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Abstract: The leaf area index (LAI) is a key indicator of the status of forest ecosystems that is
important for understanding global carbon and water cycles as well as terrestrial surface energy
balances and the impacts of climate change. Machine learning (ML) methods offer promising ways
of generating spatially explicit LAI data covering large regions based on optical images. However,
there have been few efforts to analyze the LAI in heterogeneous subtropical forests with complex
terrain by fusing high-resolution multi-sensor data from the Sentinel-1 Synthetic Aperture Radar
(SAR), Sentinel-2 Multi Spectral Instrument (MSI), and Advanced Land Observing Satellite-1 digital
elevation model (DEM). Here, forest LAI mapping was performed by integrating the MSI, SAR, and
DEM data using a stacking learning (SL) approach that incorporates distinct predictions from a set of
optimized individual ML algorithms. The method’s performance was evaluated by comparison to
field forest LAI measurements acquired in Xingguo and Gandong of subtropical China. The results
showed that the addition of the SAR and DEM images using the SL model compared to the inputs of
only optical images reduced the mean absolute error (MAE) and root mean square error (RMSE) by
26% and 18%, respectively, in Xingguo, and by 12% and 8%, respectively, in Gandong. Furthermore,
the combination of all images had the best prediction performance. SL was found to be more robust
and accurate than conventional individual ML models, while the MAE and RMSE were decreased by
71% and 64%, respectively, in Xingguo, and by 68% and 59%, respectively, in Gandong. Therefore, the
SL model using the three-source data combination produced satisfied prediction accuracy with the
coefficients of determination (R2), MAE, and RMSE of 0.96, 0.17, and 0.28, respectively, in Xingguo and
0.94, 0.30, and 0.47, respectively, in Gandong. This study revealed the potential of the SL algorithm
for retrieving the forest LAI using multi-sensor data in areas with complex terrain.

Keywords: leaf area index; stacking learning; multi-sensors imagery; subtropical forest

1. Introduction

Subtropical forests cover approximately 26% of China’s land area and play an impor-
tant role in preserving plant and animal biodiversity, regulating terrestrial carbon cycles,
preventing land degradation, and fostering regional and global ecological balance [1–3].
From the 1950s to the 1990s, soil erosion, wildfires, deforestation, and over-cultivation led
to severe forest degradation in southern China [4]. To reverse this trend, China initiated
a Grain-for-Green Project in the late 20th century [5]. As a result, forests in this region
have been restored and vegetation cover and productivity have gradually increased [6].
Monitoring forest dynamics requires precise measurement of the spatial and geographical
distributions of forest biophysical characteristics [7]. The leaf area index (LAI), defined
as one-half of the total leaf area per unit ground area, is a vital physiophysical parameter
for characterizing forest structure because it is used to estimate forest biomass, health,
longevity, and productivity [8]. Additionally, the LAI is a key input for the ecosystem-level
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modeling of global climate change, carbon fluxes, water recycling, photosynthesis, and
rainfall interception [6–10].

Retrieving the LAI from remote sensing data based on the environmental parameters
employed by the empirical models was widely used for a spatially explicit estimation
of the forest LAI at large scales due to its time- and labor-saving and non-destructive
properties [7,9,11]. Commonly, LAI retrieval with empirical methods is based on optical
data [12], since optical images provide valuable 2D information on forest phenology and
type, leaf pigmentation, health, and structure, all of which are strongly related to the
LAI [8,12]. However, because of the heterogeneity of the forest structures and terrain, they
are incapable of capturing the vertical structure of the forest and stand conditions, which
can cause saturation problems, particularly in high-density forest cover and complicated
terrain circumstances [13,14]. For this reason, LAI retrieval has been improved by incorpo-
rating Synthetic Aperture Radar (SAR) and digital elevation model (DEM) data in recent
studies [14,15]. The SAR is a weather-independent microwave-based imaging method that
provides information on the orientation of forest canopy and tree stems, making these
data particularly helpful for forest LAI retrieval [14,16,17]. However, the SAR signal is
sensitive to soil moisture, topography, and data saturation [17,18]. The DEM data obtained
by single-band radar remote sensing can be used to characterize surface topography and
hydrology, which is helpful in understanding the spatial variation in vegetation growth,
biomass, and canopy structure parameters. However, the DEM data are usually less useful
for estimating variation in the LAI in areas with flat terrain [15]. As each type of data has its
own strengths and limitations, combining optical, SAR, and DEM data could be a powerful
method for retrieving information on the forest LAI using remote sensing [14,15,17].

Most previous studies combining optical and SAR data for LAI analysis have focused
on cropland [19], temperate forest [20], and grassland ecosystems [13]. Lu and He [15]
estimated the grassland LAI using a fusion of three data sources with widely varying spatial
resolutions, namely, the Wordview-2 (2 m), Sentinel-1 (10 m), and DEM (20 m). However,
this approach proved to be inefficient at accurately capturing vegetation heterogeneity
and uneconomical scenarios at large scales. The Sentinel 1 and 2 and Advanced Land
Observing Satellite-1 (ALOS-1) DEM instruments increase the scope for the monitoring
and mapping of the LAI in heterogeneous forests because they provide detailed surface
information with a higher spatial resolution than other freely available remote sensing
instruments with a global spatial scale. Unfortunately, the retrieval of forest LAI data by
the fusion of these three data sources has been underexplored, and it is not clear how well
such fusion strategies perform in complex terrain areas despite their potential to improve
our understanding of forest ecosystems.

The increasing availability of multi-source remote sensing data has prompted the
development of several data analysis solutions. Machine learning (ML) methods such as
random forests (RF) [21], artificial neural networks (ANN) [22], KNN [23], Cubist [21],
Gaussian process regression (GPR) [23], and support vector regression (SVM) [22] have been
widely used to quantitatively explore the complex relationships between remote sensing
data and the LAI. Unlike physical models, the empirical models generated using these ML
algorithms require little a priori knowledge and often describe the nonlinear relationship
between remote sensing data and the LAI, particularly when applied to multi-source
data [23,24]. However, the regression capabilities of ML methods differ, and the robustness
of the models that they generate depends strongly on the sample size and quality, study
area, and data sources. Consequently, there is no general consensus as to which ML method
is best for LAI estimation. Stacking learning (SL) is one of the most recently introduced
machine learning techniques and was recently found to outperform conventional ML
strategies for retrieving vegetation parameters [10,24–26]. SL is an ensemble method in
which a meta-learning model is used to integrate information from a set of different base
learners. The main advantage of SL is its ability to expend the hypothesis space of the
fitting function, which increases the model’s generalizability and accuracy. SL has proven
to be particularly useful in cases involving small sample sizes with variables having low
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correlation [26]. A group of SL models has been developed and successfully used to monitor
static and dynamic forest traits including forest change [27], forest canopy height [28],
vegetation cover [29], growing stem volume [30], and aboveground biomass [25]. The
use of SL was shown to increase the accuracy when compared to the use of individual
ML methods because it uses both simple numerical information from instruments and the
outputs of low-level models as input data [26,31]. However, SL models for estimating the
forest LAI are underdeveloped.

The subtropical forests in southern China are highly sensitive to pests, climate variabil-
ity, anthropogenic disturbances, and geological hazards [32]. Additionally, the available
LAI data with coarse resolution (e.g., MODIS LAI product) may not be accurate enough,
due to the fragmented topography and complex landscape variations across the study areas.
Consequently, their LAI is quite variable, and its estimation is challenging. We, therefore,
investigated the retrieval of the forest LAI in southern China using the SL algorithm and
drawing on the high-resolution remote sense images of the Sentinel-1 (SAR), Sentinel-2
(MSI), and ALOS-1 DEM. The specific objectives of this study were to (1) determine and
compare the relationships of the forest LAI with backscatter coefficients and texture data
from C-band SAR, the topographical parameters from the L-band DEM, and the spectral
indices from the MSI, as well as their combinations; (2) test the potential of SL models for
improving the forest LAI estimation, and (3) generate accurate high-resolution forest LAI
maps of the studied areas and provide informative data to support forest protection and soil
and water conservation management. We hypothesized that the strategy of multi-source
remote sensing data with the SL algorithm would enable more accurate LAI mapping than
single-source individual ML models.

2. Materials and Methods
2.1. Study Areas

The two areas of Xingguo, 3211 km2 (from 115◦01′ E, 26◦03′ N to 115◦52′ E, 26◦41′ N),
and Gandong, 11,689 km2 (from 115◦09′ E, 25◦32′ N to 116◦38′ E, 26◦36′ N), in the southern
part of Jiangxi Province, China, were chosen for this study (Figure 1). These areas have
similar forest types, land use patterns, topographies, and weather patterns. Both study areas
include mountains, hills, and valleys, and are characterized by rugged and fragmented
terrain with elevations ranging from 1055 to 1508 m. They have a medium subtropical
monsoon climate with an average annual temperature ranging from 18.1 to 19.7 ◦C and an
average annual precipitation of 1522.3 to 1919.6 mm [33], with frequent clouds, rain, and
fog. Small areas of primary forest exist on the less accessible high mountains, but most of
the existing forests are plantation and secondary forests [34]. The dominant plant species
in the study areas are Pinus massoniana Lamb., Camellia oleifera, Dicranopteris dichotoma,
Cunninghamia lanceolata, and Phyllostachys heterocycle.

2.2. Data
2.2.1. In Situ LAI Measurements

The field measurements of LAI of Xingguo and Gandong were collected from
23–29 November 2019, and 11–20 August 2020, respectively. Static values of field LAI
were measured in the two study areas to examine the portability of the proposed ensemble
strategy. Stratified random sampling was conducted within the forest landscape, topogra-
phy, and physical accessibility of the areas, with the rule that the forest landscape should
be homogeneous within each sample plot [23]. The types of forest landscape are defined
according to the age of vegetation recovery and canopy structure [33,34]. Five types of
forest landscapes are classified as (1). Tree-shrub-grass: forests consisting of tall trees
(TSG), shrubs, and herbs; (2). Tree-grass: forests consisting mainly of trees and herbs (TG);
(3). Shrub-grass: forests consisting mainly of shrubs and herbs (SG); (4). Non-wood prod-
uct forest (NWP): forest producing fruit, edible oilseeds, etc.; (5). Bamboo forests (BB).
Finally, 135 sample plots covering different forest landscape types were obtained in both
Xingguo and Gandong (Figure 1b,c). The size of each square plot was approximately
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10 m × 10 m, and their geographic locations were recorded based on their center coordi-
nates using a handheld global positioning system (GPS) receiver. Field LAI measurements
were measured at 0.2 m above the ground in each plot using a portable AccuPAR LP-80
photosynthetically active radiation meter [35]. For each plot, we performed three above-
canopy observations in a nearby unshaded area to provide reference readings to minimize
the impact of variation due to variation in incoming radiation. Nine below-canopy LAI
observations were then collected and averaged to obtain an LAI value for the plot [11,35]
(Figure 1d).
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The LAI measured in the study areas varied from 0.36 to 10.85 m2 m−2, with means of
3.25 m2 m−2 in Xingguo and 4.32 m2 m−2 in Gandong (Figure 2a,b). NWP forests had the
lowest LAI values, with mean values of 1.92 and 1.87 m2 m−2 in Xingguo and Gandong,
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respectively, while BL forests had the highest LAI values, with mean values of 5.24 and
3.92 m2 m−2 in Xingguo and Gandong, respectively.
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Figure 2. Distribution of field LAI of different forest landscape types in (a) Xingguo and (b) Gandong.
TSG, SG, TG, NWP, and BB denote the types of forest landscape of tree-shrub-grass, shrub-grass,
tree-grass, non-wood product forests, bamboo forests.

2.2.2. Sentinel-1 Data and Preprocessing

SAR derivatives such as texture, patterns, and structural features provide unique
opportunities for capturing physical properties of the forest scene can improve LAI
mapping [14,15]. Two scenes of Sentinel-1B images covering Xingguo County and four
scenes of Sentinel-1B images covering Gandong were downloaded from the Copernicus
Open Access Center (https://scihub.copernicus.eu/, accessed on 1 November 2021). All of
the downloaded data were acquired in IW (Interferometric Wide swath) mode in the GRDH
(Ground Range Detected in High Resolution) processing (Table 1). For each SAR image
scene, speckle filtering, radiometric calibration, terrain correction, and geocoding were
performed using SNAP (version 6.0, European Space Agency) [36,37]. The backscatter inten-
sities of VV (horizontal transmit-horizontal channel) and VH (horizontal transmit-vertical
channel bands) were then generated based on mean values for 3 × 3 pixel windows.

Texture measures derived from the SAR band have great potential in vegetation
monitoring because they can provide information on the structure and physical properties
of the land surface [38]. We obtained the texture feature using the Grey Level Co-occurrence
Matrix (GLCM) [39], which is defined by the joint probability density of pixels in two
positions; it reflects both the distribution of the brightness and the distribution of pixels
with identical or similar brightness [38]. A set of texture feature indices were extracted from
the final VV and VH bands, including correlation texture, contrast texture, homogeneity
texture, dissimilarity texture, variance texture, entropy texture, energy texture, and mean
texture [38,39] (Table 2).

https://scihub.copernicus.eu/
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Table 1. The Sentinel-1 and 2 imagery utilized in this study.

Study Area Sensor Remote Sensing
Images Product Type Sensing Date Season

Xingguo

Sentinel-1B SAR GRDH/IW
16 November 2019

Winter

23 November 2019

Sentinel-2B MSI S2MSI1C

06 December 2019

13 December 2019

06 December 2019

Gandong

Sentinel-1B SAR GRDH/IW
15 July 2020

Summer

21 July 2020

Sentinel-2B MSI S2MSI1C

13 July 2020

19 August 2020

30 July 2020

30 July 2020

2.2.3. Sentinel-2 Data and Preprocessing

The Sentinel-2 mission carries two Multi Spectral Instruments (MSIs) that samples
13 bands at three spatial resolutions (10, 20, and 60 m), providing wide-swath multispectral
images [13,20]. The Level 2A (Bottom Of Atmosphere) Sentinel-2B reflection images
covering Xingguo and Gandong were collected from the Copernicus Sentinel Scientific
Data Hub (Table 1). The MSI data employed in this study were those with the least cloud
cover and the imaging time closest to the time of ground LAI measurement over the LAI
plots. For all MSI images, the 20 and 60 m bands were resampled to a resolution of 10 m
using the cubic method on the SNAP platform [40]. Then, 20 commonly used spectral
indices (Table 2) were extracted from each reflectance image of the study area.

2.2.4. ALOS-1 DEM Data

The Panchromatic Remote Sensing Stereo Mapping Instrument was an active mi-
crowave sensor using the L-band for global elevation mapping onboard the ALOS launched
by JAXA, which operated from 2006 to 2011 [41]. The ALOS-1 DEM product was proven to
provide highly accurate information on land surface topography [42]. ALOS DEM data for
the study area with a spatial resolution of 12.5 m was collected from the Alaska Satellite
Facility (https://search.asf.alaska.edu/, accessed on 1 November 2021). The downloaded
DEM data were processed by image stitching and cropped to cover only the study area,
then 11 terrain attributes were extracted using SAGAGIS (http://www.saga-gis.org/en/
index.html, accessed on 1 November 2021). All DEM-derived variables were registered in
Universal Transverse Mercator (UTM) Zone 50 N based on the WGS-84 coordinate system
and resampled to a spatial resolution of 10 m for compatibility with the pre-processed
Sentinel-1 and 2 series.

2.3. Variable Selection and Variables Importance

A total of 62 variables were extracted in this work (Table 2). Collinearity among
predictors could increase the uncertainty of predictive models; therefore, variable selection
was necessary. Variables with a non-significant association with LAI (p > 0.05) and strongly
correlated variables of the same type (r < 0.8) were, therefore, removed [17,43].

https://search.asf.alaska.edu/
http://www.saga-gis.org/en/index.html
http://www.saga-gis.org/en/index.html
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Table 2. Remote sensing indices from ALOS-1DEM, Sentinel-1 SAR, and Sentinel-2 MSI for forest
LAI mapping.

Sensor Types Indices Definition

Sentinel-1

Backscatter

VH Normalized backscatter coefficient of VH channel (dB)
VV Normalized backscatter coefficient of VV channel (dB)

V/H VV/VH
VV_CON Contrast, measure the statistics derived from the GLCM

Texture

VV_DIS Dissimilarity
VV_IDM Inverse difference moment
VV_ASM Angular second moment
VV_ ENT Entropy
VV_AVG Mean
VV_COR Correlation
VH_CON Same with above-mentioned texture
VH_DIS
VH_IDM
VH_ASM
VH_ ENT
VH_AVG
VH_COR

ARVI Atmospherically resistant vegetation index, (B8 − B5 − y(B5 − B1))/(B8 + B5 −
y(B5 − B1))

Sentinel-2
Vegetation

indices

CI Coloration Index, (B4 − B2)/B4
DVI Difference vegetation index, B8 − B4

NDVI Normalized difference vegetation index, (B8 − B4)/(B8 + B4)
GNDVI Green normalized difference vegetation index, (B8a − B3)/(B8a + B3)

IPVI Infrared percentage vegetation index, B8/2(B8 + B4) × (NDVI + 1)
IRECI Inverted red-edge chlorophyll index, (B7 − B4)/(B5/B6)

MSAVI Modified soil-adjusted vegetation index, B8 + 0.5 − [(2B8 + 1)2 − 8(B8 − B5)]0.5

MSAVI2 Modified soil-adjusted vegetation index 2, B8 + 0.5 − [(2B8 + 1)2 − 8(B8 − B4)]0.5

PVI Perpendicular vegetation index, 1/(α0.5 + 1) × (B8a – αr − β)
SAVI Soil adjusted vegetation index, (B8 − B4)/(B8 + B5 + L) × (1 + L)

TNDVI Transformed NDVI, [(B8a − B4)/(B8a + B4) + 0.5]0.5

WDVI Weighted difference vegetation index, B8a − αB5, α = nir soil/red soil
RVI Simple ratio vegetation index, B8/B4
RI Normalized difference red/green redness index, (B4 − B3)/(B4 + B3)

MTCI Meris terrestrial chlorophyll index, (B6 − B5)/(B5 − B4)
REIP REIP Red-edge infection point index, 700 + 40 × [(B4 + B7)/2− B5]/(B6−B5)

NDVI2 Normalized difference vegetation index 2, (B12 − B8)/(B12 + B8)
RDVI Renormalized difference vegetation index, (B8 − B4)/[(B8 + B4)0.5]
MSBI Misra soil brightness index, 0.406B3 + 0.600B4 + 0.645B6 + 0.643B8a

ALOS-1
DEM

Topographical
parameters

TWI Topographic wetness index
ELE Elevation
SLO Slope
ASP Aspect
PRC Profile curvature
PLC Plan curvature
RLS Relief of land surface
TWI Topographic wetness index
SPI Stream power index
SL Slope length, a factor calculated by Universal Soil Loss Equation
TRI Terrain ruggedness index

The importance of each variable in mapping forest LAI was investigated using per-
mutation feature importance (PFI). PFI is a random forest-based measurement tool for
interpreting the relevance of features of interest to the performance of machine learning
models [44]. Briefly, it generates random noise to replace a feature, with the random noise
values being generated by shifting the values of the original predictors [45]. RF regression
is then performed to measure the average loss in model accuracy (root mean square er-
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ror, RMSE) as each feature is shuffled, yielding the importance of each variable. The PFI
analysis was performed using the iml package of the R statistical computing environment.

2.4. Stacking Learning

SL is a hierarchical learning method with a lower level comprising a set of base learners
and a higher level of meta-learners [46]. It differs from conventional ML methods in that it
is not a specific algorithm but a free ensemble scheme that allows the merging of multiple
base learners into a new model via a stacking rule; both the stacking rule and the set of
base learners may be chosen freely [31]. Typically, a meta-feature dataset is created using a
set of base learners at level 0 that generate initial predictions from raw data using various
ML algorithms. The meta-learner at level 1 then functions as a generalizer, making final
predictions of the response and correcting for biases in the new input features through
aggregation. A diverse set of level 0 base learners, including SVM, ANN, GPR, Cubist,
KNN, Classification and Regression Trees (CART), AdaBoost Classification Trees (ABCT),
Extreme Learning Machine (ELM), Boosted Regression Tree (BRT), and EXtreme Gradient
Boosting machines (XGBoost), were used to generate the basic regressions used to build
new input features for the SL model. RF was then used at level 1 to produce the final
forest LAI estimate. As high-dimensional statistical methods, these models are capable
of handling complex nonlinear relationships, as illustrated in Figures A1–A11 andbriefly
described in Appendix A.

2.5. Forest LAI Mapping

As the field LAI sampling intervals and the spatial resolution of the processed remote
sensing variables were found to be consistent at a scale of 10 m, we built SL models at the
10-meter scale using multi-source satellite images to map the spatial patterns of forest LAI
across the study areas. Forest LAI modeling was performed using the machine learning
library of the R programming platform according to the workflow shown in Figure 3.
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2.5.1. Tuning the Hyperparameters for the Stacking Learning Models

Hyperparameters are used to configure ML models. Before evaluating and comparing
the learners, the hyperparameters of each algorithm were optimized using a grid search
method with 10-fold cross validation [47]. The key tuning parameters and their possible
ranges for each learner are shown in Table 3. It is also essential to determine the number of
base learners (NBL) in the SL model that give the optimal structure, because the structure
of the SL model influences the precision and training time. To explore the sensitivity of
the SL model’s performance to the NBL, several experiments were conducted to measure
prediction accuracy using different ML ensembles. Whenever the number of base learners
was changed, the worst-performing base learner was removed and the others were reserved
for stacking; for example, when the NBL was set to 2, the first two regressors were selected
as base learners.

Table 3. Hyperparameters tuned and their configurations for each algorithm.

Algorithm R Package Hyperparameters Tuned Range

CART rpart cp, the complexity parameter. 0.048

Cubist cubist
committees, the number of committee models. 1–100

neighbors, the number of neighbors used to correct the model predictions. 0–10

BRT GBM

n.trees, the number of trees to fit. 50–1000
interaction.depth, the number of splits in each tree. 1–20

shrinkage, the rate at which the model descends along the gradient. 0.01–1
n.minobsinnode, the minimum number of observations of the terminal node of the tree. 1–50

RF randomForest
ntree, the number of trees to grow into a forest. 50–1000

mtry, the number of variables to be considered at each split. 1–30

XGBoost xgboost

nrounds, the maximum number of iterations. 1–1000
max_depth, the depth of the tree. 1–10

eta, the learning rate. 0.01–0.5
gamma, prevents overfitting. 0–1

colsample_bytree, the number of variables supplied to a tree. 0.1–1
min_child_weight, the minimum number of instances required in a child node. 0–3

ANN nnet
size, the number of units in the hidden layer. 1–10

decay, parameter for weight decay. 0.001–0.05

KNN caret k, number of neighbors considered. 1–20

SVM e1071
sigma, scaling parameters of the hypothetical Laplace distribution. 0.01–0.5

C, the regularization term in the Lagrange formulation 1–10

GPR kernlab
degree, parameter for the Polynomial kernel “polydot”. 1–10
scale, parameter for the Polynomial kernel “polydot”. 0.001–0.5

ELM elmNN
nhid, number of hidden Units, numeric.Activation Function (actfun, character) 1–100

actfun, activation function. linear

ABCT adaboost
mstop, number of boosting iterations. 50–1000

AIC prune. yes

2.5.2. Model Accuracy Assessment

To evaluate the capabilities of SL approaches and compare the performance of SAR,
MSI, and DEM data (and their combinations) for forest LAI estimation, six groups of
variables were used as regression model inputs. First, six groups of predictor variables
derived from the Sentinel-1 (SAR), Sentinel-2 (MSI), and ALOS DEM (DEM) datasets were
defined as follows: SAR, DEM, MSI, MSI + SAR, MSI + DEM, and MSI + SAR + DEM.
LAI estimation models based on each variable group were then trained and evaluated
using a ten-fold cross-validation approach [48]. In ten-fold cross-validation, the measured
data sets are randomly split into 10 equally or similarly sized segments, of which 9 are
combined and used as a training set, while the tenth is used as the testing set. This
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process is repeated ten times, with a different segment being used as the testing set on
each occasion. Additionally, the train-test splits are the same for each regression model.
The accuracy of the models’ predictions was evaluated by computing statistical measures
based on the difference between the measured and predicted LAI, namely, the coefficient
of determination (R2), mean error (ME), and root mean squared error (RMSE), calculated
using Equations (1)–(3), respectively.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

MAE =
n

∑
i=1

|yi − ŷi|
n

(2)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(3)

Here, ŷ is the estimated LAI value obtained using the model, yi is the corresponding
observed LAI value, y is the mean observed LAI, and n is the number of samples used for
validation. Multiple data sources and SL techniques were used to create LAI products with
a spatial resolution of 10 m to capture the fine spatial heterogeneity of subtropical forests.

3. Results
3.1. Correlation Analysis and Variable Selection

On the basis of Pearson correlation analysis, 23 variables were selected to estimate the
forest LAI in Xingguo and Gandong, respectively (Table 4). Of the topographic variables,
LS, SLO, ELE, and TWI were significantly correlated with the LAI at the 0.01 level and
above. Of the SAR-derived variables, texture features correlated more strongly with the
LAI than the backscattered intensity from the C-band of the VH. The LAI was significantly
and positively correlated with VH_Cor and VH_Mean. The LAI during winter (Xingguo)
was sensitive to the backscattering coefficient of the VH, VV_Asm, and VH_Var, while the
LAI during summer (Gandong) was more sensitive to VV_Ene and VV_Max. This indicates
that the variation in the backscattering intensity and phase difference explain the effect
of seasonal variation on the LAI. Among the vegetation spectral indices, NDVI, GNDVI,
and ARVI had the highest correlation with the LAI in Xingguo during winter, while ARVI,
IRECI, IPVI, and NDVI showed the strongest correlation with the LAI in Gandong during
the summer. The vegetation indices showed stronger correlations than the soil indices.
Additionally, the r values for the DEM- and SAR-derived variables were lower than those
for the MSI variables.

3.2. Evaluation and Comparison of Different Models and Datasets

Figure 4 shows how the performance of the SL models (evaluated in terms of the R2,
RMSE, and MAE) varied with the NBL; the average model accuracy initially increased
with the NBL but then stabilized. The best predictive performance for the LAI in Xingguo
was obtained using SL models taking the DEM, SAR, MSI, SAR + MSI, DEM + MSI, and
DEM + SAR + MSI predictor variable groups as inputs with NBL values of 10, 10, 8, 8, 7,
and 7, respectively. The best predictions of the LAI in Gandong were obtained with the
same groups using NBL values of 8, 8, 8, 7, 7, and 7, respectively.

For the inputs of the DEM, SAR, MSI, DEM + MSI, SAR + MSI, and DEM + SAR + MSI
variables, the validation indices of SL models predicting the LAI in Xingguo: the R2

improved by 173%, 335%, 24%, 23%, 23%, and 21%, respectively; the MAE decreased
by 51%, 49%, 66%, 67%, 66%, and 71%, respectively; and the RMSE decreased by 44%,
40%, 61%, 62%, 59%, and 64%, on average, respectively, compared to individual ML
models (Table 5). Similarly, the validation indices of the SL model for predicting the LAI in
Gandong: the R2 improved by 311%, 492%, 21%, and 19%, respectively; the MAE decreased
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by 41%, 46%, 66%, 65%, 67%, and 68%; and the RMSE decreased by 34%, 39%, 59%, 58%,
57%, and 59%, on average, respectively. Overall, the SL models achieved higher prediction
accuracy than the ten individual ML models. This indicates that the SL model fits better
than the individual ML model regardless of the input variables, and therefore, SL has good
prospects for retrieving the forest LAI.

Table 4. Correlation coefficients for the measured LAI and selected variables derived from the ALOS-1
and Sentinel-1 and 2 datasets. ** and * indicate cases with p values below 0.01 and 0.05, respectively.

Group Types Variable Xingguo Gandong

ALOS-1 Topographic parameters LS 0.27 * 0.44 **
SLO 0.28 * 0.46 **
ELE 0.36 ** 0.47 **
TWI −0.30 ** −0.32 **

Sentinel-1 Backscatter VH 0.24 * 0.20 *
Texture VH_cor 0.30 * 0.24 *

VH_Mean 0.29 ** 0.19 *
VV_Ene 0.33 ** 0.20 *
VV_Max 0.27 ** 0.19 *

Sentinel-2 Soil indices RI −0.43 ** −0.30 *
CI −0.72 ** −0.58 **

Vegetation indices ARVI 0.61 ** 0.73 **
DVI 0.36 ** 0.43 **

GNDVI 0.62 ** 0.66 **
IPVI 0.54 ** 0.71 **

IRECI 0.29 * 0.72 **
MSAVI 0.26 * 0.53 **
MSAVI2 0.28 * 0.55 **

NDVI 0.79 ** 0.70 **
PVI 0.56 ** 0.43 **

SAVI 0.27 * 0.56 **
TNDVI 0.55 ** 0.68 **
WDVI 0.25 * 0.52 **
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Table 5. The accuracies of accuracy comparison of the different machine learning models in Xingguo
and Gandong.

Inputs Model
Xingguo Gandong

R2 MAE RMSE R2 MAE RMSE

DEM ANN 0.27 1.15 1.40 0.13 1.87 2.34
KNN 0.20 1.15 1.39 0.11 1.89 2.29
SVM 0.18 1.19 1.47 0.16 1.76 2.27
GPR 0.31 1.15 1.39 0.17 1.81 2.24

CART 0.28 1.23 1.52 0.11 1.92 2.37
BRT 0.30 1.12 1.36 0.14 1.97 2.44

Cubist 0.30 1.12 1.37 0.15 1.84 2.31
XGBoost 0.29 1.27 1.54 0.15 2.18 2.40

ABCT 0.32 1.08 1.32 0.17 1.85 2.22
ELM 0.28 1.11 1.34 0.13 1.86 2.30

SL 0.72 0.56 0.79 0.57 1.12 1.54

Sentinel-1 (SAR) ANN 0.11 1.19 1.51 0.08 2.06 2.58
KNN 0.11 1.17 1.46 0.08 1.88 2.32
SVM 0.12 1.18 1.48 0.11 1.94 2.41
GPR 0.20 1.17 1.44 0.15 1.84 2.26

CART 0.13 1.24 1.56 0.11 2.01 2.45
BRT 0.19 1.12 1.43 0.10 1.95 2.41

Cubist 0.18 1.17 1.45 0.12 2.05 2.47
XGBoost 0.17 1.32 1.64 0.09 2.04 2.29

ABCT 0.21 1.11 1.40 0.14 1.89 2.29
ELM 0.19 1.17 1.46 0.11 2.01 2.45

SL 0.66 0.60 0.89 0.62 1.07 1.46

Sentinel-2 (MSI) ANN 0.81 0.74 0.76 0.81 0.93 1.26
KNN 0.72 0.66 0.84 0.71 1.25 1.33
SVM 0.73 0.72 1.01 0.74 1.10 1.37
GPR 0.77 0.89 1.25 0.76 1.15 1.27

CART 0.64 1.01 1.28 0.75 1.15 1.41
BRT 0.81 0.61 0.70 0.81 0.89 1.14

Cubist 0.80 0.59 0.81 0.82 0.87 1.11
XGBoost 0.79 0.64 0.77 0.81 1.01 1.27

ABCT 0.82 0.58 0.78 0.84 0.79 1.03
ELM 0.80 0.61 0.79 0.82 0.97 1.29

SL 0.95 0.23 0.34 0.95 0.34 0.51

DEM + MSI ANN 0.82 0.49 0.67 0.82 0.89 1.20
KNN 0.73 0.64 0.84 0.73 1.01 1.30
SVM 0.75 0.67 0.92 0.76 1.08 1.25
GPR 0.79 0.86 1.09 0.80 1.14 1.18

CART 0.67 0.98 1.26 0.75 1.26 1.38
BRT 0.81 0.53 0.68 0.82 0.86 1.12

Cubist 0.81 0.58 0.76 0.82 0.83 1.10
XGBoost 0.80 0.59 0.76 0.82 0.99 1.19

ABCT 0.83 0.48 0.65 0.84 0.78 1.02
ELM 0.82 0.51 0.67 0.84 0.90 1.20

SL 0.96 0.20 0.30 0.95 0.33 0.50

SAR + MSI ANN 0.81 0.58 0.67 0.81 0.92 1.23
KNN 0.73 0.65 0.84 0.72 1.09 1.31
SVM 0.74 0.68 0.92 0.74 1.08 1.34
GPR 0.78 0.87 1.14 0.80 1.14 1.18

CART 0.66 1.00 1.26 0.75 1.53 1.39
BRT 0.81 0.54 0.69 0.82 0.87 1.13

Cubist 0.80 0.59 0.80 0.82 0.86 1.11
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Table 5. Cont.

Inputs Model
Xingguo Gandong

R2 MAE RMSE R2 MAE RMSE

XGBoost 0.80 0.59 0.77 0.81 1.01 1.24
ABCT 0.82 0.48 0.65 0.84 0.79 1.03
ELM 0.81 0.52 0.67 0.82 0.92 1.23

SL 0.95 0.21 0.33 0.94 0.33 0.52

DEM + SAR + MSI ANN 0.83 0.48 0.67 0.82 0.88 1.18
KNN 0.75 0.62 0.81 0.79 0.97 1.27
SVM 0.77 0.65 0.91 0.76 1.03 1.14
GPR 0.81 0.84 1.08 0.82 1.05 1.18

CART 0.69 0.98 1.24 0.75 1.26 1.29
BRT 0.82 0.52 0.67 0.82 0.85 1.11

Cubist 0.81 0.54 0.73 0.83 0.83 1.09
XGBoost 0.81 0.59 0.75 0.82 0.95 1.13

ABCT 0.83 0.47 0.64 0.84 0.78 1.01
ELM 0.84 0.51 0.65 0.83 0.86 1.15

SL 0.96 0.17 0.28 0.96 0.30 0.47

Among the three types of predictor variables, the MSI derivatives obtained a higher
prediction accuracy than the SAR and DEM data. For example, when predicting the LAI
in Xingguo, the validation indices for the MSI variables were as follows: the R2, the MAE,
and the RMSE in the range of 0.64 to 0.95, 0.23 to 1.01, and 0.34 to 1.28, respectively, while
those for the DEM variables were as follows: the R2, the MAE, and the RMSE in the range
of 0.20 to 0.72, 0.56 to 1.27, and 0.79 to 1.52, respectively, and those for the SAR variables
were as follows: the R2, the MAE and the RMSE in the range of 0.11 to 0.66, 0.60 to 1.32,
and 0.89 to 1.64, respectively. For the LAI estimation, overall, the DEM data yielded better
predictions than SAR.

For all the models, the incorporation of the SAR and MSI data improved the prediction
accuracy (Table 5). There are overestimations and underestimations found for some of the
sample plots for the single-source models both in Xingguo and Gandong (Figures 5 and 6).
Given the same model, compared with those from the inputs of single-source data, the
lower uncertainty was obtained by using the dual- or triple-source data. Specifically, the
addition of the SAR variables using the SL model compared to the use of only the MSI data
reduced the MAE and RMSE by 9% and 3%, respectively, in Xingguo and by 3% and 2%,
respectively, in Gandong. Similarly, with the addition of the DEM variables, the MAE and
RMSE of the SL model were reduced by 13% and 12%, respectively, in Xingguo, and by 3%
and 2%, respectively, in Xingguo. The highest prediction accuracy was achieved when the
DEM, SAR, and MSI images were applied together. Correspondingly, the MAE and RMSE
of the SL model based on triple-source data were reduced by 26 and 18%, respectively, in
Xingguo, and by 12% and 8%, respectively, in Gandong. These improvements were also
verified using individual ML models.

3.3. Variable Importance

The relative importance of each variable obtained from the PFI algorithm is shown in
Figure 7. The top three most important variables influencing the variation of the LAI in
both Xingguo and Gandong were the MSI variables, indicating that optical imagery was
the most important contributor to predicting the LAI. For the LAI variation in Xingguo
during the winter, the MSI variables (65.61% relative importance) were the most important
explanatory variables, followed by the topographic variables (18.48%). The MSI and DEM
variables explained 68.67 and 16.21% of the LAI variation in Gandong during summer,
respectively. While the SAR variables were ranked in the bottom five in terms of impor-
tance, they explained 15.91 and 15.12% of the spatial variation of the LAI in Xingguo and
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Gandong, respectively. Moreover, the contributions of the DEM and SAR variables to the
LAI variations during winter are higher than those to the LAI variations during summer.

3.4. LAI Maps

The LAI maps were generated using the average of 100 runs of the SL model based
on the combination of all the predictors. Additionally, the standard deviation (SD) was
calculated to assess the prediction uncertainty. A strong LAI spatial variation can be
observed in Figure 8. The highest LAI predictions were found in the northern part of
Xingguo and the southern part of Gandong. These parts of the study areas were mainly
native forests, displaying higher elevation and with a lower erosion susceptibility, which
favors forest growth and explains the high LAI. For the predicted LAI in Xingguo, the mean
and SD were 3.02 and 0.06 m2/m2, respectively, and for the predicted LAI in Gandong, the
mean and SD were 4.05 and 0.08 m2/m2, respectively. The low value of SD for the 100th
predicted LAI indicates that the SL models using a combination of the SAR, DEM, and
MSI variables have stable prediction capabilities. The maps of the predicted LAI had a
similar spatial pattern to the MODIS LAI (MYD15A2H, with a resolution of 500 m) product
(Figure A12 in Appendix B), indicating that the LAI predictions presented in this study
are reliable.
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4. Discussion
4.1. Roles of Sentinel-1 and 2 and ALOS-DEM in Forest LAI Estimation

Correlation coefficients (Table 3), variable importance calculations (Figure 7), and
measures of predictive model performance were used to evaluate the contributions of the
MSI, SAR, and DEM data to the LAI estimation (Table 4, Figures 5 and 6). In accordance
with previous studies, the MSI was more useful than the SAR and DEM for the LAI
estimation, providing a wider range of the predicted LAI values. This is likely because
the MSI data consist of optical sensor readings; spectral indices from the narrow-band,
red-edge, and SWIR spectral regions are sensitive to green vegetation and are useful for
retrieving forest phenology, physiology, and structure [13,23,28]. However, the MSI suffers
from data saturation due to the forest canopy’s shading of solar radiation in thick forest
zones, which causes the MSI to a record horizontal vegetation structure more effectively
than vertical biophysical characteristics [49]. As a result, there is limited heterogeneity in
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the spectral index data for stands with high LAIs (LAI > 7) [49,50] such as those of the
studied forests, which have complex structures with a multistoried canopy architecture
and high vegetation cover [16].

SAR variables provide the poorest predictive performance. This was primarily at-
tributed to saturation of the SAR-derived backscatter coefficients [17]. Volume scattering
is usually the dominant source of plant backscatter, and the tree canopy contributes the
most volume scattering [14,51]. Therefore, as forest cover increases, the sensitivity of the
SAR signal to understory forests and soil is significantly reduced. The observed LAI values
in the study region are generally above three, which is likely to represent the saturation
threshold for the C-band SAR backscatter [52]. The low saturation value for the C-band
SAR data is due to the long wavelength and long pulse duration of the C-band, which
results in high contamination by speckle noise [17]. This suggests that the SAR-derived
texture characteristics are more useful than the backscatter coefficient for forecasting the
forest LAI [17,53].

The DEM variables outperformed the SAR variable for the LAI prediction because the
topography is more relevant to the LAI in the studied area than the SAR variables (Table 3).
Forest structure parameters could be quantitatively modeled by topographic derivatives,
and therefore, there could be significant relationships between the DEM variables and the
forest LAI [54]. The most important DEM variables for large-scale mapping the spatial
variability of the LAI in subtropical forests were found to be Slope, ELE, TWI, and LS.
ELE and Slope can reflect the accessibility of human interference and the development of
microclimates, which, in turn, affect the distribution of forest communities [18,34]. TWI
is a sensitive indicator of soil water content, and can also slow down organic matter
decomposition and, thus promote vegetation growth [33,34]. LS can capture soil erosion
risk at different landscape positions where overland flow and slope dominate the soil
scouring processes and is correlated with the distribution of forest and the LAI [18,33].
The study areas are distinguished by a high proportion of mountains and hills, as well as
relatively large topographic variations. To some extent, topography controls soil fertility
variations and geological hazard susceptibility as a constraint on forest distribution and
the LAI variations [54].

Thus, this study demonstrated that using multi-sensor data for the LAI prediction
yields better predictive performance than using optical data alone and also reduces the
uncertainty of the predictive model.

4.2. Usefulness of Stacking Learning Models for Forest LAI Quantification

As a novel ML technique, SL is particularly flexible in incorporating the different
strengths of individual ML models. This study revealed its general superiority in estimat-
ing the forest LAI using multiple input variables under different climate regimes. The
high predictive performance of the SL methods was attributed to the diversity of base
learners that were used and the choice of effective incorporation rules [31]. As noted by
Schwenker [26], training data alone cannot provide sufficient information to identify a
single best learner, necessitating the stacking of several base learners. A varied set of base
learners provides a greater opportunity to correct for biases arising from individual models
and reduces the dependence on sample size [24,26].

We also found that the NBL significantly affected the SL model performance. However,
many previous prediction studies [25,27–30] did not attempt to optimize the NBL when
generating SL models. In this work, the best NBL for estimating the LAI was determined
through a comparative analysis of SL models (Figure 4), which revealed that the use of too
many or too few base learners reduced the accuracy of SL models. Indeed, the greater the
NBL is, the greater the chance is of the overfitting of the SL model [26,55]. This suggests
that picking an appropriate number and type of base learner is preferable to randomly
selecting base learners for the construction of accurate SL models.

The improved accuracy of the SL technique allows the use of low-correlation variables
as separate functions for model fitting [24,26]. Therefore, spectral and grayscale data



Remote Sens. 2022, 14, 148 18 of 26

for individual pixels can be combined with information on heterogeneity and coerced
to fit more reliable nonlinear relationship models for the forest LAI estimation based on
either individual indices or raw bands. This allows another important goal of using low-
correlation variables to be achieved, namely, mining more valuable knowledge to enhance
model accuracy (Figures 5 and 6a,b). In addition, the performance of the SL model is also
affected by the meta learner that is used to fit the base learners. Therefore, we recommend
using specific experimental data to calibrate and select the optimal meta learner to improve
the accuracy of the LAI estimation.

5. Conclusions

This work investigated the potential of integrating multi-sensor imagery from the
Sentinel-1, Sentinel-2, and ALOS-1 DEM using the SL machine learning algorithm, for
retrieving the forest LAI in the subtropical forests of southern China. The evaluations using
field LAI measurements showed that the proposed framework offered an encouraging
performance. It was found that combining the DEM and SAR data with the MSI images
improves the accuracy while reducing the uncertainty when compared to analyses based
on only optical data. The spectral indices from the MSI images were the key variables
for capturing the spatial variability of the forest LAI. Topographic parameters from the
DEM are more important than the C-band SAR back scatterers and their texture features.
The SL algorithm can be considered as one of the most adaptable ML algorithms for
further research on the LAI estimation. Not only were the relationships between the LAI
observations and environmental covariates quantified by various individual ML models
preserved based on the meta-learner, but the algorithm greatly improved the prediction
performance when used as a regression method. The proposed combined strategy of multi-
model, multi-source remote sensing data reduces this structural uncertainty and therefore
provides greater robustness and reliability than individual models and single-source data
in retrieving and mapping the forest LAI.
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Appendix A

Random forest
The RF algorithm is a non-parametric and noise insensitive machine learning method

that integrates multiple classification and regression trees (CART) into a forest using an
ensemble technique [45]. RF works on two basic skills of boosting and bagging [56]. In
the present study, the bootstrap sampling method of RF is used to randomly split the
predictors related to the LAI to generate K (where K is the number of trees in the forest)
subsets. For each subset, two-thirds of the samples are chosen to be the training set,
while the rest are used as out-of-bag (OOB) data for evaluating the performance of the
decision tree. Benefiting from this built-in cross-validation method, RF can reduce the risk
of overfitting [17]. Finally, a bag learning strategy is employed to obtain the final output
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value of the LAI at the pixel level by means of an aggregation formula, i.e., a weighted
average of the predictions generated by all the decision trees (Figure A1).
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Support vector machines
An SVM is an unsupervised kernel-based ML technology [57]. Its key underlying

concepts are the structural risk minimization principle and statistical learning theory or
the VC dimension, which allow learning machines to find the best hyperplane in a high-
dimensional space for separating data, defined by a linear function that is found based on
structural risk minimization. For regression tasks, an SVM converts sample data exhibiting
linear inseparability into a form showing linear separability and finds the closest regression
plane including all the data in a set. Specifically, an SVM maps the low-dimensional input
data to a higher-dimensional feature space using a kernel function [13]. An SVM minimizes
the structural risk to avoid local optimization and overfitting problems. In the transformed
hyperspace, radial basis functions were used to model the complex nonlinear relationship
between the covariates and the LAI values.
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Figure A2. The introduction to Support Vector Machines.

EXtreme Gradient Boosting machines
The XGBoost algorithm uses the ensemble learning principle of boosting to com-

bine several “weak” decision trees to form a final prediction model using an iterative
approach [58]. As a component of the SL model for predicting the LAI, it estimates a
function that projects a set of predictor variables into predicted LAI values by minimizing
a specified loss function. The learning process is asymptotic; therefore, the loss function is
used on each iteration to calibrate the regression model. In addition, regularization is added
to the objective function to prevent model overfitting and reduce model complexity [59].
The final LAI prediction is a weighted sum of the predictions of the previous tree models.
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Artificial neural networks
ANNs are intended to mimic the functionality of biological neurons in the human

brain and to perform distributed parallel information processing [60]. There are a variety of
ANN models capable of predicting linear or nonlinear problems, including the Radial Basis
Function (RBF), Hopfield, Elamn, Single-Layer Perceptron, and Multi-Layer Perceptron
models. Generally, an ANN consists of input, hidden, and output layers, each having a set
of neurons working in parallel to establish and reinforce linkages between the input and
output data. The input layer comprises a set of neurons, each of which represents an input
variable. The hidden layer comprises a set of neurons that analyze this complex input;
during the training phase, the connections between the neurons of the input and hidden
layers are assigned varying weights [61]. In the ANN architecture used here, the SAR, MSI,
and DEM variables served as input parameters and the RBF algorithm with the average
loss function was used to train the relationship between the input variables and the LAI.
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Boosted Regression Tree
BRT is an extended classification and regression tree procedure based on an ensemble

model using boosting techniques [62]. It is characterized by an iterative process in which a
tree-based model is fitted using recursive binary splitting. For LAI regression prediction,
a sequence of trees was initially constructed using a randomly selected subset of input
variables. The residuals of the tree from the preceding step were then added to the training
set for the next iteration. This process was repeated until bias minimization was achieved,
as verified by n-fold cross-validation. Finally, the results obtained from the ensemble of
regression trees are averaged to obtain a level 0 LAI prediction.
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Cubist
Cubist is a rule-based algorithm designed to address the problems of nonlinear regres-

sion between input data and target variables [63]. It takes a piecewise linear tree model and
partitions the predictor variates into a set of subsets according to “if-then” rules. In this
context, if the input predictor variable associated with the LAI satisfies a set of conditions,
a linear model (multiple linear regression) is used to establish the relationship at each leaf
node on the tree model. For example, a specific multiple regression model may exist to fit
the relationship between LAI distribution and topography and vegetation indices under
conditions where NDVI is greater than 0.6 and ELE is between 600 and 1500 m. Multiple
rules were established to effectively capture the local linear relationships between different
variables (SAR, MSI, and DEM) and the LAI. The final model is produced by committees
using an approach similar to boosting in which large numbers of tree models with weak
performance are integrated into a stronger model. Thus, the predicted LAI values are
averages of the multiple regression models on the leaf nodes.
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K-nearest neighbors
KNN is one of the simplest learning methods and is based on distance dependencies.

It does not require a general objective function and many parameters; instead, a “feature
similarity” principle is used to analyze the connections between the predictor variables
and targets [64]. Normally, the KNN algorithm has the following steps: (1) Calculate
the Euclidean distance to the targets after normalization of the input variables. (2) Sort
the predictor variables in ascending order of distance to the target variable. (3) Select an
optimal k by calculating the predictive ability achieved with different k values. (4) Finally,
predictions are obtained using a weighted version of the median.

Remote Sens. 2022, 14, x FOR PEER REVIEW 23 of 28 
 

 

 

Figure A7. The introduction to K-nearest neighbors. 

Gaussian process regression 
GPR is a probabilistic method that is not restricted by functional form. It formulates 

a learning method with a kernel within a Bayesian framework, assuming that the model 
variables follow a Gaussian prior distribution, encoding prior knowledge of the output 
function [65]. The GPR model was developed using the SAR, MSI, and DEM variable da-
tasets as inputs and the field LAI measurements as the target. The entire sample features 
information was used in the prediction of the LAI, with any finite number of variables 
having a joint Gaussian distribution [10]. Empirical confidence intervals can also be com-
puted using this approach, and a kernel function can be selected for adaptive fitting based 
on these confidence intervals. 

  

Figure A8. The introduction to Gaussian process regression. 

Classification And Regression Trees 
CART is a classical tree-structure model that is commonly used for classification and 

regression problems. It is based on a binary partitioning algorithm that recursively parti-
tions the data to explore the relationship between response variables and predictors [66]. 
For an LAI estimation, CART divides the given set of predictor variables into two subsets 
based on the Gini coefficient and goes through this cycle until the homogeneity within 
individual samples is maximized while also maximizing the diversity of samples from 
different subgroups. Then comes the pruning of the decision tree, i.e., the branches that 
contribute the least to the model are identified and removed to control the number of 
leaves and thus avoid overfitting. In order to make a prediction for an instance, its path 
from the root node to the leaf nodes is traced to find the prediction criterion for that in-
stance. These leaves contain the most uniform set of possible outcomes, for which the pre-
dicted LAI values are aggregated. 

  

10-nearest 
neighbors  

Figure A7. The introduction to K-nearest neighbors.

Gaussian process regression
GPR is a probabilistic method that is not restricted by functional form. It formulates

a learning method with a kernel within a Bayesian framework, assuming that the model
variables follow a Gaussian prior distribution, encoding prior knowledge of the output
function [65]. The GPR model was developed using the SAR, MSI, and DEM variable
datasets as inputs and the field LAI measurements as the target. The entire sample features
information was used in the prediction of the LAI, with any finite number of variables
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having a joint Gaussian distribution [10]. Empirical confidence intervals can also be
computed using this approach, and a kernel function can be selected for adaptive fitting
based on these confidence intervals.
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Classification And Regression Trees
CART is a classical tree-structure model that is commonly used for classification and

regression problems. It is based on a binary partitioning algorithm that recursively parti-
tions the data to explore the relationship between response variables and predictors [66].
For an LAI estimation, CART divides the given set of predictor variables into two subsets
based on the Gini coefficient and goes through this cycle until the homogeneity within
individual samples is maximized while also maximizing the diversity of samples from
different subgroups. Then comes the pruning of the decision tree, i.e., the branches that
contribute the least to the model are identified and removed to control the number of leaves
and thus avoid overfitting. In order to make a prediction for an instance, its path from
the root node to the leaf nodes is traced to find the prediction criterion for that instance.
These leaves contain the most uniform set of possible outcomes, for which the predicted
LAI values are aggregated.
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AdaBoost Classification Trees
ABCT is an iterative boosting algorithm developed to solve regression problems by

constructing a “solid” regressor as a linear combination [67]. In this algorithm, the training
samples for each weak regressor are selected using an adaptive resampling technique. That
is, the weights of each sample in each training set are calculated based on the precision of
each sample and the accuracy of the prior overall estimation, and the adjusted data set is
sent to the lower regressor for training. Finally, the final decision regressor is generated by
combining the predictions from each training set. Via continuous training, the AdaBoost
algorithm improves data prediction by reducing bias and variance.
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Extreme Learning Machine
An ElM is a feedforward neural network with the following three layers: an input layer

(computational variables), a single hidden layer (neurons), and an output layer (predicted
output) [68]. Unlike the traditional neural network model, the ELM model does not require
manual parameter tuning except for the predefined network structure, i.e., the number
of hidden layer nodes, because the ELM can randomly determine the connection weights
and biases between the input and hidden nodes, and the connection weights between
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the hidden and output nodes are calculated using the least squares method. The benefits
of ELM are simple training parameters, a high learning rate, and good generalization
performance.
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