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Abstract: A target detection method based on an improved single shot multibox detector (SSD) is
proposed to solve insufficient training samples for synthetic aperture radar (SAR) target detection.
We propose two strategies to improve the SSD: model structure optimization and small sample
augmentation. For model structure optimization, the first approach is to extract deep features of
the target with residual networks instead of with VGGNet. Then, the aspect ratios of the default
boxes are redesigned to match the different targets’ sizes. For small sample augmentation, besides
the routine image processing methods, such as rotating, translating, and mirroring, enough training
samples are obtained based on the saliency map theory in machine vision. Lastly, a simulated SAR
image dataset called Geometric Objects (GO) is constructed, which contains dihedral angles, surface
plates and cylinders. The experimental results on the GO-simulated image dataset and the MSTAR
real image dataset demonstrate that the proposed method has better performance in SAR target
detection than other detection methods.

Keywords: synthetic aperture radar (SAR); target detection; deep learning; saliency map

1. Introduction

Synthetic aperture radar (SAR) is an active earth observation system with high reso-
lution. The scene imaging quality is considerable with optical images; these images are
increasingly important for scientific applications [1–4]. With the increasing improvement
of SAR data collection capability and imaging algorithms, the research on interpreting
high-resolution SAR images has received extensive attention, such as target detection and
change detection [5,6]. Traditional SAR target detection algorithms include the constant
false alarm rate (CFAR) method [7,8], template matching method [9,10], etc. These meth-
ods primarily embark on feature extraction and classifier design, which require highly
manual involvement, complex design process, and have poor detection performance in
complex scenes.

A convolutional neural network (CNN) has advantages of high recognition accuracy
and generalization ability. It can also actively extract features without manual design. In
addition, CNN performs fully supervised learning based on labeled information. Since
the R-CNN [11] model first introduced the convolutional neural network into the field
of target detection, many target detection algorithms with excellent performance have
been proposed successively. These algorithms are usually divided into two categories:
two-stage detection algorithms and single-stage detection algorithms. The two-stage detec-
tion algorithm has higher detection accuracy but slower detection speed. Representative
algorithms include R-CNN, Fast R-CNN [12], Faster R-CNN [13], and R-FCN [14]. The
single-stage detection algorithm gets the category information and position directly by
regression, taking into account the accuracy and velocity. Representative algorithms are
SSD [15], YOLO [16–19], Retina-net [20], etc.
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CNN has been widely studied as typical deep learning models in SAR target detection.
Ding et al. [21] proposed three data enhancement methods for training samples to recognize
SAR targets using CNN, and they also validated the effectiveness of data enhancement and
good detection capability for SAR images with random speckle noise through experiments.
Fei et al. [22] developed three improvement techniques to enhance the feature extraction
ability of the ship detection network, which contains multi-level sparse optimization of
SAR image, a novel split convolution block (SCB) and a spatial attention block (SAB).
Lin et al. [23] proposed a highway neural network for limited labeled SAR training data,
consisting of a modified convolutional highway layer, a maximum pooling layer, and a
dropout layer. Deeper feature information can be extracted from limited data. For MSTAR
target classification, the model can achieve 94.97% recognition accuracy, with only 30% of
the original training samples, and 99% recognition accuracy when a complete training set is
used. He et al. [24] proposed a SAR target recognition model with multi-angle tensor sparse
representation by combining the local structural features of the target and the correlation
between multiple SAR images of the same target. Jun et al. [25] proposed a hierarchical
convolutional neural network (H-CNN), which is a two-stage CNN model. They extracted
regions of interest (ROIs) in the coarse-detection stage and used CNN in the fine-detection
stage. The model is better than the conventional constant false-alarm rate and CNN-based
models. Du et al. [26] proposed a three-channel sub-aperture synthesis algorithm to transfer
the pre-trained network weights on optical images to SAR images. In comparison with
two-parameter CFAR and Faster R-CNN, the model has better detection performance.
Zhang et al. [27] proposed a novel two-phase object-based deep learning approach for
SAR image change detection, which includes object-based approach, superpixel objects
and two-phase deep learning framework, significantly reducing false alarm rates, leading
to 99.71% change detection accuracy. Hao Chen et al. [28] proposed a spatial–temporal
attention neural network (BAM and PAM) for remote sensing image binary CD, which
mitigates misdetection caused by misregistration in bitemporal images, showing better
robustness in color and scale variations.

The limitation of training samples for SAR target detection leads to some difficulties,
such as overfitting, gradient dispersion/explosion, and network degradation. Convo-
lutional neural networks are generally optimized by a gradient-based backpropagation
(BP) algorithm. For feedforward networks, it is necessary to propagate the input forward,
propagate the error backward, and use the gradient method to update the parameters.
The parameter update of the k-th layer needs to calculate the gradient of the loss, which
depends on the error term of the layer. According to the chain rule, the error term of the
k-th layer depends on the error term of the k + 1-th layer. In deep networks, since the size of
k-th layer error term cannot be guaranteed, gradient dispersion/explosion easily happens.
On the premise that the convolutional neural network can converge, as the depth of the
network increases, the performance of the network first gradually increases to saturation,
and then rapidly decreases [29].

We set out to solve these problems from two aspects. One is optimizing the model
structure: we improve the backbone network by deeper residual network and redesign
ratios of the default boxes to match the different targets’ sizes. Compared to SSD original
feature extraction, the residual network can be implemented in the form of skip connection,
i.e., the input of the unit is directly added to the output of the unit and finally activated.
Hence, the residual network can directly use the BP algorithm to update the parameters.
The advantages of the SSD are obvious: the running speed is comparable to that of YOLO,
and the detection accuracy is comparable to that of Faster R-CNN. Although the idea of
pyramdial feature hierarchy is adopted, it is not good for small target detection. This is
because the feature map extracted by the SSD in the shallow layer is not strong enough.
As the depth deepens, the information of the small target in the high-level feature map is
easy to lose. We use the residual network to improve the backbone and increase the size
of the input picture from 300 × 300 × 3 to 600 × 600 × 3. The second method is saliency
map augmentation: we apply a bilinear interpolation saliency mapping method to build an
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image pyramid model and use the model to process all of the training samples. Combined
with routine image processing methods, we obtain sufficient training samples to improve
the recognition accuracy. Our proposed method shows good detection performance based
on both the real SAR data and the simulated SAR data.

2. Methods
2.1. Feature Extraction

The structure diagram of the improved SSD detection model is given in Figure 1. The
original SSD model uses a pre-trained VGG16 as the backbone, which has limitations for
image feature extraction due to the shallow layers. The performance of a deep learning
model can be improved by deepening the network, but its accuracy is not linearly related
to the depth of the network. As the neural network is going deeper, the model classification
accuracy gradually rises to saturation, then decreases. At the same time, deeper networks
imply more weight parameters, which tend to cause overfitting when the training samples
are small. In this paper, we improve the backbone by residual network, and the specific
network structure is shown in Figure 2, with a 7 × 7 convolutional layer, a 3 × 3 pooling
layer, and three densely connected residual blocks from the left to right. Each residual block
contains varying amounts of basic residual network units, and the numbers of network
units are 3, 4, and 6, respectively. The improved backbone network structure parameters
are given in Table 1.
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Figure 1. Flowchart of the proposed SAR target detection method.

Table 1. ResNet feature extraction structure parameters.

Layer Name Parameters Output Feature Size

Convolutional layer 7 × 7 Conv, stride 2 300 × 300 × 64
Pooling layer 3 × 3 Max pool, stride 2 150 × 150 × 64

Residual block 1

1× 1 Conv
3× 3 Conv
1× 1 Conv

 × 3 150 × 150 × 256

Residual block 2

1× 1 Conv
3× 3 Conv
1× 1 Conv

 × 4 75 × 75 × 512

Residual block 3

1× 1 Conv
3× 3 Conv
1× 1 Conv

 × 6 38 × 38 × 512
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Residual block

Conv Max pool Conv unit Idenity unit

Figure 2. ResNet feature extraction structure.

As shown in Figure 3, there are two types of basic residual network units: Conv
Unit and Identity Unit. As can be seen from Table 1, there is a 1 × 1 convolutional
layer before and after the 3 × 3 convolutional layer in basic residual network units. The
1 × 1 convolutional layers are responsible for reducing and increasing the dimensions so
that the 3 × 3 convolutional layer has smaller input/output dimensions. By using the
bottleneck architectures, the input and output feature channels can be kept consistent,
and the computational work can be significantly reduced. At the same time, the skip
connections make the input of the units directly affect the output, so it can alleviate the
gradient vanishing. As shown in Figure 3, Batch Normalization (BN) processing is added
to both basic units. To optimize the convolutional neural network, BN adjusts the data
distribution of the output of the previous convolutional layer in the form of a zero-mean
and one-variance distribution. This ensures the validity of the gradient and accelerates the
convergence of the model.

Identity unitConv unit

Conv Relu BatchNorm

Figure 3. The basic residual network units.

2.2. Small Sample Augmentation

To solve the problem of insufficient real SAR data, traditional small sample augmenta-
tion includes translation, rotation, cropping, etc. In addition to these methods, we present
the saliency map method to obtain sufficient training samples. A saliency map is an image
that shows the characteristic of each pixel. Pixels with higher gray levels in RGB images
are displayed in a more distinctive way in the saliency map. Its purpose is to transform an
image into a more analyzable form.

As shown in Figure 4, firstly, we construct a Gaussian pyramid model with image
intensity components. Then, the model is upsampled to the same size as the original
image to obtain images of different resolutions. Finally, the saliency map is made by
the sum of the difference between the different levels of the model. The image M is
downsampled j(j = 0, . . . , M) times to get an image Mj, which is 1/2j of the original size,
and M0 represents the original image. The coordinates of the four pixel points Q11, Q12,
Q21 and Q22 in the image Mj are known as (x1, y1), (x1, y2), (x2, y1) and (x2, y2), respectively,
and the coordinate of the point P to be interpolated is (x, y). The interpolation is performed
first along the x-axis to obtain the intensity values of the temporary pixel points A(x, y1)
and B(x, y2):

f (A) ≈ x− x1

x2 − x1
f (Q21) +

x2 − x
x2 − x1

f (Q11)

f (B) ≈ x− x1

x2 − x1
f (Q22) +

x2 − x
x2 − x1

f (Q12)
(1)

where f (·) represents the pixel intensity value. Then, along the y-axis to obtain the ultimate
pixel point intensity value:

f (P) ≈ y2 − y
y2 − y1

f (A) +
y− y1

y2 − y1
f (B) (2)
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when moving from the bottom to the top of the Gaussian pyramid, the resolution and
size of the image are reduced. The bottom of the image pyramid is a high-resolution
representation of the image M, which retains more detailed information, while the top is a
low-resolution representation of the image M, which retains more background information.
Thus, we upsample the smaller size image to the same size as the original image to obtain
M
′
j(j = 0, . . . , 7) by bilinear interpolation. The difference results of the target and the

surrounding background at different levels are obtained by making the pairwise difference
operation. The difference operation we used here is {M

′
0 − M

′
1, M

′
0 − M

′
3, M

′
0 − M

′
5,

M
′
4 −M

′
1, M

′
2 −M

′
3, M

′
3 −M

′
5}. Then, we add the absolute values of the difference results

together and regularize the summation to the range of (0, 255) to obtain the saliency map of
the original image. Figure 4 illustrates the saliency map generation process, and Figure 5
shows an example of the saliency map results.

 

·
·
·
 

·
·
·
 

Upsampling Downsampling

' '( )i jM M

Figure 4. The saliency map generation process of an image.

(a) (b)

Figure 5. Saliency map result. (a) 2S1, (b) saliency map of 2S1 after transforming.

2.3. Aspect Ratios of Default Boxes

In this paper, we use different scale feature maps to match varying sizes of objects in
an image. For each feature map, default boxes are generated at different scales and ratios
(e.g., 3 × 3 and 5 × 5 in Figure 6a), and the predicted bounding boxes are based on these
default boxes. The image can be divided into more grids by the 5 × 5 feature map, but the
default boxes of these grids are smaller than those in the 3 × 3 feature map, as shown in
Figure 6b. So the 5 × 5 feature map can be used to detect small target and the 3 × 3 feature
map can be used to detect the larger one relatively, as shown in Figure 6c.

The center coordinates of the default box are the center of each grid ( a+0.5
| fk |

, b+0.5
| fk |

),
where | fk| is the k-th layer feature map size, a,b ∈ {0, 1, . . . , | fk|}. Each default box scale is
computed as:

sk = smin +
smax − smin

n− 1
(k− 1), k ∈ [1, n] (3)

where n is 6, smax is 0.9 and smin is 0.2, meaning the highest layer feature map has a scale of
0.2 and the lowest layer feature map has a scale of 0.9. The width and height of the default
boxes are computed based on the scale and ratio:
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wm
k = sk

√
rm, m ∈ {1, 2, 3, 4, 5}

hm
k = sk/

√
rm, m ∈ {1, 2, 3, 4, 5}

(4)

where wm
k and hm

k are the width and height of the m-th default box of the k-th layer feature
map, and aspect ratios are rm ∈ {1, 2, 3, 1/2, 1/3}. When rm = 1, the scale of default box
is s

′
k =
√

sksk+1, w6
k = h6

k =
√

sksk+1. In practice, we can adjust the aspect ratios to match
targets in a specific dataset better. Our dataset includes dihedral angles, surface plates and
cylinders. The cylinder’s aspect ratio is much smaller than 1/3, so we set the aspect ratios
as rm ∈ {1, 2, 6, 1/2, 1/6} in training.

(a)

3×3 feature map

5×5 feature map

(b)

3×3 feature map

5×5 feature map

(c)

Figure 6. Different scale detection. (a) Different scale feature maps: 3 × 3 and 5 × 5, (b) prediction
procedure, (c) detection result.

3. Experimental Results and Discussion
3.1. Datasets

We carried out experiments on two different datasets: the Geometric Objects (GO)
dataset and the MSTAR dataset. The GO dataset is an electromagnetic simulation SAR
image dataset, including three geometries: dihedral angles, surface plates, and cylinders.
For each geometry, we collect different azimuth and elevation simulation data, ranging
from −6.3° to 96.4° for azimuth and 10° to 90° for elevation. The MSTAR dataset is a repre-
sentative public dataset for SAR target recognition, which includes a total of 10 categories
of military targets. The resolution for MSTAR images is 0.3 m × 0.3 m, with azimuth from
0° to 360°, and elevation of 15° and 17°. Here, we select three types of military targets: 2S1,
D7 and T62, for training and testing. Training set and testing set are divided as shown in
Table 2. We only carry out small sample augmentation on the training set.

Table 2. The quantity of training images and testing images.

Dataset
Training Set

Testing Set
Initial Quantity After Augmentation

GO 131 3930 230
MSTAR 821 1642 897

3.2. Training Strategy

We verified the effectiveness of the improved method through several sets of compari-
son experiments. The validation set and training set are divided by 1:9, the initial learning
rate is 0.0004, the training batch size is taken as 10, the maximum number of iterations
is 1000, the optimizer is Adaptive moment estimation (Adam), and the learning decay
rate is 0.5. During the training process, the corresponding model weight parameters are
saved after each iteration to continue training at unexpected training breakpoints. At the
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same time, the change of the validation loss value is monitored: the learning rate reduction
strategy is triggered when the model performance does not improve in five iterations,
and the training is terminated to avoid overfitting when the model performance does not
improve in 10 iterations.

In this paper, we use mean Average Precision (mAP) as the evaluation criteria, which
is the average of the precision on the precision-recall curve, and the formula is defined as:

AP =
∫ 1

0
p(r)dr (5)

mAP =
1
N ∑N

1 AP (6)

where p is precision, r is recall, AP is the average precision of one category, and mAP is the
mean of average precision of all categories.

3.3. Experimental Results

As Table 3 shows, our method has an average improvement of 3.63% mAP compared
with the original SSD. Compared with the Faster R-CNN and YOLOv3 detection models,
ours also has the optimal performance, with the highest AP for each category on both
datasets. On the GO dataset, ours surpasses in the AP from 0.31% to 6.58% for dihedral
angles, surface plates and cylinders, and from 0.05% to 5.69% for 2S1, D7 and T62 on the
MSTAR dataset. The experimental results illustrate that the performance of the improved
model is more advantageous compared with Faster R-CNN and YOLOv3, which verifies the
effectiveness of the improved method. Some of the detection results are given in Figure 7.

(a)

(b)

Figure 7. Detection results of improved SSD. (a) Part of GO dataset test results, (b) part of MSTAR
dataset test results.
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Table 3. Comparison among other detection methods.

AP (%)
GO MSTAR

mAP (%) Dihedral Angle Surface Plate Cylinder mAP (%) 2S1 D7 t62

Faster R-CNN 96.73 98.54 98.57 93.08 95.98 94.06 99.78 94.10
YOLOv3 96.87 98.89 96.50 95.21 96.39 92.93 99.76 96.47

SSD 94.63 98.09 95.10 91.61 96.01 96.57 98.49 92.97
Ours 99.50 99.96 98.88 99.66 98.40 98.62 99.83 96.75

3.4. Discussion

In order to verify the performance gains from different components, we conduct
separate experiments on the residual connections and small sample augmentation. It can
be seen from Figure 8a that, compared to the original feature extraction structure (VGG16),
the residual connections have a lead of 2.77% mAP, the GO dataset and 1.86% mAP on
the MSTAR dataset, and small sample augmentation has a lead of 1.20% mAP, the GO
dataset and 1.74% mAP on the MSTAR dataset. Combining the two components, there are
4.87% and 2.39% mAP enhancement in the two datasets, respectively. On the GO dataset,
compared to the small sample augmentation, the residual connections have a stronger
contribution to performance gains, while the two methods have the generally equivalent
contribution on the MSTAR dataset.

To further validate the reasonableness of aspect ratio improvements as well as saliency
map augmentation, Figure 8b discusses the effect of single improvement methods on
the backbone-improved model. For cylinder detection, aspect ratios enhance the AP by
4.45%, and saliency map augmentation enhances the AP by 3.71%. On the GO dataset,
the combination of the two methods works best for cylinder detection with 8.98% AP and
3.67% mAP. Therefore, the two improved methods complement each other, and the method
that we propose, which is the best, considers both optimization of the default box aspect
ratios and saliency map augmentation.

Original SSD adopts VGG16 as the backbone, with a total of 13 layers (excluding
the Full Connection layer) and a memory size of 56.13MB. We improve the backbone
architecture with a residual network, which has a total of 40 layers and a memory size of
26.20MB. From Table 4 and the results of the comparative experiment, it can be seen that
even if the residual network deepens the depth of backbone layers, the memory occupied
is reduced up to 53.32%, and it has better detection performance.

Original SSD Residual Network Data Augmentation Ours
90

92

94

96

98

100

94.63

97.40

95.83

99.50

96.01

97.87 97.75
98.40

GO test mAP(%)
MSTAR test mAP(%)

(a)

Figure 8. Cont.
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none Anchors{6,1/6} SaliencyMap  
90

92

94

96

98

100

90.68

95.13
94.39

95.83

96.71

97.47

99.66 99.50
cylinder test AP(%)
GO test mAP(%)

Anchors{6,1/6}
+ SaliencyMap  

(b)

Figure 8. Effect of different improvement methods on model performance. (a) This shows the perfor-
mance gains from residual connections and small sample augmentation; the final method adopts the
two components. (b) This shows effectiveness of aspect ratios and saliency map augmentation based
on the improved model.

Table 4. Comparison of the memory occupied by VGG16 and residual network.

Backbone Layers Memory Size (MB) Input Size

VGG16 13 56.13 300 × 300 × 3
residual network 40 26.20 600 × 600 × 3

4. Conclusions

In this paper, an improved SSD model for SAR target detection is proposed. Differring
from the plain feature extraction network, we use a residual network that can extract deeper
feature information. To match specific detection targets, we redesign the aspect ratios of
default boxes. A small sample augmentation based on the image saliency map theory is
proposed to enhance the model generalization ability. The comparison experiments based on
the electromagnetic simulation image dataset and MSTAR dataset verify the effectiveness of
the improved method, which can achieve better results in SAR target detection.
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