeling
the image’s data and giving segmentation results, such as: super-pixel [23–26], Markov
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random field (MRF) [27–34], conditional random field (CRF) [35–39], level set [40–42], etc.
Among these methods, MRF is based on the idea of probability statistics, which can consider
both image features and spatial information when modeling. It has become a widely used
segmentation method, and our research is based on the MRF method.

MRF-based methods usually include two sub-modules [27,31]: the feature field, which
describes the image features, and the label field, which describes the spatial relationship
between the nodes in the image. The feature field is mainly used to measure the likelihood
of the realization of the feature distribution for a given segmentation result for the given
image. The label field can calculate the probability of the segmentation realization, present-
ing the given result based on the defined neighborhood structure. Then, the problem of
image semantic segmentation is transformed into, for a given image, how to achieve the
realization of maximizing the posterior probability of the label field through the feature
field likelihood function and the prior probability of the label field.

The classic MRF [27] method uses pixels as processing units, and updates the seg-
mentation results pixel-by-pixel. After the introduction of wavelet tools, a series of multi-
resolution MRF (MRMRF) methods were formed [28,43,44]. This type of method can
obtain image features and spatial neighborhood information of different scales on different
resolution layers, and the accuracy of the semantic segmentation result is improved. With
the development of sensor technology, remote sensing images have shown high spatial
resolution development trends, and the returned remote sensing images describe the details
of ground objects more clearly. As a result, the sizes of the captured remote sensing images
get larger, and the amounts of the calculations for semantic segmentations are significantly
increased. Therefore, object-based image analysis (OBIA) [45] was introduced into the
MRF, forming object-based MRF (OMRF) [46] for semantic segmentation of remote sensing
images. It replaces pixels with small regions, with a certain homogeneity, as the nodes
to be processed, which reduces the amount of the calculation and can add some regional
features to the feature field modeling. However, the current high spatial resolution remote
sensing image requires more pixels to describe a surface target, which makes the spectral
value fluctuation range of the same category of the ground object larger. Moreover, the
spatial distribution of the same type of feature in the image is not necessarily concentrated,
which causes a low accuracy of the segmentation results.

To solve the above problems, many researchers have made efforts based on OMRF.
Zheng et al. [28] proposed the multiregion-resolution MRF (MRR-MRF) Model, this method
is based on MRMRF and introduces the idea of OBIA. It obtains different granularity
region adjacency graphs (RAG) on all resolution layers, and then passes through one-way
projection to obtain the original resolution image segmentation results. Yao et al. [44]
observed the multi-resolution MRF with the bilateral information (MRMRF-bi) model,
which mainly improved the update strategy of MRMRF. This method obtains the RAG at
the original resolution and directly projects it to each layer. In the subsequent segmentation
update process, each resolution layer is simultaneously affected by the segmentation
results of its adjacent upper and lower layers. Zheng et al. [30] proposed the hybrid MRF
With multi-granularity information (HMRF-MG), which designs a hybrid label field to
integrate and capture the interactions between the pixel-granularity information and the
object-granularity information.

The above methods all use the idea of multi-granularity, but at a large-size, high-
resolution image pixels belonging to the same category might have sparse spatial distribu-
tions and large changes in spectral values. These pixels will have a greater probability of
being classified into different categories. In order to solve this problem, simply using multi-
granularity does not help much to solve this problem. This paper proposes an object-based
Markov random field method with partition-global alternately updated (OMRF-PGAU).
First, the given original image is divided into four partition images, with the same size and
overlap; then RAGs with different granularity are built on these five images, and OMRF
are defined on the RAGs; finally, the original image and the partition images are updated
alternately until the segmentation is converged. The alternate update mechanism is, after
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the original image is self-updated, the segmentation result is projected to each partition
image to form a related auxiliary label field, which assists the four partition images to
update the segmentation results; after the four partition images are self-updated, their
segmentations form the auxiliary label field of the original image, according to the merging
mechanism, and affect the update of the original image segmentation result.

The main contributions of the algorithm proposed in this paper can be summarized as
follows:

1. The original image and the partition images are set so that the segmentation result can
be updated alternately, locally and globally. For the original image, in the process of
updating the segmentation results, the homogeneity of the region can be considered,
and the entire image can be analyzed macroscopically to keep the segmentation results
smooth; in the four partition images, the local information can be better explored and
the details can be retained. The targets belonging to same category with sparse spatial
distribution in the original image is relatively more concentrated in the partitioned
image, which is easy to be divided into one class.

2. Different granularity is set in the original image and the four partition images. Using
different granularities to describe the same target, different area information and
spatial information can be obtained, and the inaccuracy due to unreasonable settings
of over-segmented regions can be avoided. It can also avoid the update segmentation
result falling into the local optimum.

3. Correlation assumption of the segmentation results of the original image and the four
partition images. For the original image, the auxiliary segmentation label field with
an indefinite number of classes obtained by merging the partitioned segmentation
results is used; for the partition images, the segmentation result of the original
image is projected to each partitioned image to form the auxiliary segmentation
label field. Using the correlation assumption, these auxiliary segmentation label
layers are combined with the priori segmentation of each image to form a hybrid label
field to update the segmentation results for each image.

More details of the proposed OMRF-PGAU has been introduced in the Section 2.
The parameter setting of the OMRF-PGAU and the comparative experiments with other
methods are presented in Section 3. The discussion of the experimental results are shown
in Section 4, and the conclusions of OMRF-PGAU are given in Section 5.

2. Methodology

The OMRF-PGAU method proposed in this paper aims to accelerate the convergence
speed of segmentation update and improve the accuracy of segmentation. It uses the
idea of alternate updates the segmentation results of original and partitioned images, and
constructs the hybrid label field according to the correlation assumption. In this section,
the MRF method will be briefly introduced, and then the specific details of the proposed
OMRF-PGAU algorithm will be given.

2.1. MRF for Image Segmentation

For a given image I of size M × N, its pixel location index set can be denoted as
Spixel = {(m, n)|1 ≤ m ≤ M, 1 ≤ n ≤ N }. Setting the number of categories K, then the
segmentation of the image I can be expressed by the following equations.

Spixel =
K⋃

i=1

Si (1)

Si ∩ Sj = ∅, i 6= j (2)

Si =
{(

m′, n′
)∣∣ f (m′, n′

)
= spi

}
(3)
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Equations (1) and (2) indicate that image segmentation is the division of the original
image I into K mutually disjoint subsets, and these subsets can be merged into the original
image. Equation (3) indicates that the pixels contained in each class are consistent with the
specific properties of this class, spi represents the specific properties of the i-th class.

The MRF method is a graph model method based on probabilistic statistics. It cannot
only explore the spectral features of the image, but also the spatial information contained
in the image based on the neighborhood relationship.

For the given image I, we can obtain its region adjacency graph (RAG), G = (V, E).
V = {Vs|s ∈ S} is the set of nodes that wait to be segmented. When the node Vs is a pixel,
this model is a pixel-based MRF (pMRF). If the Vs represents an over-segmented region
which is a set of pixels contained in this region, it’s an object-based MRF (OMRF). Moreover,
E =

(
es,s′
)
‖S‖×‖S‖ is a 0–1 matrix, which records the adjacency relationship between each

node, es,s′ = 0 unless the node s and s′ are adjacent. The S is the position index set.
Take OMRF as an example, its algorithm flowchart is shown as in Figure 1. Based on

the G, two random field can be established: the feature field Y = {Ys|s ∈ S}, and the label
field X = {Xs|s ∈ S}. Ys represents the feature vector of the node Vs. Xs represents the
segmentation label of node Vs, which is a random variable valued in the set Λ={1, 2 · · · , K}.
K is a preset number of the category. In the case of a given image I, the feature field Y
has a unique realization y. Assuming that x is a realization of the label field X, then
probability modeling is performed on the feature field; that is, the distribution function of
P(Y = y|X = x ) is calculated. It means the probability that the feature field is realized as y
when the realization of the label field is x. The P(Y = y|X = x ) is usually assumed to obey
Gaussian mixed model and the features of each node are assumed to be independent of
each other. That is,

P(Y = y|X = x ) = ∏
s∈S

P(Ys = ys|Xs = xs ) (4)

Input image
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( ) ( ) ( )P X x Y y P Y y X x P X x= =  = =  =

( ) ( )ˆ arg max
s

s s s s s s s
x

x P Y y X x P X x= = =  =

Output result

Label field

Feature  field

Figure 1. The flowchart of OMRF.

For the label field X, we assume it has Markov property, i.e.,

P(Xs|Xt, t ∈ S/s ) = P(Xs|XNs ) (5)

The Ns represents the neighborhood of node Vs, XNs denotes the segmentation labels
of the neighborhood nodes of node Vs. Vs′ ∈ Ns when es,s′ = 1. Then the P(X) can be
written as

P(X) = P
(

X1, X2, · · · , X‖S‖
)
≈∏

s∈S
P(Xs|XNs ) (6)

The ‖S‖ represents the number of the elements contained in the set S. According to
the Hammersley–Clifford theorem [47], the label field X with the neighborhood system
N = {Ns|s ∈ S} obeys the Gibbs distribution; that is

P(X) =
1
Z
· e−U(X) (7)
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where Z is the normalization constant and U(X) is the potential energy function of all
groups contained in the neighborhood of the random field. For each node Vs,

P(Xs = xs|Xs′ = xs′ , Vs′ ∈ Ns ) =
e−U(xs)

∑
xs′∈Λ

e−U(xs′)
(8)

For the image segmentation problem, it is usually assumed that the potential energy
function U(X) calculates only the energy of the two-point groups, i.e.,

U(xs) = ∑
Vs′∈Ns

v2(xs, xs′) (9)

v2(xs, xs′)=

{
−β xs=xs′

β xs 6= xs′
(10)

The β is potential parameter. By probabilistic modeling of the feature field Y and
the label field X, the image segmentation problem can be transformed into: finding the
maximized label field posterior probability implementation x̂. That is

x̂ = arg max
x

P(X = x|Y = y )

= arg max
x

P(Y = y|X = x ) · P(X = x)

= arg max
x

∏
s∈S

[P(Ys = ys|Xs = xs ) · P(Xs = xs)]

(11)

2.2. The OMRF-PGAU Model

To solve the problem that the low classification accuracy caused by targets belonging
to the same category, but not connected in spatial distribution, and with large differences
in spectral values in high-resolution remote sensing images, this paper proposes an object-
based Markov random field method with the partition-global alternately updated (OMRF-
PGAU) algorithm. Different from the classic MRF method, the OMRF-PGAU algorithm
does not always update the segmentation results with the entire image.

The flowchart of OMRF-PGAU is shown in Figure 2.

split

Input image

Partition 
images

RAGs with different 
granularities

Initialization 
segmentation

(2) Split

Auxiliary 
label fields 
for partition 

images

(3) Correlation hypothesis hybrid label field update (4) Independent update

(5) Merge

(6) Correlation hypothesis hybrid label field update

(1) Independent 
update

1st cycle
Auxiliary 

label fields 
for original 

image

…… 

ith cycle

Converge

Output 
segmentation 

result

I

 1I  2I

 3I  4I

Figure 2. The flowchart of the proposed OMRF-PGAU.

For a given image I, it is firstly divided into four partition images I′ =
{

I(1), I(2), I(3), I(4)
}

,
which have the same size, and there are overlapping areas between every two partition im-
ages. Then the RAG, G = (V, E) for the original image I, and G′ =

{
G(1), G(2), G(3), G(4)

}
,

G(i) =
(

V(i), E(i)
)

for the partitioned images I′ are established, respectively, and the feature

field Y, Y′ =
{

Y(1), Y(2), Y(3), Y(4)
}

, and label field X, X′ =
{

X(1), X(2), X(3), X(4)
}

are
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formed. The category number for each image is set as K, K(1), K(2), K(3), K(4) respectively.
Finally, the segmentation of the original image and the partition images are alternately
updated till the segmentation results are converged.

By constructing two layers, the original image layer and the partition image layer, the
global and local semantic information can be considered comprehensively. It enables the
segmentation process to mine more image information and effectively reduce the proba-
bility of falling into local optimal solutions. The two layers will set different granularity,
and the obtained features and spatial relationships will be different accordingly, so that the
segmentation process can ensure the smoothness of the region and protect the boundary
details of the region at the same time.

Therefore, the image semantic segmentation problem in the classical MRF approach,
which can be solved as a single-layer segmentation update problem, needs to be converted
into a two-layer joint solution problem in OMRF-PGAU, i.e.,(

x̂, x̂′
)
= arg max

x,x′
P
(
X = x, X′ = x′

∣∣Y = y, Y′ = y′
)

= arg max
x,x′

P
(
Y = y, Y′ = y′

∣∣X = x, X′ = x′
)
· P
(
X = x, X′ = x′

) (12)

For the above optimization solution problem, the main difficulty lies in the problem
of modeling the likelihood function of the feature field P(Y = y, Y′ = y′|X = x, X′ = x′ )
and the modeling of the prior partition probability of the label field P(X = x, X′ = x′). The
detailed procedure will be given below.

2.2.1. The Probabilistic Modeling of the Feature Field

For the OMRF-PGAU algorithm, it is difficult to directly obtain the feature field
likelihood function P(Y = y, Y′ = y′|X = x, X′ = x′ ). There are many variables in the
probability distribution function. So we give some assumptions that are used to assist the
derivation to obtain the probability model in a simple form.

In traditional single-layer MRF feature field modeling, it is usually assumed that each
node is independent of each other after a given segmentation label; that is, it conforms to
Equation (4). In the references [30,32,43], related to multi-layer MRF feature field modeling,
they all assume that the features of each layer are independent of each other. Therefore, we
put forward the following two hypotheses.

Assumption 1. For the original image I and partition images I′, when their priori segmentation
results are given, their feature fields are independent of each other. That is

P
(
Y = y, Y′ = y′

∣∣X = x, X′ = x′
)

=P
(
Y = y

∣∣X = x, X′ = x′
)
· P
(
Y′ = y′

∣∣X = x, X′ = x′
)

=P(Y = y|X = x ) · P
(
Y′ = y′

∣∣X′ = x′
)

=P(Y = y|X = x ) ·
4

∏
i=1

P
(

Y(i) = y(i)
∣∣∣X(i) = x(i)

) (13)

Assumption 2. The features of the nodes contained in each image are independent of each other
nodes, and are only affected by the segmentation results of their own images.

Then Equation (13) can be further written as,

P
(
Y = y, Y′ = y′

∣∣X = x, X′ = x′
)

=

{
∏
s∈S

[P(Ys = ys|Xs = xs )]

}
·

4

∏
i=1

{
∏

s′∈Si

[
P
(

Y(i)
s′ = y(i)s′

∣∣∣X(i)
s′ = x(i)s′

)]} (14)
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In Equation (14), the feature field distribution of each image uses the Gaussian-mixed
model, which is the default probability distribution of the feature field for the MRF method.
Specifically, Ys|Xs = h ∼ N(µh, Σh), Y(i)

s′

∣∣∣X(i)
s′ = h′ ∼ N

(
µ
(i)
h′ , Σ(i)

h′

)
. That is

P(Ys = ys|Xs = h ) = ∏
(m,n)∈Vs

P(Ym,n = ym,n|Xm,n = h )

= ∏
(m,n)∈Vs

(2π)−p/2 · |Σh|−1/2 · e−
[
(ym,n−µh)

T ·Σh
−1·(ym,n−µh)

]/
2

(15)

P
(

Y(i)
s′ = y(i)s′

∣∣∣X(i)
s′ = h′

)
= ∏

(m′ ,n′)∈V(i)
s′

P
(

Y(i)
m′ ,n′ = y(i)m′ ,n′

∣∣∣X(i)
m′ ,n′ = h′

)

= ∏
(m′ ,n′)∈V(i)

s′

(2π)−p/2 ·
∣∣∣Σ(i)

h′

∣∣∣−1/2
· e
−
[(

y(i)
m′ ,n′−µ

(i)
h′
)T
·
(

Σ(i)
h′
)−1
·
(

y(i)
m′ ,n′−µ

(i)
h′
)]/

2
(16)

In the Equations (15) and (16), p represents the dimension of the feature vector. µh
and Σh are the mean value and covariance matrix of the h-th category in the Gaussian
distribution of the image I. µ

(i)
h′ , Σ(i)

h′ are the mean value and covariance matrix of the h′-th
category in the Gaussian distribution of the image I(i). (m, n) and (m′, n′) are the pixel
position index in the image I and I(i). The specific calculation procedure is shown in the
following equations.

µh =

∑
s∈S,xs=h

∑
(m,n)∈Vs

ym,n

∑
s∈S,xs=h

‖Vs‖
(17)

Σh =

∑
s∈S,xs=h

∑
(m,n)∈Vs

(ym,n − µh)
T(ym,n − µh)

∑
s∈S,xs=h

‖Vs‖
(18)

µ
(i)
h′ =

∑
s∈S(i),x(i)

s′ =h′
∑

(m′ ,n′)∈V(i)
s′

y(i)m′ ,n′

∑
s∈S(i),x(i)

s′ =h′

∥∥∥V(i)
s′

∥∥∥ (19)

Σ(i)
h′ =

∑
s∈S(i),x(i)

s′ =h′
∑

(m′ ,n′)∈V(i)
s′

(
y(i)m′ ,n′ − µ

(i)
h′

)T(
y(i)m′ ,n′ − µ

(i)
h′

)
∑

s∈S(i),x(i)
s′ =h′

∥∥∥V(i)
s′

∥∥∥ (20)

In the above equations, the ‖A‖ denotes the number of elements contained in the set A.

2.2.2. The Probabilistic Modeling of the Label Field

In the traditional single-layer MRF model label field modeling, the neighborhood
system only needs to consider the neighboring nodes around the node itself. However, in a
two-layer or multi-layer structure, correlation assumptions are usually adopted, and the
corresponding nodes of adjacent layers are taken into consideration in the modeling. On
the basis of using Reference [30], we further set the influence relationship between adjacent
layers. For the probability of the joint label field of two layers P(X = x, X′ = x′), we give
the following assumption.
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Assumption 3. The label fields of the original image and four partition images are correlated with each
other, and the segmentation label of each node is influenced, not only by the neighboring nodes of its own
image layer, but also by the corresponding position nodes of its corresponding auxiliary image. Namely,

P
(
X = x, X′ = x′

)
=P
(
X′ = x′|X = x

)
· P(X = x)

=P
(
X′ = x′

∣∣Xpart = xpart ) · P(X = x)

=
4

∏
i=1

P
(

X(i) = x(i)
∣∣∣Xpart(i) = xpart(i)

)
· P(X = x)

=
4

∏
i=1

[
∏

s′∈S(i)

P

(
X(i)

s′ = x(i)s′

∣∣∣∣∣X(i)
Ns′

= x(i)Ns′
, Xpart(i)

Np(i)
s′

= xpart(i)

Np(i)
s′

)]
·∏

s∈S
P(Xs = xs|XNs = xNs )

=
4

∏
i=1

{
∏

s′∈S(i)

[
P
(

X(i)
s′ = x(i)s′

∣∣∣X(i)
Ns′

= x(i)Ns′

)
· P
(

X(i)
s′ = x(i)s′

∣∣∣∣∣Xpart(i)

Np(i)
s′

= xpart(i)

Np(i)
s′

)]}
·∏

s∈S
P(Xs = xs|XNs = xNs )

(21)

P
(
X = x, X′ = x′

)
=P
(
X = x

∣∣X′ = x′
)
· P
(
X′ = x′

)
=P(X = x|Xmerge = xmerge ) ·

4

∏
i=1

P
(

X(i) = x(i)
)

=∏
s∈S

P
(

Xs = xs

∣∣∣XNs = xNs , Xmerge
Nm

s
= xmerge

Nm
s

)
·

4

∏
i=1

[
∏

s′∈S(i)

P
(

X(i)
s′ = x(i)s′

∣∣∣X(i)
Ns′

= x(i)Ns′

)]
=∏

s∈S

[
P(Xs = xs|XNs = xNs ) · P

(
Xs = xs

∣∣∣Xmerge
Nm

s
= xmerge

Nm
s

)]
·

4

∏
i=1

[
∏

s′∈S(i)

P
(

X(i)
s′ = x(i)s′

∣∣∣X(i)
Ns′

= x(i)Ns′

)]

(22)

The P(Xs = xs|XNs = xNs ) and P
(

X(i)
s′ = x(i)s′

∣∣∣X(i)
Ns′

= x(i)Ns′

)
in Equations (21) and (22)

can be calculated according to Equations (7) to (10). The Xpart represents the partitioned
auxiliary segmentation result formed by projecting the segmentation result of the original
image onto four partition images. Xmerge represents the auxiliary segmentation result of
the original image formed by the segmentation result of the partition image according to
the merging rule. The projection rules and merge rules will be explained in more detail in
the next subsection. Nm

s represents all nodes corresponding to node Vs in the merge image
Imerge. Np(i)

s′ denotes all the nodes corresponding to node V′(i)s in the partitioned image I(i).
In Equations (21) and (22), the correlation between the segmentation labels in the

current layer and the segmentation labels in the auxiliary layer can be calculated by the
following equations.

P

(
X(i)

s′ = x(i)s′

∣∣∣∣∣Xpart(i)

Np(i)
s′

= xpart(i)

Np(i)
s′

)
= ∑

s∈Np(i)
s′

η
(i)
s′s P

(
X(i)

s′ = x(i)s′

∣∣∣Xpart(i)
s = xpart(i)

s

)
(23)
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η
(i)
s′s =

∥∥∥{(m, n)
∣∣∣(m, n) ∈ V(i)

s′ ∩Vp(i)
s

}∥∥∥∥∥∥{(m, n)
∣∣∣(m, n) ∈ V(i)

s′

}∥∥∥ (24)

P
(

X(i)
s′ = x(i)s′

∣∣∣Xpart(i)
s = xpart(i)

s

)
=

∥∥∥{(m, n)|x(i)m,n = x(i)s′ &xpart(i)
m,n = xpart(i)

s

}∥∥∥∥∥∥{(m, n)|xpart(i)
m,n = xpart(i)

s

}∥∥∥ (25)

P
(

Xs = xs

∣∣∣Xmerge
Nm

s
= xmerge

Nm
s

)
= ∑

s′∈Nm
s

θss′P
(

Xs = xs

∣∣∣Xmerge
s′ = xmerge

s′

)
(26)

θss′ =
‖{(m, n)|(m, n) ∈ Vs ∩Vs′ }‖
‖{(m, n)|(m, n) ∈ Vs }‖

(27)

P
(

Xs = xs

∣∣∣Xmerge
s′ = xmerge

s′

)
=

∥∥∥{(m, n)|xm,n = xs&xmerge
m,n = xmerge

s′

}∥∥∥∥∥∥{(m, n)|xmerge
m,n = xmerge

s′

}∥∥∥ (28)

In the above equations, the ηs′s (θss′ ) indicates the proportion of the overlap between
the node s (s′) of the auxiliary layer and the node s′ (s) of the current layer to the total area
of s (s′). The ‖A‖ denotes the number of elements contained in the set A.

Up to this point, the optimization process of the segmentation results can be converted
from Equation (12) as follows,(

x̂, x̂′
)
= arg max

x,x′
P
(
X = x, X′ = x′

∣∣Y = y, Y′ = y′
)

= arg max
x,x′

P
(
Y = y, Y′ = y′

∣∣X = x, X′ = x′
)
· P
(
X = x, X′ = x′

)
= arg max

x,x(1),x(2),x(3),x(4)
P(Y = y|X = x ) · P(X = x)

·
4

∏
i=1

[
P
(

Y(i) = y(i)
∣∣∣X(i) = x(i)

)
· P
(

X(i) = x(i)
∣∣∣Xpart(i) = xpart(i)

)]
= arg max

x,x(1),x(2),x(3),x(4)
P(Y = y|X = x ) · P(X = x|Xmerge = xmerge )

·
4

∏
i=1

[
P
(

Y(i) = y(i)
∣∣∣X(i) = x(i)

)
· P
(

X(i) = x(i)
)]

(29)

Further, substituting Equations (15), (16), (21), and (22) into the above Equation (29),
we get a node-by-node update strategy.

2.3. Rules for Partitioning and Merging

The algorithm OMRF-PGAU proposed in this paper requires first constructing the
partitioned image layer I′. For the given image I, its pixel location index set is Spixel =
{(m, n)|1 ≤ m ≤ M, 1 ≤ n ≤ N }. The set of pixel point location indexes for I′ = {I(1),
I(2), I(3), I(4)} can be written as,

Spixel(i) =

{(
m′, n′

)∣∣∣∣1 < m′ <
M
2

+ α, 1 < n′ <
N
2
+ α

}
(30)

The pixel position index (m′, n′) of the partitioned image I(i) has the following map-
ping relationship with the pixel position index (m, n) of the original image I. And the α is
the length of the overlapping area between the partition images.

f
(
m′, n′, i

)
= (m, n) =

(
m′ + ξ(i) ·

(
M
2
− α

)
, n′ + ζ(i) ·

(
N
2
− α

))
(31)
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ξ(i) =
{

1 i ∈ {3, 4}
0 else

, ζ(i) =
{

1 i ∈ {2, 4}
0 else

(32)

In the updating process, the auxiliary segmentation results of the partition images,
xpart =

{
xpart(1), xpart(2), xpart(3), xpart(4)

}
, need to be constructed from x:

(1) The segmentation result of the original image is first mapped to the corresponding
position of each partitioned image, i.e.,

xpart(i)
m′ ,n′ = x f (m′ ,n′ ,i) (33)

(2) Based on G = (V, E) and G(i) =
(

V(i), E(i)
)

, the difference between V and

V(i) is added as new nodes. The RAG of the auxiliary segmentation can be obtained,
Gpart(i) =

(
Vpart(i), Epart(i)

)
.

(3) The auxiliary segmentation labels of the nodes in I(i) are obtained, i.e.,

xpart(i)
s′ = mode(

{
xpart(i)

m′ ,n′

∣∣∣(m′, n′
)
∈ Vpart(i)

s′

}
) (34)

The mode(A) denotes the operation of taking the mode of the set A.
Regarding the Xmerge in Equation (22), it represents the auxiliary segmentation of the

original image obtained from the segmentation results of four partition images by the
merging algorithm (Algorithm 1). The merging algorithm (Algorithm 1) is shown below.

Algorithm 1: Merging algorithm for segmentation results of partitioned images.

Input: x, x(1), x(2), x(3), x(4), G, G(1), G(2), G(3), G(4), K, K(1), K(2), K(3), K(4)

Output: xmerge, the number of categories Kmerge, the RAG
Gmerge = (Vmerge, Emerge)

1 Projecting x to the corresponding position of the partition image to form a
temporary segmentation image x1, x2, x3, x4, respectively;

2 Based on V, the difference between V(1), V(2), V(3), V(4) and V is added as new
nodes. Gmerge = (Vmerge, Emerge) is obtained;

3 Comparing x1 and x(1) to obtain A(1) = (a(1)ij ) (the category confusion matrix),

and f (1) : Λ(1) → Λ (the category mapping). The a(1)ij denotes the number of

pixels labeled as i in x(1) and j in x1;
4 Obtaining the segmentation labels of the corresponding part of x(1) in the merged

segmentation xmerge according to the correspondence f (1);
5 Set Kmerge = K;
6 for i = 2 : 4 do
7 Based on the xi and x(i), obtaining the category mapping f (i) : Λ(i) → Λ;
8 Based on the overlapping region between x(i) and x(j)(j < i), obtaining the

category mapping f (i,j) : Λ(i) → Λ(j);

9 if f (j)
(

f (i,j)(α)
)
6= f (i)(α) then

10 set f (i)(α)=Kmerge + 1 and Kmerge = Kmerge + 1;

11 Obtaining the segmentation labels of the corresponding part of x(i) in the
merged segmentation xmerge according to the correspondence f (i);

12 return xmerge, Kmerge, Gmerge = (Vmerge, Emerge);

2.4. Update Path of the OMRF-PGAU

Equations (21) and (22) are the derivations of the prior probabilities of the label fields
for the original and partitioned images. Equation (29) represents the update path of the
segmentation result in the cycle. Specifically, in each update cycle, there exists a circular
update path as shown in the dashed box in Figure 2.
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(1) In the t-th cycle, the original image is updated independently, i.e., without consid-
ering the effect of the segmentation of the partitioned image on it, and the segmentation
result xtemp is obtained:

xtemp = arg max
x

P(Y = y|X = x ) · P(X = x) (35)

xtemp
s = arg max

xs

P
(
Ys = ys

∣∣Xt
s = xs

)
· P
(

Xt
s = xs

∣∣∣Xt−1
Ns

= xt−1
Ns

)
(36)

(2) The xtemp is projected to the partition images as the auxiliary segmentation xpart,t ={
xpart(1),t, xpart(2),t, xpart(3),t, xpart(4),t

}
according to the partitioning rules as Section 2.4 shown.

(3) Combined with the auxiliary label segmentation xpart,t, the segmentation results of
each partitioned image, x′temp =

{
x(1),temp, x(2),temp, x(3),temp, x(4),temp

}
are updated.

x(i),temp = arg max
x(i)

P
(

Y(i) = y(i)
∣∣∣X(i),temp = x(i)

)
· P
(

X(i),temp = x(i)
∣∣∣Xpart(i),t = xpart(i),t

)
(37)

x(i),temp
s′ = arg max

x(i)
s′

P
(

Y(i) = y(i)
∣∣∣X(i),temp

s′ = x(i)s′

)
· P
(

X(i),temp
s′ = x(i)s′

∣∣∣∣∣X(i)

N(i)
s′

= x(i),t−1

N(i)
s′

)

· P
(

X(i),temp
s′ = x(i)s′

∣∣∣∣∣Xpart(i),t

Np(i)
s′

= xpart(i),t

Np(i)
s′

) (38)

(4) The x′temp is taken as the prior segmentation result to update the four partitioned
images separately and independently, i.e., without considering the influence of the segmen-
tation results of other images. The obtained segmentation results of the four partitioned
images are noted as x′t =

{
x(1),t, x(2),t, x(3),t, x(4),t

}
.

x(i),t = arg max
x(i)

P
(

Y(i) = y(i)
∣∣∣X(i),t = x(i)

)
· P
(

X(i),t = x(i)
)

(39)

x(i),ts′ = arg max
x(i)

s′

P
(

Y(i) = y(i)
∣∣∣X(i),t

s′ = x(i)s′

)
· P
(

X(i),t
s′ = x(i)s′

∣∣∣∣∣X(i),temp

N(i)
s′

= x(i),temp

N(i)
s′

)
(40)

(5) The x′t1 is merged into the original image size as the auxiliary label segmentation
xmerge,t according to the merging algorithm shown in Section 2.4.

(6) According to Assumption 3, the labeled field of the original image take xtemp

and xmerge,t as prior knowledge, and the segmentation result xt of the original image can
be updated.

xt = arg max
x

P
(
Y = y

∣∣Xt = x
)
· P
(
Xt = x

∣∣Xmerge,t = xmerge,t ) (41)

xt
s = arg max

xs

P
(
Ys = ys

∣∣Xt
s = xs

)
· P
(

Xt
s = xs

∣∣∣Xtemp
Ns

= xtemp
Ns

)
· P
(

Xt
s = xs

∣∣∣Xmerge,t
Nm

s
= xmerge,t

Nm
s

)
(42)

The overall algorithm of the OMRF-PGAU is given below (Algorithm 2). In this paper,
the mean shift algorithm [48] is used as an over-segmentation algorithm to obtain the RAGs
of images.
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Algorithm 2: Framework of the OMRF-PGAU model.

Input: I; α; K, K(1), K(2), K(3), K(4); the area of the minimum region for the
partition images and the original image, s1 and s2; the potential energy
function parameter for the partition images and the original image, β1 and
β2.

Output: the segmentation result added x̂
1 Based on the original image I, the partitioned images I(1), I(2), I(3), I(4) are

generated from Equations (31) and (32);
2 Using the mean shift algorithm to obtain the RAGs (G, G(1), G(2), G(3), G(4));
3 Utilize the classical MRF to initialize the segmentation results of each image,

x0, x(1),0, x(2),0, x(3),0, x(4),0;
4 Set t = 0, x−1 = 0, di f fx = |x0 − x−1|;
5 while sum(di f fx(:)) > 0 or t ≤ 10 do
6 Set t = t + 1;
7 Independent update to obtain the temporary segmentation result xtemp of the

original image, xtemp = arg max
x

P(Y = y|X = x ) · P(X = x);

8 According to the partition rules in Section 2.4,

xtemp project−−−→
{

xpart(i),t|i = 1, 2, 3, 4
}

;

9 for i = 1 : 1 : 4 do
10 x(i),temp = arg max

x(i)
P
(

Y(i) = y(i)
∣∣∣X(i),temp = x(i)

)
·

P
(

X(i),temp = x(i)
∣∣∣Xpart(i),t = xpart(i),t

)
;

11 for i = 1 : 1 : 4 do
12 x(i),t = arg max

x(i)
P
(

Y(i) = y(i)
∣∣∣X(i),t = x(i)

)
· P
(

X(i),t = x(i)
)

;

13 The xmerge,t is calculated by the Algorithm 1;
14 According to the correlation assumption, update the segmentation result of I,

xt = arg max
x

P
(
Y = y

∣∣Xt = x
)
· P
(
Xt = x

∣∣Xmerge,t = xmerge,t );
15 Set x̂ = xt, and return x̂;

3. Experiments

In this section, OMRF-PGAU is experimentally verified for the performance of the
method and compared with some other state-of-the-art MRF-based methods. First, the
high spatial resolution remote sensing image database used in the experiment and the
indicators to measure the performance of the methods are introduced. Then the robustness
experiments of each parameter of the OMRF-PGAU method will be conducted to deter-
mine the range of the parameters. Finally, a comparison with other MRF-based methods
will be made and the quantitative index of the segmentation results will be given. All
experiments in this article are run on personal laptop. The operating system is Windows
10 (Microsoft (China) Co., Ltd., Beijing, China), and the experimental software is Matlab
R2020a (Mathworks, Natick, Massachusetts 01760 USA). Hardware information is as fol-
lows, CPU: i7-9750H, GPU: GTX-1660Ti, RAM: 32GB(DDR4 2666MHz), ROM: 512GB(SSD)
+ 2TB(HHD). In this section, we first set up experiments on the parameters of the proposed
model, and the results are shown in Figures 3–5. After that, we conduct segmentation
comparison experiments on synthetic images (Figures 6–8) and natural remote sensing
images (Figures 9–17) respectively. The details of the experiments will be provided next.

3.1. Datasets and Evaluation
3.1.1. Datasets

To verify the effectiveness of the algorithm proposed in this article, we selected
different types of mosaic images and remote sensing images (from four different databases).
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In particular, the three mosaic images are the color texture mosaic and the wood texture
mosaic, as shown in Figures 6–8, which are generated by the Prague texture segmentation
data generator [49]. The sizes of the images both are 512 × 512. Three images selected from
the SPOT5 remote sensing database are shown in Figures 9–11. The sizes are 560 × 420,
1000 × 1600, 1600 × 1600, respectively. The spatial resolution is 10 m. Three images
from Gaofen Image Dataset (GID) [50], as shown in Figures 12–14. The image sizes are
1400 × 2200, 1800 × 1800 and 3000 × 3000, the spatial resolution is 3.2 m. There are three
near-ground aerial images taken in Taizhou are shown in Figures 15–17, the sizes are
1024 × 1024, 2240 × 2240, 5000 × 5000, and the spatial resolution is 0.4 m, 0.1 m, 0.1 m.

3.1.2. Evaluation Indicator

In order to objectively evaluate the accuracy of the segmentation results and give
an objective evaluation numerically, this paper uses remote sensing images to divide the
evaluation indicators Kappa and overall accuracy (OA) [51], which are commonly used
in various fields. These two indicators are based on the confusion matrix CM =

(
Mij
)

k×k,
where Mi j represents the number of pixels that actually belong to the i-th category but
are classified into the j-th category in the segmentation result. The calculation formula of
Kappa and OA is as follow:

Kappa =

M ·
k
∑

i=1
Mii −

k
∑

i=1
(Mi+ ·M+i)

M2 −
k
∑

i=1
(Mi+ ·M+i)

, OA =

k
∑

i=1
Mii

M
(43)

In Equation (43), M =
k
∑

i=1

k
∑

j=1
Mij, Mi+ =

k
∑

j=1
Mij, M+i =

k
∑

j=1
Mji. For different

segmentation results of the same image, the higher the value of κ and OA, the closer to the
reality, the better the performance of the algorithm.

3.2. Robustness of Parameter in OMRF-PGAU

In the OMRF-PGAU algorithm, the input parameters mainly include the following:
the length of the overlapping area between the partition images (α), the minimum region
area of over-segmented algorithm for each image (s1, s2), and the parameter of the potential
energy function of the label field of each image (β1, β2).

The length of overlap area is mainly used in the algorithm to calculate the corre-
sponding relationship of each partition image category. If the length is too small, the
corresponding relationship will be unreliable due to too little sample data; if the length
is too large, the amount of the calculation will increase, and the difference between the
partition image and the original image will become smaller, and iteratively optimize no
significant effect. To verify the setting range of the length parameter for the overlap area,
take the Figure 9a as the experimental object. The size of the image is 560 × 420, so we
set the α value from 28 (5% of the original image length) to 112 (20% of the original image
length) of the original image size, the step size is 2 (0.357% of the original image length),
and uses Kappa and OA as the evaluation indicators, as shown in Figure 3. It can be seen
that, when the length of overlap area is in the [50,60] (8.9∼10.7% of the original image
length), the impact on the segmentation result is small, and the segmentation performance
is better. Therefore, in the subsequent experiments of this article, the default value of the
regional coincidence parameter is selected as 8.9∼10.7% of the original image length, which
will be fine-tuned for different images.

In this paper, the mean-shift algorithm [48] is used to obtain the granularity results
of each image. The minimum region area can determine the size of the over-segmented
region in the image in order to obtain different granularities. Different regional features
can be extract based on different granularities, and the calculation results of the potential
energy function in the label field can be also effected. We take Figure 9a as the experimental
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object, different minimum region areas are set to test the effect of this parameter on the
performance of the OMRF-PGAU algorithm. The value of s1 (minimum region area for the
partition images) and s2 (minimum region area for the original image) ranges from 10 to
305, and the step size is 5. The Kappa and OA of the segmentation results under each value
are shown in the Figure 4. It can be seen that compared to the minimum area parameter s1
of the partition images, the segmentation result is mainly affected by the minimum area
parameter s2 of the original image. When the s2 between 200∼240 (0.0850∼0.1020% of the
image area), the result is more stable, and the performance is better than other values. So
in this paper, we set the s1 and s2 as 0.09% of the image area, which will be fine-tuned for
different images.

Figure 3. Kappa and OA for different α (length of the overlapping area) from 28 to 112 with step 2.

(a) (b)(b)

Figure 4. Kappa and OA for different s1, s2 (minimum region area) from 10 to 305 with step 5:
(a) Kappa for different s1, s2; (b) OA for different s1, s2.

The parameter in the potential energy function of the label field is also a parameter that
needs to be manually set. It is mainly responsible for balancing the energy effect between
the label field and the feature field. If the β is too small, the segmentation result is mainly
affected by the energy of the feature field, and the spatial relationship of each node will be
ignored; if it is set too large, the spatial relationship will be emphasized, and the feature of
each node will be ignored. In our proposed method, there are 5 images (original image and
four partition images). We set the β1 of the partition images to be consistent, and β2 for the
original image. These two parameters are set from 0.1 to 5.4, and the step is 0.1. We use
the Kappa and OA to measure the quality of the segmentation results. The evaluation of
the segmentation results for different β values is shown in the Figure 5. It can be seen that
compared to the potential energy parameter β1 of the partitioned image, the segmentation
result is mainly affected by the potential energy parameter β2 of the original image. For the
β2, in the interval (0.1,1.3), the result is relatively stable, and the OMRF-PGAU performs
better when the β1 around 3 and β2 around 3.5. Thus, in the following experiments, in
order to ensure the stability, we set β1 around 3, β2 in the interval (0.4,0.9).
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(a) (b)

Figure 5. Kappa and OA for different β (potential energy parameter) from 0.1 to 5.4 with step 0.1:
(a) Kappa for different β; (b) OA for different β.

In short, although the proposed algorithm, OMRF-PGAU, contains many parameters,
some of the parameters in the calculation process, such as Gaussian distribution param-
eters, can be set according to statistical principles; and the numerical parameters need
to be manually given, such as the α, the minimum region area, and the potential energy
parameter, there is a relatively stable value range for the segmentation result.

3.3. Comparison Methods

To further verify the effectiveness of the proposed algorithm, there are some MRF-
based methods selected for comparative experiments, namely:

• ICM [27]: the classic pixel-level Markov random field model, which uses pixels as
nodes to model and update the segmentation results;

• pMRMRF [43]: introduces wavelet transform, constructs multi-resolution layers,
constructs pMRF model in each layer, and updates and transfer the segmentation
results from top to bottom. The upper layer’s segmentation is directly projected to the
lower layer as the initial segmentation;

• OMRF [46]: the over-segmentation algorithm first obtains a series of homogeneous
regional objects and uses them as nodes to construct an MRF model;

• MRR-MRF [28]: on the basis of pMRMRF, each layer is modeled by OMRF to form an
MRF model of multi-regional granularity and multi-resolution layers;

• MRMRF-bi [44]: on the basis of pMRMRF, the original image is modeled by OMRF,
and the area objects are projected to all layers. Each layer is updated from the top to
bottom, and the impact of the adjacent upper and lower layer segmentation results on
this layer is also considered when updating;

• OMRF-A [29]: on the basis of OMRF, an auxiliary mark field is introduced to construct
a hybrid segmentation mark, and the low semantic layer and the high semantic
layer are used to assist in the update of the segmentation results of the original
semantic layer;

• MGMCL-MRF [32]: it develops a framework that builds a hybrid probability graph
on both pixel and object granularities and defines a multiclass-layer label field with
hierarchical semantic over the hybrid probability graph.

By comparing with the above methods, the difference between the proposed algo-
rithm and different types of MRF-based methods can be obtained. Among the above
methods, there is MRF defined on the single layer method (ICM and OMRF), MRF de-
fined on multiple auxiliary layers (pMRMRF, MRR-MRF, MRMRF-bi), MRF defined on
single granularity with multi-class (OMRF-A), and MRF defined on multi-granularity with
multi-class (MGMCL-MRF).

For the sake of fairness, all object-based algorithms use the mean-shift method to
obtain the result of over-segmentation regions, and the minimum region area is set to
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0.9% of the experimental image area. For multi-resolution methods, wavelet transform is
used for low-resolution sampling, and “Haar” wavelet is used to construct a three-layer
multi-resolution structure. The setting of the β (potential energy function parameter) of all
MRF methods adopts the value range described in the previous subsection. The category
number settings of the multi-class method refer to the settings of the paper to which
it belongs.

3.4. Segmentation Experiments

The effectiveness of the OMRF-PGAU algorithm for texture processing is first verified
on the texture image images, because most of the ground objects in remote sensing images
have certain texture characteristics. For real RGB remote sensing images, the effectiveness
of the OMRF-PGAU algorithm for semantic segmentation of high spatial resolution images
is verified by testing images of different high spatial resolutions, different image sizes, and
different semantic categories of features.

3.4.1. Segmentation for Texture Images

Remote sensing images are rich in textures. Therefore, we first tested on synthetic
texture images to verify the effectiveness of the algorithm proposed in this paper. The three
synthetic texture images, as shown in Figures 6a, 7a and 8a, were both generated by the
Prague texture segmentation data generator.

These three images are both sized 512 × 512, and contain six category textures. For
the Figure 6a, the two types textures on the left-lower have greater similarities in the RGB
channels. For the textures in the upper-left, lower-left, upper- right, and lower-right parts,
the RGB channels of the same type are obviously different. As for the Figure 7a, its six
textures are composed of GeoEye images. The town texture on the left is composed of red
roofs and black shadows, the airstrip on the lower-right has a larger range of RGB spectrum
value changes, and most of them are similar to the upper-left texture. In the Figure 8a,
there are six wood textures, and the three types on the left contain striped structures, the
RGB distribution of the two types on the right and the one in the middle are quite different.
These are great challenges for semantic segmentation. The segmentation results are shown
in the Figures 6–8. Table 1 shows the accuracy evaluation indexes of each method for the
semantic segmentation results of Figures 6a, 7a, and 8a.

Table 1. Quantitative indicators of eight comparison methods for two texture images.

Methods ICM pMRMRF OMRF MRR-MRF MRMRF-bi OMRF-A MGMCL-MRF OMRF-PGAU

Figure 6 Kappa 0.6218 0.6658 0.7742 0.7991 0.8348 0.8521 0.8779 0.9527
OA 0.6596 0.7039 0.8053 0.8274 0.8590 0.8742 0.8974 0.9607

Figure 7 Kappa 0.5350 0.8086 0.9192 0.9327 0.9193 0.9289 0.9582 0.9916
OA 0.5706 0.8344 0.9320 0.9437 0.9321 0.9405 0.9654 0.9931

Figure 8 Kappa 0.5046 0.7978 0.8331 0.9277 0.9317 0.9355 0.9499 0.9761
OA 0.5467 0.8298 0.8633 0.9440 0.9459 0.9490 0.9608 0.9816

From the segmentation results, for Figure 6a, it is the phenomenon that the same type
of texture contains different features, which causes the poor segmentation performance of
the two pixel-level MRF methods (ICM, pMRMRF). The segmentation results of object-level
methods have been significantly improved, but there are all misclassifications. Among
them, OMRF divides the lower left texture into three parts, the lower right part is divided
into two parts, and most of the lower left and middle lower parts are divided into the same
type. The two multi-layer structures (MRR-MRF and MRMRF-bi) have improved compared
to the single-layer structure. Because they can get spatial information of different scales in
different resolution layers. However, there are still problems with OMRF. The two multi-
category methods have significantly improved the results of image segmentation. This
is because they introduce multi-category auxiliary markers, which can reasonably mine



Remote Sens. 2022, 14, 127 17 of 28

the sub-categories contained in various textures and improve the segmentation accuracy.
The OMRF-A method distinguishes between the lower left and middle left textures, but
the lower right texture has a significant misclassification phenomenon. MGMCL-MRF can
distinguish five kinds of textures more accurately, and the lower right part is segmented
relatively completely, but the texture misclassification in the lower left part is serious.
The segmentation result of OMRF-PGAU performs better than the selected comparison
method. The six textures are basically distinguished, but there are still a small amount of
misclassification in the lower right part, mainly because the RGB distribution within the
texture varies widely.

(a) Original image (d) Result of pMRMRF

(f) Result of MRR-MRF (j) Result of OMRF-PGAU(g) Result of MRMRF-bi

(e) Result of OMRF

(i) Result of MGMCL-MRF(h) Result of OMRF-A

(b) Ground truth (c) Result of ICM

Figure 6. Semantic segmentation results for fiber cloth texture image.

As for the Figure 7a, since the node considered by the ICM method is a pixel, and the
neighborhood only contains eight surrounding pixels, the spatial relationship considered is
relatively narrow, so the segmentation result is obviously misclassified. Because MRMRF
constructs a multi-resolution layer structure, a larger range of spatial relationships can
be considered, so the segmentation results have been improved. Several object-level
methods use over-segmented regions as nodes in the probability graph, so the regional
consistency of the segmentation results is better, and the completeness of each category
of the segmentation results is higher. Among them, MRR-MRF and MRMRF-bi combine
object-level idea and multi-resolution scales to significantly improve the segmentation
of urban parts. OMRF-A and MGMCL-MRF use multiple label fields to segment the
airstrips part more completely. OMRF-PGAU uses the partitioning-the overall alternate
update mechanism, combined with the advantages of the auxiliary label field, so that the
segmentation accuracy of towns, snow-capped mountains and airstrips is better.

(c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(j) Result of OMRF-PGAU(i) Result of MGMCL-MRF(h) Result of OMRF-A(g) Result of MRMRF-bi(f) Result of MRR-MRF

(a) Original image (b) Ground truth

Figure 7. Semantic segmentation results for GeoEye texture image.
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In the Figure 8a, there are two parts in the lower right category that are quite dif-
ferent from the surrounding ones. The middle category includes both wood and wood
shadows. For the three categories on the left, they all contain a large number of clauses
and structures. We can see the result that the pixel-level segmentation algorithm cannot
solve the problem of the classification of the strip structure. The segmentation accuracy
of object-level algorithms has been significantly improved. The classification accuracy
of the three categories on the left is gradually improved. Among them, the algorithm
proposed in this article has the best performance. This is because, in the partition auxiliary
images, some only contain two categories, and the complex multi-classification problem
is transformed into a relatively simple small-number classification problem. After the
partition and merging algorithm is used to obtain the category correspondence, it can have
a higher classification accuracy.

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi

(e) Result of OMRF

(h) Result of OMRF-A (j) Result of OMRF-PGAU(i) Result of MGMCL-MRF

Figure 8. Semantic segmentation results for wood texture image.

3.4.2. Segmentation for SPOT Images

To verify the segmentation performance of the OMRF-PGAU method for real remote
sensing images, in this section, two SPOT5 satellite images are selected as experimental
objects. The first image is 560 × 420 in size and contains three types of objects, buildings,
farmland, and trees. The second image has a size of 1000 × 1600 and contains only two
categories of objects, buildings, and farmland. The third image has a size of 1600 × 1600
and contains four types of objects, buildings, farmland, water, and trees. The spatial
resolution of three images is 10 m. The segmentation results of the three images by each
method are shown in Figures 9–11, and the evaluation indicators of the segmentation
results are shown in Table 2.

Table 2. Quantitative indicators of eight comparison methods for three SPOT5 images.

Methods ICM pMRMRF OMRF MRR-MRF MRMRF-bi OMRF-A MGMCL-MRF OMRF-PGAU

Figure 9 Kappa 0.5656 0.7656 0.8343 0.8618 0.8650 0.8733 0.8685 0.8836
OA 0.6451 0.8232 0.8838 0.9051 0.9076 0.9142 0.9091 0.9213

Figure 10 Kappa 0.6033 0.6416 0.6728 0.6806 0.6809 0.6846 0.6909 0.7436
OA 0.8095 0.8248 0.8459 0.8510 0.8512 0.8541 0.8597 0.9033

Figure 11 Kappa 0.4191 0.6241 0.6581 0.7398 0.7715 0.7509 0.8440 0.8985
OA 0.5008 0.6997 0.7306 0.8139 0.8378 0.8192 0.8986 0.9356

For Figure 9a, both the urban part and the farmland part contain some trees, moreover,
the cultivated land part contains a lot of strip textures, and the overall RGB of the whole
image is greenish. These all have a great impact on segmentation. this is a challenge
for segmentation. There are many regions of misclassification in the results obtained by
ICM, since the pixel-level method can only consider 8-pixel neighbor system. pMRMRF
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has improved, but a bit too smooth, and the protection of the boundary is very poor,
because when the multi-resolution structure is used, the segmentation result is directly
expanded twice and projected to a higher resolution layer. This makes pMRMRF’s blurring
of borders particularly obvious on small-sized images. The segmentation results of the
object-level method are significantly improved. The OMRF and MRR-MRF has some
misclassifications mainly in buildings part. Both MRMRF-bi and OMRF-A have a small
amount of misclassification in buildings and farmland parts. For the MGMCL-MRF, there
are a few misclassifications between buildings and farmland in the lower-left, and there
are also a few misclassifications between farmland and trees in the upper-left. The segmen-
tation of OMRF-PGAU is the best, but there is also the phenomenon of misclassification in
trees parts.

(f) Result of MRR-MRF

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(g) Result of MRMRF-bi (h) Result of OMRF-A (i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

FarmlandFarmland TreesTrees BuildingsBuildings

Figure 9. Semantic segmentation results for small size SPOT5 image.

For Figure 10a, it contains only two categories, buildings and farmland. However,
due to the large number of striped structures in the farmland, and the buildings are
scattered in the image, they are not concentrated, it is difficult to form a scale effect, so
the segmentation is more difficult. From the perspective of segmentation accuracy, the
accuracy of each method is not high. Both of the two pixel-level segmentation methods
have a large number of salt and pepper misclassification regions, and there are a large
number of stripe misclassifications. Object-level algorithms have been improved. Large
areas of farmland maintain a high regional consistency. However, it can be seen that they
do not improve the misclassification of stripe. This is mainly because the RGB distribution
in the farmland area is not concentrated. The algorithm proposed in this paper can extract
the buildings well, but for the striped misclassified area in the farmland, compared with
other object-level methods, the accuracy is only improved by 5%.
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(b) Ground truth(a) Original image (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A (i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

BuildingsFarmland

Figure 10. Semantic segmentation results for medium size SPOT5 image.

For the Figure 11a, there are many sub-categories in the buildings part, such as: mining
area, factory area, residential area, etc.; their spectral values vary widely, and the RGB
features of the factory subpart and the trees part are similar. Compared to the entire image,
the water part has a small proportion of pixels. All of these have caused a lot of trouble to
be segmented. The results of ICM and pMRMRF have many misclassifications in buildings
and farmland parts. Since the RGB channel values of the buildings and the farmland are
very similar. The black mining area in the buildings part is closer to the spectral feature
of the trees part, and all test methods misclassify this part into the trees category except
the MGMCL-MRF. MRR-MRF and MRMRF-bi use the multi-resolution structure to obtain
more regional information, so the segmentation results are improved, but many pixels
of the buildings part are mistakenly classified as trees. The results of MRMRF-bi and
OMRF-A mistake a large amount of farmland part in the middle part into the buildings
part. MGMCL-MRF improves the misclassification of the middle part, and the mining
area is basically divided correctly, this is mainly due to multi-granularity and multi-class
labels. The segmentation result of OMRF-PGAU is the best among these several methods.
It not only maintains the consistency of the buildings part in the upper-left part, but also
ensures that the farmland part in the middle of the image remains independent and not
swallowed by the buildings part. This is because the partition-merge alternate update is
used to ensure the independence of each small area in the partition image and the regional
consistency of each category in the original image.

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A

(e) Result of OMRF

(i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

BuildingsBuildingsTreesTreesFarmlandFarmlandWaterWater

Figure 11. Semantic segmentation results for big size SPOT5 image.

3.4.3. Segmentation for Gaofen-2 Images

To verify the performance of the proposed algorithm in higher spatial resolution with
larger size remote sensing images, the experimental images in this part are two remote
sensing images taken from the Gaofen image dataset (GID). The first image is 1400 × 2200,
and contains four types of objects, buildings, farmland, water, and trees. The second image
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has a size of 1800 × 1800 and only contains two types, buildings, and farmland. The third
one has a size of 3000 × 3000 and only contains three types, namely buildings, farmland,
and water. The spatial resolution of both images is 3.2 m. The segmentation results are
shown in Figures 12–14, and the accuracy measurement indexes of the segmentation results
are shown in Table 3.

Table 3. Quantitative indicators of eight comparison methods for three Gaofen-2 images.

Methods ICM pMRMRF OMRF MRR-MRF MRMRF-bi OMRF-A MGMCL-MRF OMRF-PGAU

Figure 12 Kappa 0.4687 0.5588 0.7429 0.8050 0.7966 0.8849 0.9105 0.9733
OA 0.5249 0.6274 0.8216 0.8760 0.8729 0.9293 0.9422 0.9843

Figure 13 Kappa 0.7552 0.7568 0.7711 0.7853 0.7888 0.7942 0.8021 0.8411
OA 0.8895 0.8906 0.9004 0.9178 0.9120 0.9175 0.9222 0.9390

Figure 14 Kappa 0.5316 0.6152 0.6638 0.7758 0.7973 0.8480 0.8868 0.9018
OA 0.6795 0.7466 0.7815 0.8740 0.9013 0.9266 0.9467 0.9607

For the Figure 12a, the RGB channel value of the buildings has a large variation range,
and there are many shaded areas in the buildings part whose features are very similar to
those of trees part. The features of the farmland part are also very close to the features of
water part. These all bring challenges to semantic segmentation. Therefore, the results of
ICM and pMRMRF are very poor. The OMRF, MRR-MRF, and MRMRF-bi all mistaken the
farmland part into the water part, and mistaken the tree part in the upper-left part into the
water part, but the division of the buildings part keeps the consistency of the area. OMRF-A
distinguishes the cultivated land part mainly because of the auxiliary marker field, but for
the tree part on the upper left of the image, there is still misclassification. Compared with
OMRF-A, MGMCL-MRF has been improved. The upper left part of the tree is segmented
and identified. This is because of the multi-granularity and multi-category concept, but
in the lower right part, some areas are mistakenly classified as water. The segmentation
result of OMRF-PGAU is the closest to reality. Both the farmland and the trees part on the
upper-left are identified. In the lower half of the image, the trees part and the water part are
also clearly distinguished. This is because in the segmentation process, the corresponding
category number is set for the partition images, so that all objects in each partition image
can be identified, and projected into the merged image to form an auxiliary label field and
assist in the update of segmentation results in the subsequent update process.

(b) Ground truth (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A (i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

BuildingsTreesFarmlandWater Untested area

(a) Original image

Figure 12. Semantic segmentation results for small size Gaofen-2 image.

For Figure 13a, the buildings are very sparsely distributed in the image. In the
farmland, there are both green planted areas and yellow unplanted areas. There are
paths connecting the buildings. However, due to the database labeling, the paths are
classified as farmland. The pixel-level algorithms, ICM and pMRMRF, have a large number
of misclassified pixels, and the edges of some buildings are swallowed by surrounding
farmland. The segmentation effect of the object-level algorithms have been improved, but
they are not ideal. Among them, MRR-MRF and MRMRF-bi divide many valley areas
into building categories. OMRF-A and MGMCL-MRF can identify a large number of the
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buildings pixel, but some areas of farmland are misclassified. OMRF-PGAU has a relatively
complete segmentation of buildings, but there are also misclassified areas in the farmland
that appear to be salt and pepper. In contrast, the recognition accuracy of OMRF-PGAU is
the highest.

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A (i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

BuildingsBuildingsFarmlandFarmland Untested areaUntested area

Figure 13. Semantic segmentation results for medium size Gaofen-2 image.

For the Figure 14a, the farmland part in the image is also scattered with many small-
scale building parts, which will affect the lower recognition in the segmentation. With the
increase of image size, many block misclassification phenomena have also appeared in
object-level methods. The segmentation results of ICM and pMRMRF are very poor, and
OMRF also has many areas that are misclassified as water in the farmland part. The results
of MRR-MRF and MRMRF-bi have a good completeness of the division for farmland part,
and there is no large area of farmland that is mistakenly classified as water, but many
farmlands are mistakenly classified as buildings. The result of OMRF-A still has many areas
where farmland is mistakenly classified as water. The segmentation results of MGMCL-
MRF and OMRF-PGAU are better, the three objects are identified better. OMRF-PGAU
maintains a high regional consistency for the upper-left part of the buildings part, and the
buildings part in the farmland part has not invaded to much of the farmland part.

(b) Ground truth(a) Original image (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(j) Result of OMRF-PGAU(i) Result of MGMCL-MRF(h) Result of OMRF-A(g) Result of MRMRF-bi(f) Result of MRR-MRF

Water Farmland Buildings Untested area

Figure 14. Semantic segmentation results for big size Gaofen-2 image.

3.4.4. Segmentation for Aerial Images

In Figures 15–17, the near-ground aerial image taken in Taizhou is selected as the
experimental image to further test the segmentation performance of the proposed method.
The size of Figure 15a is 1024 × 1024, its spatial resolution is 0.4 m. The size of Figure 16a
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is 2240 × 2240, and the size of Figure 17a is 5000 × 5000, these two have the 0.1 m spatial
resolution. These three aerial images contain three types of targets: buildings, farmland,
and water. The increase in spatial resolution makes each type of object contain many sub-
objects. For example, the farmland part includes both red roof, gray roof, white yard, and
shaded parts. For the farmland part, it includes yellow land where no crops are planted,
and green land where crops are planted. As for the water, some of the water has green
algae and some of the water has a darker color. They are easily confused with farmland.
The results of each segmentation method are shown in Figures 15–17, and the segmentation
accuracy indicators are shown in Table 4.

Table 4. Quantitative indicators of eight comparison methods for three aerial images.

Methods ICM pMRMRF OMRF MRR-MRF MRMRF-bi OMRF-A MGMCL-MRF OMRF-PGAU

Figure 15 Kappa 0.6802 0.8123 0.8582 0.8489 0.8695 0.8811 0.9415 0.9490
OA 0.7582 0.8656 0.9009 0.8939 0.9099 0.9190 0.9617 0.9670

Figure 16 Kappa 0.4230 0.5562 0.6239 0.7115 0.6976 0.7773 0.8124 0.8524
OA 0.4786 0.6181 0.6859 0.7723 0.7598 0.8372 0.8621 0.8969

Figure 17 Kappa 0.4839 0.5450 0.6742 0.7305 0.7146 0.7803 0.7806 0.8359
OA 0.5790 0.6415 0.7625 0.8135 0.8018 0.8661 0.8666 0.9067

For the Figure 15a, the three categories included in the image are more obvious, so
the results of each segmentation algorithm are better. Pixel-level algorithms still have a
large number of misclassified pixels. Among the object-level algorithms, OMRF, MRR-
MRF, MRMRF-bi, and OMRF-A are not ideal for identifying contaminated water (that
is, the middle left part of the figure), and part of the farmland is identified as a building
at the bottom left. The farmland has not been planted without cultivated land. For the
water in the middle part of the figure and the farmland segmentation at the bottom left,
MGMCL-MRF and the algorithm proposed in this paper have the best results. The OMRF-
PGAU result maintains good regional consistency of farmland. In contrast, the recognition
accuracy of OMRF-PGAU is the highest.

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A

FarmlandFarmland WaterWater Untested areaUntested areaBuildingsBuildings

(e) Result of OMRF

(j) Result of OMRF-PGAU(i) Result of MGMCL-MRF

Figure 15. Semantic segmentation results for small size areail image.

It can be seen that the segmentation results of ICM and pMRMRF have many mis-
classified pixels, which makes the segmentation result form salt and pepper phenomenon,
as shown in Figure 16c,d. The object-level segmentation method has been significantly
improved, as shown in Figure 16e. MRR-MRF and MRMRF-bi misinterpret the dark shad-
ows of some architectural areas as water, mainly because the RGB channel values of the
two are very similar. OMRF-A has improved this phenomenon because the use of auxil-
iary label fields has improved the classification accuracy. MGMCL-MRF further confirms
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that each sub-object can be divided into a major object by combining multi-granularity
and multi-class label fields. The proposed OMRF-PGAU assists the segmentation task
by constructing partition images and merging images, and finally obtains more realistic
segmentation labels.

(c) Result of ICM(a) Original image (b) Ground truth (d) Result of pMRMRF (e) Result of OMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (i) Result of MGMCL-MRF (j) Result of OMRF-PGAU

TreesTreesFarmlandFarmlandWaterWater BuildingsBuildings

(h) Result of OMRF-A

Figure 16. Semantic segmentation results for medium size areail image.

As for the Figure 17a, the accuracies of pixel-level segmentation results are generally
not high. The results of OMRF have been significantly improved, but a large amount of
farmland has been mistakenly classified as water. MRR-MRF and MRMRF-bi maintain
the regional consistency of the segmentation results because of the introduction of a multi-
resolution structure. OMRF-A and MGMCL-MRF obtain higher segmentation results with
the aid of multi-label fields. OMRF-APM uses partitioned images and a multi-granularity
structure to fully excavate the information in the image using a circular path that alternately
updates the total partitions. The segmentation result of OMRF-PGAU is the best among
several methods.

(a) Original image (b) Ground truth (c) Result of ICM (d) Result of pMRMRF (e) Result of OMRF

(f) Result of MRR-MRF (g) Result of MRMRF-bi (h) Result of OMRF-A (i) Result of MGMCL-MRF
BuildingsFarmlandWater Untested area

(j) Result of OMRF-PGAU

Figure 17. Semantic segmentation results for big size aerial image.

3.5. Computational Time

The computational complexity of the OMRF-PGAU algorithm is of the same order
of magnitude as OMRF, O

([
K(1) · n(1) + K(2) · n(2) + K(3) · n(3) + K(4) · n(4) + K · n

]
t
)

,

where K(i) is the number of the classes for I(i), n(i) is a number of the vertexes for I(i), K is
the number of the classes for I, n is a number of the vertexes for I, and t is the number of
iterations. To further test the calculation speed of OMRF-PGAU, we counted the calculation
time of all experiments in this paper, and the statistics are shown in Table 5.
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It can be seen that all object-level algorithms need to initialize the over-segmented
image, and for multi-layer structures, this stage takes a relatively long time. In subsequent
update iterations, there are fewer good things about object-level algorithms than pixel-level
algorithms. Among them, the time-consuming OMRF-PGAU algorithm proposed in this
paper is at an average level.

Table 5. The computational time of eight methods for the experimental images.

Time/s ICM pMRMRF OMRF MRR-MRF MRMRF-bi OMRF-A MGMCL-MRF OMRF-PGAU

Figure 6a 1.23 27.38 14.74 + 0.89 24.64 + 7.71 25.01 + 7.13 13.94 + 1.53 20.44 + 1.82 21.74 + 0.93
Figure 7a 2.31 27.94 15.11 + 0.91 24.69 + 7.44 25.33 + 6.32 14.21 + 1.90 20.53 + 1.79 20.38 + 0.99
Figure 8a 2.47 28.51 15.73 + 0.91 24.21 + 6.89 25.19 + 6.77 14.29 + 1.82 21.01 + 1.92 21.43 + 0.95
Figure 9a 0.98 14.64 10.86 + 0.45 20.98 + 5.65 21.27 + 5.82 11.30 + 1.14 19.48 + 0.99 19.93 + 1.12

Figure 10a 8.77 129.85 118.23 + 4.98 150.27 + 35.47 159.92 + 34.19 119.64 + 8.37 142.49 + 7.66 143.06 + 5.95
Figure 11a 13.64 195.05 121.34 + 5.16 148.33 + 38.62 151.63 + 39.14 120.03 + 8.26 138.41 + 8.33 137.05 + 6.02
Figure 12a 18.22 239.21 143.95 + 6.83 170.49 + 45.73 172.31 + 47.11 144.06 + 9.13 156.63 + 10.02 155.71 + 9.21
Figure 13a 22.47 362.07 180.34 + 8.24 217.87 + 61.46 219.19 + 59.30 178.54 + 11.54 204.05 + 11.95 200.12 + 10.52
Figure 14a 33.93 436.18 233.78 + 15.83 260.49 + 113.26 258.44 + 116.92 231.81 + 19.05 244.14 + 20.01 239.74 + 18.06
Figure 15a 10.84 138.27 101.32 + 4.16 132.93 + 31.59 129.04 + 32.93 100.74 + 6.28 120.58 + 7.26 117.50 + 6.34
Figure 16a 28.14 397.28 280.54 + 10.37 300.67 + 74.29 298.43 + 76.04 276.97 + 13.54 283.45 + 12.49 285.85 + 12.86
Figure 17a 43.92 430.41 430.69 + 25.47 450.43 + 150.03 423.51 + 137.31 403.93 + 37.51 585.18 + 30.48 614.82 + 29.31

4. Discussion

In the above chapters, the theoretical basis, update path, and segmentation perfor-
mance of OMRF-PGAU are introduced in detail. The experimental chapter further verifies
the superiority of OMRF-PGAU in semantic segmentation of remote sensing images. The
advantages of OMRF-PGAU are mainly reflected in the following points: first, this method
is an object-based segmentation method. Compared to the pixel-level segmentation method,
it can consider a more macroscopic spatial neighborhood relationship, and the segmenta-
tion result can maintain a certain trend. Second, this method adopts a path of an alternate
update of the entire partition, which can effectively avoid the segmentation result from
falling into the local optimum. In the update process, the local update projection is used to
project the global back to the local area, which not only ensures the independence of small
regions, but also ensures the integrity of the large area. Third, this method combines the
actual situation in different layers and sets different classification numbers for the partition
and the whole, which can better classify the subclasses that have obviously different RGB
channel values, but belong to the same category, into the same category. Finally, this
method sets different regional granularity for the partition images and the original image,
which reduces the misclassification caused by unreasonable intensity settings.

It should be noted that the algorithm OMRF-PGAU proposed in this paper contains
many parameters that need to be statistically estimated or manually set, but the setting
strategy of these parameters is given in Section 3.2, and it is explained that the algorithm
is robust when the parameter setting is within a certain range. For example, the Gaus-
sian distribution in the feature field needs to calculate the mean and covariance of the
corresponding category based on the features and segmentation labels of each pixel. The
unbiased estimation is used in this paper to calculate the parameter involved Gaussian
distribution. Another example is the parameter setting of the energy function for the label
field. This parameter is mainly used to adjust the influence of the feature field and the label
field on the segmentation result. This paper sets the value range suitable for OMRF-PGAU
through experiments.

5. Conclusions

In this paper, an object-level Markov random field method with partition-global
alternately updated is proposed to realize the semantic segmentation of remote sensing
images. The contribution of the high method is mainly reflected in two points: first, the
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method of alternate update of the partition as a whole was adopted. The original image
was used to construct four partition images of the same size and a slightly smaller size,
and form an auxiliary layer. Through the alternate update of the auxiliary layer and
the original layer, the category that originally occupied a relatively small amount in the
original image was not swallowed by other categories. Second, we used the correlation
assumption to update the auxiliary layer and the original layer separately. Using the
correlation assumption, the corresponding relationship between the auxiliary layer and
the original layer was established, and it was applied to the update of the label field. The
effectiveness of OMRF-PGAU was verified on different texture data and remote sensing
image data in the experimental part. Compared with other selected MRF-based semantic
segmentation comparison methods, the segmentation results of OMRF-PGAU proposed in
this article have improved in both Kappa and OA, with an average improvement of 4%
and a maximum improvement of 6%.
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