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Abstract: Accurate roof information of buildings can be obtained from UAV high-resolution im-
ages. The large-scale accurate recognition of roof types (such as gabled, flat, hipped, complex and
mono-pitched roofs) of rural buildings is crucial for rural planning and construction. At present,
most UAV high-resolution optical images only have red, green and blue (RGB) band information,
which aggravates the problems of inter-class similarity and intra-class variability of image features.
Furthermore, the different roof types of rural buildings are complex, spatially scattered, and easily
covered by vegetation, which in turn leads to the low accuracy of roof type identification by existing
methods. In response to the above problems, this paper proposes a method for identifying roof types
of complex rural buildings based on visible high-resolution remote sensing images from UAVs. First,
the fusion of deep learning networks with different visual features is investigated to analyze the
effect of the different feature combinations of the visible difference vegetation index (VDVI) and
Sobel edge detection features and UAV visible images on model recognition of rural building roof
types. Secondly, an improved Mask R-CNN model is proposed to learn more complex features of
different types of images of building roofs by using the ResNet152 feature extraction network with
migration learning. After we obtained roof type recognition results in two test areas, we evaluated
the accuracy of the results using the confusion matrix and obtained the following conclusions: (1) the
model with RGB images incorporating Sobel edge detection features has the highest accuracy and
enables the model to recognize more and more accurately the roof types of different morphological
rural buildings, and the model recognition accuracy (Kappa coefficient (KC)) compared to that of
RGB images is on average improved by 0.115; (2) compared with the original Mask R-CNN, U-Net,
DeeplabV3 and PSPNet deep learning models, the improved Mask R-CNN model has the highest
accuracy in recognizing the roof types of rural buildings, with F1-score, KC and OA averaging 0.777,
0.821 and 0.905, respectively. The method can obtain clear and accurate profiles and types of rural
building roofs, and can be extended for green roof suitability evaluation, rooftop solar potential
assessment, and other building roof surveys, management and planning.

Keywords: UAV high-resolution optical image; roof type recognition; VDVI; Sobel; improved Mask
R-CNN; deep learning

1. Introduction

The accurate identification of rural building roof types is significant in natural re-
source surveys [1], beautiful countryside planning and construction [2], detection of illegal
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roofs [3], assessment of rooftop solar photovoltaic power generation potential [4,5] and
disaster emergency management (e.g., detection of damaged rooftop areas after earth-
quakes and landslides) [6]. Compared with urban buildings, rural buildings have their
own unique characteristics, which are mainly reflected in the following: firstly, the lack of
unified planning and management leads to a chaotic building layout; secondly, the design
of houses is mostly based on the construction experience of rural artisans, which makes
the roof types of rural buildings complex and diverse [7]. However, the current building
identification research mainly focuses on the extraction of large scale urban buildings [8],
while less attention is paid to the more difficult and complex identification of multiple roof
types of rural buildings. Therefore, there is an urgent need to develop methods for fine
investigation and identification of rural roof types on a large scale.

Traditional building survey methods often require a lot of manpower and material
resources for field mapping and surveying, which is a large workload and high cost,
especially in rural areas [9]. With the launch of high-resolution remote sensing satellites
(such as Worldview-2, GF-2, etc.), more and more scholars and mapping departments use
high spatial resolution remote sensing images to extract building information [10,11]. Its
spatial resolution reaching the sub-meter level allows buildings on remote sensing images
to present richer detailed information such as internal structure, geometric contours and
texture patterns, and the differences in geometric dimensions and texture features are the
fundamental basis for identifying different categories of building roofs. However, due to
the presence of a large number of shadows, features with similar spectral characteristics to
buildings (such as roads, etc.) and intra-class hybrid image elements, the traditional remote
sensing image classification methods based on pixel features cannot effectively, correctly
and completely recognize different roof types [12]. Considering that the size of image
elements in high spatial resolution remote sensing images reflecting the ground target is
closer to the natural scene target taken on the ground, which is more in line with the human
eye’s perception compared with low and medium resolution images [13], there are many
scholars using machine learning methods to extract different roof types, such as object-
oriented classification, support vector machine classification (SVM) and random forest
classification (RF) [14,15]. However, the performance of object-oriented methods depends
mainly on the segmentation results of images, and the results of classifier methods such as
SVM and RF often depend on the selection of a large set of valid samples, whose shallow
structure makes the deeper information about buildings unavailable and not generalizable
across images of different regions, which makes machine learning classification methods
face great challenges in terms of reliability and generalizability in accurately identifying the
roof types of buildings [16,17]. Although some studies have also combined LiDAR point
cloud data and satellite image data using SVM and RF models to identify multiple roof
types (e.g., flat, gabled, hipped, pyramidal and skillion roof types) to improve the accuracy
of roof category identification by machine learning models [18], the high cost of acquiring
LiDAR point cloud data prevents the effective achievement of the accurate identification of
roof types on a large scale.

Similarly, large-scale high-resolution satellite remote sensing images have many short-
comings in roof type identification, for example, the long revisit period makes the time
interval of different simultaneous data acquisition and processing longer, which makes
the real-time update of roof database and disaster emergency monitoring impossible to
be guaranteed [19]. In addition, compared with urban areas, rural areas are more likely
to produce more cloudy weather, which makes the quality of satellite imaging lower and
thus limits the accurate identification of roof types of complex buildings such as small
areas in rural areas [20]. Low-altitude remote sensing technology, represented by UAV
technology, can overcome the above shortcomings due to its advantages of high flexibility,
high timeliness, low cost and not being restricted by geographic environment conditions,
and it can provide centimeter-level ultra-high-resolution remote sensing images, which
makes the spatial structure, surface texture features and edge feature information of the
features on the images more clear [21]. However, the UAV remote sensing images with
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significantly larger image data have higher requirements for classification methods than
those of general high-resolution images [22].

With the rapid development of big data and high-performance computers [23], the
application of deep learning technology in the field of automatic image recognition is ex-
panding. Deep learning models, represented by Convolutional Neural Network (CNN), can
automatically learn more complex abstract high-dimensional features from the low-level
features of the input image [24], which obviously brings great advantages for acquiring
complex spectral, geometric and texture features in ultra-high-resolution remote sensing
images [25]. Based on this, many researchers are now using semantic segmentation frame-
works (e.g., VGG-F [26], U-Net [27], SegNet [28,29], etc.) to identify building roof types
in ultra-high-resolution remote sensing images. However, semantic segmentation suffers
from the problems of difficulty in distinguishing different objects of the same range and
easily connecting different building roof types at the edges [30], which is not conducive to
the application and research of complex rural roof type recognition. In contrast to image
semantic segmentation, instance segmentation can identify multiple objects of the same
broad category as different individual entities and assign a pixel-level semantic category to
each entity on this basis [31], which is ideal for the recognition of complex rural building
roof types. Among the existing instance segmentation methods, Mask R-CNN has been
proved to be a powerful and adaptable deep learning model in different domains [32]
and consists of a combination of target detection and semantic segmentation techniques to
segment objects into prediction frames by predicting the bounding boxes of target objects
and finally outputting high precision vector segmentation results [33]. A large number of
scholars have applied it to the recognition of buildings [34], for example, Stiller et al. [35]
used fine-tuned Mask R-CNN to extract large-scale buildings in urban areas of Chile, while
for more complex recognition of different building roof types Mask R-CNN is less applied
at present. Most of the above studies, however, have focused on building extraction in
urban areas, and less attention has been paid to the more difficult problem of identify-
ing complex rural roof types. At the same time, the selection of deep learning feature
extraction model also has a significant impact on the recognition accuracy of complex roof
types [36]. As an important feature extraction structure of Mask R-CNN, the deep residual
network [37] enables the model to extract more complex image features without decreasing
the accuracy by increasing the number of residual convolution layers, and the traditional
Mask R-CNN uses ResNet50 or ResNet101 as the feature extraction layer [38]. Whereas,
for complex building roof type recognition in UAV remote sensing images with large data
volume, the above deep residual networks are not able to extract very complex building
roof type features at a deeper level [39], and ResNet152 [40], which is currently one of the
best performers in classification, can solve the above problem and can be deployed in Mask
R-CNN by migration learning.

Due to payload limitations [41], most UAV ultra-high-resolution remote sensing
images only have red, green and blue (RGB) bands, making the inter-class similarity
and intra-class variability of different features in the images more obvious [42]. Deep
learning, while already the best method available in terms of automation and accuracy, has
limitations in the recognition of low reflectance, features with similar spectral characteristics
to buildings and complex building roof types, such as similar roof lawns and grasses,
similar concrete roofs and floors, and dark gaps between different roof types [43]. It has
been shown that adding more visual features to deep learning models can better address
these problems [44]. Boonpook et al. [45] combined RGB data from UAV remote sensing
imagery with the visible band vegetation index (VDVI) and digital surface model (DSM)
to extract complex buildings using the SegNet deep learning method. The results show
that the RGB combination with VDVI features can improve the separability of building
areas from vegetation, the RGB combination with DSM features helps to separate buildings
from ground objects, and the RGB combination with both features can identify small
buildings that are low and obscured by vegetation, and the extraction results of each feature
combination are higher than those of RGB only. However, the DSM data only contains
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the height information of the ground objects and cannot distinguish the internal structure
(e.g., surface texture features, etc.) of more complex different roof types. Zhang et al. [46]
extracted buildings from high-resolution remote sensing images by fusing the Sobel edge
detection algorithm and Mask R-CNN algorithm, and the results showed that using Sobel
edge detection algorithm to segment building boundaries solved the problems of boundary
texture extraction and object internal integrity in deep learning. The above studies show
that adding VDVI feature bands can effectively distinguish buildings from green areas in
UAV visible images and improve the inter-class similarity problem. What is more, adding
Sobel edge detection features can clearly show the gradient, texture and boundary features
of building roof surfaces, enhance the distinguishability of different building roof types
and thus improve the intra-class variability problem.

In summary, to address the problems of extracting complex roof type features and eas-
ily confusing the building roofs of low reflectance with vegetation, roads and other objects
of similar spectral features in existing methods, this paper proposes the improved Mask
R-CNN method for rural building roof type recognition from UAV visible high-resolution
remote sensing imagery. The improved Mask R-CNN model based on different feature
combinations can fully extract the more complex features of different building roof types,
effectively improve the differentiation between buildings and vegetation, as well as differ-
ent building roof types, accelerate the convergence speed of the model and achieve a large
range of high-precision recognition of building roof types in UAV visible remote sensing
images. The main sections of this paper are organized as follows: Section 2 introduces the
study areas and pre-processing of the experimental UAV image dataset. Section 3 describes
the main methodological process of this study, including the visual feature extraction
method of UAV visible images and the improvement and implementation of Mask R-CNN
model. Section 4 shows the results of the rural building roof type recognition of this model.
Section 5 mainly discusses the influences of different feature combinations and the number
of ResNet layers on the training results, as well as the future probable improvement of this
study. Finally, a summary of the conclusions of this study is given in Section 6.

2. Study Area and Data
2.1. Study Area

To test the performance of the proposed model, we used a UAV to obtain ultra-
high-resolution remote sensing images covering Luxi County, Xiangxi Prefecture, Hunan
Province, China. The selected study areas all contain relatively dense rural buildings, as
shown in Figure 1. Luxi County is located in the northwestern part of Hunan Province,
with mountainous terrain, a well-developed water system, high annual precipitation and
obvious climatic differences in the region. It is an agricultural area with a predominantly
ethnic minority population. The roofs of rural buildings in the selected area of this study
are mainly flat and sloped, while there are numerous indistinguishable roof types, which
pose great challenges to the task of building roof type identification. Although there are
already open building datasets around the world (such as the WHU building dataset and
the ISPRS Vaihingen dataset, etc.) that provide various patterns and styles of architectural
landscapes [47], there are still fewer ultra-high-resolution remote sensing image building
datasets proposed for rural areas in China, and the building patterns of rural areas in
China are very different from urban areas; even urban and suburban buildings in western
countries are very different, so in the process of studying the supervised learning method,
some special representative rural buildings in the test area of this study can be considered
to improve the generalizability of the model to identify the roof types of different styles
of buildings. The total area of the seven test areas in this study is 62.34 km2, of which the
training area is 48.55 km2 and the test area is 13.79 km2.
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Co., LTD., Changsha, China) to acquire ultra-high-resolution true color aerial imagery of 
Luxi County, Hunan Province, in May 2018, and it had a wheelbase of 1.6 m, a payload 
weight of 8 kg, a cruise speed of 8 m/s, an endurance of about 60 min and was equipped 
with a SHARE-101S tilt photography camera. The SHARE-101S tilt photography camera 
consists of five complementary metal oxide semiconductor (CMOS) sensors 
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Figure 1. Study area. (a) Luxi County is located in Xiangxi Prefecture, Hunan Province, China;
(b) Puxi village in Luxi County; and (c) roof type labels of rural buildings corresponding to Puxi
village (red mask for gabled roof, blue mask for flat roof, purple mask for hipped roof, green mask
for complex roof and black mask for mono-pitched roof).

2.2. Data Acquisition and Preprocessing

This study used a six-rotor UAV (KPM-28, Hunan Kunpeng Zhihui UAV Technology
Co., LTD., Changsha, China) to acquire ultra-high-resolution true color aerial imagery
of Luxi County, Hunan Province, in May 2018, and it had a wheelbase of 1.6 m, a pay-
load weight of 8 kg, a cruise speed of 8 m/s, an endurance of about 60 min and was
equipped with a SHARE-101S tilt photography camera. The SHARE-101S tilt photogra-
phy camera consists of five complementary metal oxide semiconductor (CMOS) sensors
(23.5 mm × 15.6 mm) with an effective pixel count of 24.3 megapixels, a tilt angle of 45◦, a
storage capacity of 320 G and a lens focal length of 35 mm × 4 and 25 mm for mapping.
The UAV orthophoto data acquisition and processing process are carried out with Pix4D
software, which mainly includes four steps: laying image control points, developing the
flight plan, field UAV image acquisition and orthophoto generation. Luxi County is located
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in a mountainous area with complex terrain. In order to ensure the final image accuracy
of the survey area, it is necessary to lay image control points evenly in advance in areas
with relatively flat terrain and clear feature points. Since the remote sensing images ac-
quired by the UAV in each flight cover a small area, it is necessary to manually divide the
survey area of Luxi County into several small areas before the flight. The flight design is
carried out according to a ground resolution of 20 cm, with a heading overlap of 60% and a
side overlap of 40%, and the average flight height is within the range of 200–250 m. The
output image is in visible RGB mode. The images acquired by different sorties of UAVs
are stitched together as a way to reduce the influence of weather and light on the images
and to acquire image data of the whole county. After adding ground control points to
the stitched images, an aerial triangulation leveling quality report is generated to meet
production accuracy requirements [48]. Finally, after setting the CGCS2000 coordinate
system, the UAV orthophoto can be generated. Zhang et al. [49] classified roofs into six
categories (flat, gable, gambrel, half hip, hip and pyramid) based on roof edges. In this
study, the types of roof samples in orthophotos obtained by UAVs were classified into five
types: gabled, flat, hipped, complex and mono-pitched, based on the roof survey standards
of local mapping departments and the surface texture and shape characteristics of roofs
and the overall morphology of buildings in existing data sets. The typical roof types used
in this paper are shown in Figure 2. Table 1 shows the number and percentage of training
and test data for each type of roof.
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Figure 2. There are different roof types according to the characteristics of building roof texture and
shape. (a) Gabled; (b) flat; (c) hipped; (d) complex; and (e) mono-pitched.

Table 1. Number of training samples (60%/58%), number of testing samples (40%/42%) and total
number of samples per roof category (number of pixels (million)/number of roofs).

Sample Gabled Flat Hipped Complex Mono-Pitched

Training data 8.43/4252 8.74/3767 0.64/249 0.9/258 0.28/229
Test data 7.26/3111 4.04/2166 0.21/39 1/209 0.12/122

Total 15.69/7363 12.78/5933 0.85/288 1.9/467 0.4/351

3. Methods

This paper proposed an improved Mask R-CNN based on different visual feature
combinations for the rural building roof type recognition of UAV visible high-resolution
remote sensing images. All the processes are shown in Figure 3, which mainly include:
(1) calculated VDVI spectral features and Sobel edge detection spatial features of UAV
visible remote sensing images, and composed two visual features with RGB images into
different feature combinations as the input dataset of the deep learning model; (2) the
Mask R-CNN model based on ResNet migration learning were applied to train sample
datasets with different feature combinations and to identify and evaluate the accuracy of
rural building roof types in T1 and T2 test areas to achieve accurate identification of rural
building roof types in UAV visible remote sensing images.
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3.1. UAV Optical Image Visual Feature Extraction Methods

The visible RGB bands and the high spatial resolution of the UAV remote sensing
images make the inter-class similarity and intra-class variability of the features in the
images significantly increase. The inter-class similarity will intensify the confusion of
identifying different classes of features in the images, while the intra-class variability will
make the subclasses of the same kind of features in the images present more complex
image features, causing difficulties for the model to extract the features of the subclasses
of the features [50]. Therefore, how to select UAV images with visual features added to
the RGB band to enhance the difference between building roofs and other features, as
well as highlighting building roof features to make different building roof types easier to
identify, is the key to identifying building roof types in the countryside from UAV visible
light high-resolution remote sensing images. The area of UAV remote sensing image data
used in this paper is located in a rural area with dense vegetation, and there are many
buildings obscured by dark vegetation, which can be easily misclassified as buildings.
Therefore, it is very important to remove the influence of vegetation on buildings for
building identification. The existing vegetation indices of visible UAV remote sensing
images mainly include NGRDI [51], VDVI [52], EXG [53], etc. Among these methods,
VDVI has proved to be the most effective in extracting green vegetation and can effectively
distinguish vegetation from other features [54]. This study mainly classifies the types of
rural building roofs based on the texture features of the roof surface, and to make the model
extract the texture features of the roof surface more easily, image enhancement methods
can be used, which start by improving the visual effect of the image and highlighting the
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texture or boundary information of the image. The methods can usually be divided into
two categories: spatial domain enhancement and transform domain enhancement [55]. The
Sobel edge detection algorithm [56], as a commonly used spatial domain enhancement
algorithm, is better for images with grayscale gradients and more noise, and it is sensitive
to edges in both horizontal and vertical directions, which can reduce the blurring of image
edges. It has been shown that this method is a more effective image edge enhancement
algorithm than edge detection algorithms such as Canny [57] and Laplacian [58]. In this
paper, two visual features, VDVI based on spectral visual features and the Sobel edge
detection algorithm based on spatial visual features, are introduced and their applicability
is compared with different combinations of features for UAV visible band images.

3.1.1. Calculation of Visible Difference Vegetation Index (VDVI)

In order to improve the separability of rural building roofs from vegetation and
avoid misclassification due to the similarity of rural building roofs (e.g., roofs with green
vegetation or roofs shaded by dark vegetation, etc.) and ground vegetation [20], this paper
introduces the vegetation index as another spectral visual feature. Xu et al. introduced
NDVI as a feature band to extract buildings from ultra-high-resolution color infrared remote
sensing images [59], and the results showed that adding NDVI could further distinguish
buildings from green areas. However, vegetation indices such as NDVI, which need to
calculate multispectral information, cannot be applied to visible UAV high-resolution
remote sensing images, so this paper uses a visible difference vegetation index (VDVI)
with improved NDVI, which can use visible RGB band information to extract vegetation
information. Ma et al. [60] demonstrated that the use of VDVI as an additional spectral
feature for visible UAV remote sensing imagery can effectively reduce the interference of
vegetation on building roof information extraction. VDVI can be calculated according to
Equation (1), and its results range from −1 to 1.

VDVI =
2 × ρgreen−ρred−ρblue

2 × ρgreen+ρred+ρblue
(1)

where: ρgreen, ρred and ρblue denote the values of the visible green, red and blue bands of the
UAV orthophoto, respectively. In this study, the VDVI calculation of the UAV orthophoto
was done using the band operation of ENVI 5.3, and the grayscale image obtained after the
index calculation was input into the training data as an additional visual feature together
with the RGB image.

3.1.2. Calculation of Sobel Edge Detection Features

The Sobel edge detection algorithm uses a discrete differential operator to operate
on the approximate gradient of image grayscale, and the larger the gradient is, the more
likely it is an edge [61]. The deep learning network can learn the complex features of
high-resolution remote sensing image features, but there are still deficiencies in the feature
extraction of building roof types for very complex UAV ultra-high-resolution remote
sensing images, mainly in the differences between different building roof types on the
image edges and the integrity of the target [62]. To solve these problems, we combine the
image features calculated by Sobel edge detection as additional spatial visual features with
UAV RGB images to improve the discriminability of different building roof types on UAV
visible images. The Sobel operator can smooth out the building boundaries in the filtered
images, making the surface texture and shape features of different building roof types
more prominent, while reducing the interference of background noise. The Sobel algorithm
consists of two sets of 3 × 3 matrices, which are convolved along the x-axis, y-axis, from
top to bottom and from left to right on the image, respectively, to obtain the horizontal
and vertical luminance difference approximation; if f (x, y) is the gray value of the (x, y)
coordinate point on the image, Sx and Sy represent the gray value of the horizontal and
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vertical edge detection of the image, respectively. The grayscale values are calculated as
follows:

Sx =

 −1 0 −1
−2 0 −2
−1 0 −1

× f (x, y) (2)

Sy =

 +1 +2 −1
0 0 0
−1 −2 −1

× f (x, y) (3)

The approximate gradient M and the gradient direction θ of the grayscale at each pixel
point of the image are calculated by combining the horizontal and vertical grayscale values
of the point by applying the square root.

M=
√

Sx2+Sy2 (4)

θ = arctan(
Sy

Sx
) (5)

If the approximate gradient M is greater than a certain threshold, the point (x, y) is
considered an edge point. The Sobel edge detection feature of the UAV image in this study
is calculated by an operation in ENVI5.3. After several experiments and comparisons, the
calculated image enhancement parameters are set to linear 0–255 and the filter parame-
ters are set to 18 sharpening degrees, which can make the image boundary more clearly
displayed.

3.2. Improved Mask R-CNN for UAV Image Roof Type Recognition

This section describes the specific process of applying deep learning algorithms and
theories, including an overview of the network architecture of Mask R-CNN based on
ResNet152, the production and processing of sample sets, model implementation and
training.

3.2.1. Migration Learning Deployment of ResNet152

When deep learning is used for building roof type recognition, the number of network
layers of the neural network is crucial for the extraction of roof type features, which can
extract higher-level abstract features such as texture, shape and color features when the
pattern of the roof type features is not obvious. However, simply increasing the network
depth can easily lead to gradient disappearance and network degradation problems, which
make the image classification accuracy decrease rapidly after saturation [63]. These issues
are addressed by ResNet [64], which can also reduce training errors while deepening the
network by introducing identity mapping between layers. ResNet152 is one of the networks
with deeper layers in the ResNet, which can effectively use the multilayer information
of the network even though the number of layers is deeper, due to its lower complexity
and better ability to extract features. Therefore, this study uses ResNet152 as the base
network for complex feature extraction of roof types of buildings in the countryside of UAV
images. Figure 4 shows the ResNet152 network structure, where from the first group of
convolutional blocks up to the fifth group are residual modules. After inputting the image
with an image size of 224 × 224, the final group output size is reduced to 7 × 7 by learning
the features extracted from the training residual network, then the trained image is input
to the average pooling layer to take the average, and finally, the softmax function of the
fully connected layer is used to classify the image categories.
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Transfer learning is a very effective method proposed to solve the problem of overfit-
ting in the training process of neural network learning for small data volumes. It improves
the efficiency and accuracy of small data classification problems by saving the feature
parameters pre-trained in large datasets (such as ImageNet, etc.) and then applying them
to the new target classification task to be solved, through the portability of feature model
weights between different classification datasets. The two main common migration learning
methods are feature migration and model migration [65]. In this study, we use model mi-
gration to migrate the ResNet152 pre-trained model, which is fully trained in the ImageNet
dataset, to the feature extraction layer of Mask R-CNN, and then re-initialize the parameters
of the last layer of the ResNet152 pre-trained model, while the other layers directly use
the weight parameters of the pre-trained network and freeze them, and then use the rural
building roof as a landmark. The model is then fine-tuned using the rural building roof
type dataset to achieve optimal training of the building roof type recognition model.

3.2.2. Construction of Improved Mask R-CNN Model

Mask R-CNN is a widely used and efficient multi-task instance segmentation frame-
work for integrated target detection and semantic segmentation, which is based on R-
CNN [66], Fast R-CNN [67] and Faster R-CNN [68]. Mask R-CNN adds a branch using
Full Convolutional Network (FCN) to Faster R-CNN to predict the segmentation mask,
making it juxtaposed with the original bounding box layer and classification layer, and it
can accurately detect the target class and location information in the image. In addition,
Mask R-CNN uses region of interest (RoI) Align to optimize the spatial location misalign-
ment problem caused by the RoI pooling layer, and by introducing a bilinear interpolation
algorithm, each RoI is better aligned to the location of pixels on the original input image to
achieve accurate pixel-level target segmentation. The network structure of Mask R-CNN
used in this paper is shown in Figure 5, and the steps of building roof type recognition
based on the improved Mask R-CNN are as follows:
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(1) Input a pre-processed UAV remote sensing image of a specific size into the pre-trained
ResNet152 network to obtain the corresponding feature maps.

(2) Assign a fixed number of RoIs to each point on the feature map, resulting in multi-
ple RoIs.

(3) Transfer these candidate RoIs to the RPN network for binary classification (foreground
and background) and fine-tuning of the location and size of the bounding box to obtain
a more accurate bounding box for better fitting of the target. Simultaneously, filter out
some of the candidate RoIs by using non-maximal value suppression.

(4) Run the RoI Align operation on the remaining RoIs, that is, first mapping the feature
map’s pixels to the original map, and then mapping the feature map to the fixed
features.

(5) Finally, these RoIs are subjected to multi-category classification, bounding box regres-
sion, and mask generation by FCN in the sub-network.

3.2.3. Model Implementation and Training

(1) Software and hardware environment configuration: The computer used in this ex-
periment is equipped with a 3.7 GHz octa-core Intel Core i9-10900K CPU, an 11 GB
NVIDIA GeForce GTX 2080 Super graphics card, a 32 GB memory stick and Windows
10 as the operating system. The neural network design framework used in this paper
is the Pytorch deep learning framework.

(2) Construction of a sample dataset of rural building roof types: We cropped the seven
images and then calculated the spectral visual features and spatial visual features
of the sample area images according to the method described in Section 3.1, and
combined them with the original UAV visible band images for different features.
We used ArcGIS Pro 2.8 to manually visually interpret the sample labeling of each
representative roof type in these combined features and cross-checked it with mul-
tiple people to ensure the accuracy of the sample types, including the gabled type
labeled as 1, flat type labeled as 2, hipped type labeled as 3, complex type labeled
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as 4 and mono-pitched labeled as 5. The labeled images are converted to GeoTIFF
format, which is used as the reference standard for training sample data and model
accuracy verification of the deep learning model. Due to the hardware limitation in
the training of the deep learning network model, the image needs to be segmented
into several small pieces. Based on the random strategy [69], a 224 × 224 area is
randomly intercepted from the manually labeled sample area as the input image for
the training model.

(3) Data enhancement and sample data set assignment: To expand the training sample
size of the UAV remote image dataset to avoid the model overfitting problem, we
randomly select 50% of the images from the training dataset for data enhancement,
and get 1.5 times the amount of image data as the original training data. These
enhancement methods include rotate, crop, brightness enhancement, contrast en-
hancement, and scaling. In this paper, we use two regions, T1 and T2, as test regions,
and other regions as training and validation regions, with the training sample set,
validation sample set, and test sample set divided in the ratio of 5:1:4. It should be
noted that because the number of hipped, complex and mono-pitched types of roofs
on buildings in rural areas is small, which easily causes the unbalanced extraction
of features from different roof types by the model, we conduct separate secondary
training for the above three datasets of roof types with a small number of training
samples, and the secondary training classification results are jointly processed with
the full type training classification results as the final classification result output.

(4) Feature combination training mode setting: In this paper, different visual feature
images are combined with UAV visible RGB band images as different feature com-
binations, and they are input to the model for training to analyze the performance
of the model under several different feature combinations. The image features are
divided into four different combinations as input layers: RGB, RGB + Sobel, RGB +
VDVI and RGB + VDVI + Sobel.

(5) Model training parameters setting: After comparing the experimental results with
several parameter selections, the improved Mask R-CNN deep learning network uses
the average binary cross entropy as the loss function, which allows the generation
of masks for each class, and there is no inter-class competition. The weight decay
coefficient is 0.0001, the momentum coefficient is 0.9, the activation function is sigmoid,
the batch size is set to 8, the epoch is set to 20, the initial learning rate is 0.001, and the
optimization method uses the stochastic gradient descent (SGD) method, which can
accelerate the convergence of the network.

3.2.4. Accuracy Evaluation Method

In this paper, the evaluation of the model includes two aspects: first, the accurate
evaluation of the improved Mask R-CNN classification results in terms of their agreement
with the true values; secondly, the feature applicability evaluation to determine the impact
of different visual feature combinations on the accuracy of the recognition results of roof
types of buildings in the countryside of UAV images. According to the combination of
the true category and model classification category, the results can be classified into four
cases: true positive (TP), false negative (FN), false positive (FP) and true negative (TN).
The number of pixels correctly classified as positive samples is denoted by TP; the number
of pixels correctly classified as negative samples is denoted by FN; the number of pixels
with errors for negative samples is denoted by FP; and the number of pixels with errors
for positive samples is denoted by TN. These values can be calculated using the pixel-
based confusion matrix [70]. Based on the above calculation results, we use five accuracy
evaluation methods, namely Precision, Recall, F1-score, Overall Accuracy (OA) and Kappa
coefficient (KC), to check the overall prediction performance of the algorithm for different
roof types. Precision is the ratio of the number of correctly classified positive samples to the
number of all positive samples classified by the classifier. Recall is the ratio of the number
of correctly classified positive samples to the number of all actual positive samples. In
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practice, Precision sometimes contradicts Recall so we use the F1-score metric, which is the
summed average of Precision and Recall. OA is the probability that the classified result is
consistent with the actual type of the region on the ground. KC is used for consistency
testing, which can be a better measure of classification accuracy. The specific formula for
each accuracy evaluation index is as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1-score = 2×Precision × Recall
Precision + Recall

(8)

OA =
TP + TN

TP + FN + FP + TN
(9)

KC =
N∑r

i=1 xii − ∑r
i=1 (xi+x+i)

N2 − ∑r
i=1 (xi+x+i)

(10)

In the equation of KC, r is the total number of categories in the confusion matrix; N is
the total number of pixels used for accuracy evaluation; xii is the total number of pixels
correctly extracted in the confusion matrix; xi+ and x+i are the total number of pixels for
each row and column of the confusion matrix, respectively.

4. Experimental Results

To verify the superiority of the improved Mask R-CNN model, the accuracy of the
recognition results and the applicability of different combinations of visual features for the
recognition of roof types of buildings in the countryside in UAV images were compared
and evaluated. First, to investigate the applicability of different input feature combinations
for the recognition of different roof types, we evaluate the effects of different feature
combinations on the recognition results of single rural building roof types and the overall
recognition results of roof types using the improved Mask R-CNN model, respectively,
to verify the positive effects of different visual feature combinations in the recognition
of complex roof types. Second, to evaluate the performance of the improved Mask R-
CNN model, we trained the model on the feature combination images with the highest
accuracy of roof type recognition and compared it with the original Mask R-CNN, U-
Net [71], DeeplabV3 [72] and PSPNet [73] models, and we also verified the impact of
different models on the roof type recognition results of single rural buildings and the
overall roof type.

4.1. Accuracy Comparison of Roof Recognition with Different Feature Combinations Based on the
Improved Mask R-CNN
4.1.1. Comparison of Accuracy of Roof Type Recognition Results of Single Rural Buildings
with Different Feature Combinations

Spectral information and spatial information are significant features for remote sensing
image classification and recognition. Based on the improved Mask R-CNN model, this
paper compares the roof type recognition effects of two visual features, Sobel and VDVI,
combined with UAV visible images and evaluates the impact of spectral- and spatial-based
visual features on the recognition accuracy of complex building roof types. The improved
Mask R-CNN model is used to conduct four sets of feature combination comparison
tests: RGB, RGBS (RGB + Sobel), RGBV (RGB + VDVI) and RGBVS (RGB + VDVI +
Sobel). RGB is the orthoimages in the visible band acquired by UAV, and VDVI and
Sobel features are calculated from RGB images. Figure 6 shows the recognition results
of single building roof types in the T1 and T2 test areas. From Figure 6d, it can be seen
that the feature combination of RGBS has stronger sensitivity to the boundaries of single
building roof categories, which can accurately outline the outlines of single buildings and
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correctly separate the boundaries of adjacent roof types, while the recognition results of
RGB band only have the problems of broken boundaries and incomplete extraction of
internal information. From Figure 6d,e, it can be seen that the feature combination of
RGBS and RGBV can identify flat roofs well, and in the case of vegetation distribution, the
feature combination of RGBV is more advantageous than that of RGBS for distinguishing
vegetation and buildings, while the recognition results of both RGBVS and RGB band only
have some degree of under-recognition phenomenon.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 26 
 

 

Sobel). RGB is the orthoimages in the visible band acquired by UAV, and VDVI and Sobel 
features are calculated from RGB images. Figure 6 shows the recognition results of single 
building roof types in the T1 and T2 test areas. From Figure 6d, it can be seen that the 
feature combination of RGBS has stronger sensitivity to the boundaries of single building 
roof categories, which can accurately outline the outlines of single buildings and correctly 
separate the boundaries of adjacent roof types, while the recognition results of RGB band 
only have the problems of broken boundaries and incomplete extraction of internal infor-
mation. From Figure 6d,e, it can be seen that the feature combination of RGBS and RGBV 
can identify flat roofs well, and in the case of vegetation distribution, the feature combi-
nation of RGBV is more advantageous than that of RGBS for distinguishing vegetation 
and buildings, while the recognition results of both RGBVS and RGB band only have some 
degree of under-recognition phenomenon. 

The recognition accuracy of roof types of single rural buildings with different feature 
combinations is shown in Table 2. When RGB is combined with VDVI or with Sobel for 
features, the Precision, Recall and F1-score of each roof type are improved to some extent, 
among which the feature combination of RGBS is better. Specifically, the F1-score of RGBS 
in the T1 test area for each roof type improved by a minimum of 0.03 and a maximum of 
0.18 compared to the test results for the RGB band only. In the T2 test area, RGBS shows 
the highest average F1-score, with superior recognition for gabled and flat roof types in 
particular and better recognition of other different complex roof types in the area. The 
RGBV feature combination is also slightly better than the RGB band-only recognition re-
sults, with an improved F1-score of at least 0.02 and at most 0.11, but the accuracy of RGBV 
is slightly lower than that of RGBS for the gabled and flat roof types. In addition, there is 
a certain degree of accuracy degradation in the recognition of each roof type by the com-
bination of RGBVS features, which indicates that too many feature combinations may not 
necessarily improve the accuracy of feature recognition, but may lead to an overall de-
crease in accuracy. 

 
Figure 6. Roof type recognition results for single rural buildings in T1 and T2 regions are compared.
(a) UAV image; (b) labeled image; (c) RGB; (d) RGB + Sobel; (e) RGB + VDVI; and (f) RGB + VDVI
+ Sobel.

The recognition accuracy of roof types of single rural buildings with different feature
combinations is shown in Table 2. When RGB is combined with VDVI or with Sobel for
features, the Precision, Recall and F1-score of each roof type are improved to some extent,
among which the feature combination of RGBS is better. Specifically, the F1-score of RGBS
in the T1 test area for each roof type improved by a minimum of 0.03 and a maximum of
0.18 compared to the test results for the RGB band only. In the T2 test area, RGBS shows
the highest average F1-score, with superior recognition for gabled and flat roof types in
particular and better recognition of other different complex roof types in the area. The
RGBV feature combination is also slightly better than the RGB band-only recognition
results, with an improved F1-score of at least 0.02 and at most 0.11, but the accuracy of
RGBV is slightly lower than that of RGBS for the gabled and flat roof types. In addition,
there is a certain degree of accuracy degradation in the recognition of each roof type by
the combination of RGBVS features, which indicates that too many feature combinations
may not necessarily improve the accuracy of feature recognition, but may lead to an overall
decrease in accuracy.
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Table 2. Comparison of recognition accuracy of single roof categories with different feature
combinations.

Feature Type
T1 T2

Precision Recall F1-Score Precision Recall F1-Score

RGB

gabled 83.5% 76.4% 0.798 95.6% 93.9% 0.947
flat 86.4% 98.1% 0.919 92.5% 90.0% 0.912

hipped 47.5% 64.9% 0.549 73.8% 47.4% 0.577
complex 90.9% 35.9% 0.515 63.7% 80.9% 0.713

mono-pitched 77.8% 31.1% 0.444 56.3% 54.5% 0.554

RGB + Sobel

gabled 90.0% 82.4% 0.860 96.2% 92.1% 0.941
flat 90.3% 98.0% 0.940 88.5% 91.6% 0.900

hipped 56.3% 94.7% 0.706 69.7% 74.3% 0.719
complex 97.7% 77.0% 0.861 67.8% 85.4% 0.756

mono-pitched 37.5% 66.7% 0.480 54.2% 46.4% 0.500

RGB + VDVI

gabled 84.5% 81.0% 0.827 95.0% 81.3% 0.876
flat 89.6% 98.2% 0.937 69.8% 94.7% 0.804

hipped 65.5% 59.4% 0.623 67.3% 55.4% 0.608
complex 74.3% 34.9% 0.475 63.6% 81.0% 0.713

mono-pitched 93.3% 37.8% 0.538 53.1% 44.7% 0.485

RGB + VDVI + Sobel

gabled 86.0% 47.0% 0.608 93.1% 85.8% 0.893
flat 80.6% 99.1% 0.889 62.9% 94.8% 0.756

hipped 29.9% 92.1% 0.451 83.3% 37.5% 0.517
complex 90.2% 44.0% 0.591 33.3% 1.0% 0.019

mono-pitched 38.5% 12.5% 0.189 1.0% 1.0% 0.010

4.1.2. Comparison of the Overall Recognition Result Accuracy for Different
Feature Combinations

The overall recognition results of roof types of rural buildings with different feature
combinations using the improved Mask R-CNN are shown in Figures 7 and 8. It can be seen
that the RGBS feature combinations in the T1 and T2 regions can identify more roof types
and ensure the number of extracted roofs in the region, while all other feature combination
methods have a considerable degree of missed extraction. From Figures 7c and 8c, it can be
seen that the RGB band features by themselves can maintain high accuracy in extracting
to different building roof types, but the RGB band features cannot accurately depict the
gaps between different building roof types in dense building areas, and there are cases of
misclassifying farmland plots into gabled roof types. The feature combination of RGBS
improves this situation, and Figures 7d and 8d demonstrate the high performance of this
feature combination in identifying medium-sized building roofs, extracting the shape of
each building roof type well and separating them. However, in the case of insufficient Sobel
feature detection, there are also some feature recognition errors, as shown in Figure 8d,
which may not accurately identify the roof types at vegetation shading. While RGBV can
identify the difference between each roof type and vegetation in this case, as shown in
Figure 8e, the combination of RGBV features can improve the recognition of roof types that
are heavily shaded by vegetation.

The overall recognition accuracies of roofs with different feature combinations are
shown in Table 3. The results show that the feature combination of RGBS has the highest
roof type recognition accuracy in both T1 and T2 test areas, with improvements of 0.105,
0.115 and 0.061, and 0.05, 0.115 and 0.075 over the F1-score, KC and OA of RGB band
features, respectively. The roof type identification with the combination of RGBV features
also has a higher F1-score, KC and OA than the RGB band features, improving by 0.023,
0.042 and 0.028, and 0.042, 0.097 and 0.078, respectively. In addition, the roof recognition
accuracy of the RGBVS feature combination in both test areas is significantly lower than
that of the RGB band features, indicating that too many feature inputs may instead hinder
the model from extracting image features, resulting in low accuracy recognition. In contrast,
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using the right combination of features can improve the recognition accuracy of roof types
in UAV visible band images to a certain extent.

Table 3. Comparison of the overall recognition accuracy of different feature combinations.

Feature
T1 T2

Precision Recall F1-Score KC OA Precision Recall F1-Score KC OA

RGB 77.2% 61.3% 0.683 0.716 0.842 69.8% 71.4% 0.706 0.696 0.832
RGB + Sobel 74.4% 83.8% 0.788 0.831 0.903 75.3% 78.0% 0.766 0.811 0.907
RGB + VDVI 81.4% 62.3% 0.706 0.758 0.870 76.4% 73.3% 0.748 0.793 0.910

RGB + VDVI + Sobel 65.0% 58.9% 0.618 0.565 0.791 54.7% 44.0% 0.488 0.626 0.827
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4.2. Comparison of Roof Recognition Accuracy with Other Deep Learning Models
4.2.1. Comparison of Roof Type Recognition Results of Single Buildings with Different
Deep Learning Models

The RGBS feature combination dataset with the highest accuracy for roof type recogni-
tion is input to the input layer of the improved Mask R-CNN model for training, and the
performance of the improved Mask R-CNN model is evaluated by comparing the recogni-
tion results and accuracy with those of the original Mask R-CNN, U-Net, DeeplabV3 and
PSPNet. The original Mask R-CNN uses ResNet50 as the feature extraction layer, which can
also obtain good results in roof type recognition. U-Net has good applications in medical
image recognition and has also achieved good results in remote sensing image building
recognition. DeeplabV3 uses the ASPP module to mine convolutional features and image
layer features at different scales, which has wide applications in high-resolution remote
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sensing. DeeplabV3 has a wide range of applications in high-resolution remote sensing
image classification [74]. PSPNet is able to aggregate global contextual information from
different sub-region images and is suitable for image segmentation of buildings in different
complex scenes. The evaluation metrics for the recognition results of roof types of single
buildings with different deep learning models in T1 and T2 test areas are calculated and
shown in Table 4. The mean F1-score of the improved Mask R-CNN is higher than the other
models in the recognition of gabled, flat, hipped and complex types of roofs, indicating
that it has a greater advantage in the recognition of different roof types. Although the
recognition accuracy of the original Mask R-CNN model for different building roof types is
not as high as that of the improved Mask R-CNN, its result accuracy is more stable and
can also maintain a high recognition accuracy. On the other hand, the U-Net, DeeplabV3
and PSPNet models all show very low recognition accuracy on hipped, complex and mono-
pitched types of roofs, indicating that there are still limitations in using only semantic
segmentation networks for recognizing complex building roof types.

Table 4. Comparison of the accuracy of single building roof type recognition with other deep learning
models.

Model Type
T1 T2

Precision Recall F1-Score Precision Recall F1-Score

Mask R-CNN

gabled 84.1% 92.3% 0.880 92.4% 87.2% 0.897
flat 74.4% 71.1% 0.727 73.5% 92.6% 0.820

hipped 40.0% 50.0% 0.444 61.2% 30.0% 0.403
complex 90.9% 63.8% 0.750 69.7% 65.2% 0.674

mono-pitched 65.4% 68.0% 0.667 66.7% 31.3% 0.426

U-Net

gabled 70.2% 93.0% 0.800 85.2% 95.1% 0.899
flat 93.7% 86.5% 0.900 85.4% 79.6% 0.824

hipped 66.7% 2.6% 0.050 51.9% 17.8% 0.265
complex 81.0% 18.4% 0.300 45.1% 18.0% 0.257

mono-pitched 20.0% 1.4% 0.026 100.0% 12.3% 0.219

DeeplabV3

gabled 76.8% 86.0% 0.811 86.9% 95.9% 0.912
flat 95.4% 90.0% 0.926 89.0% 79.6% 0.840

hipped 18.5% 41.9% 0.257 75.0% 8.2% 0.148
complex 18.2% 4.4% 0.071 49.5% 33.9% 0.402

mono-pitched 2.3% 3.9% 0.029 72.7% 16.0% 0.262

PSPNet

gabled 74.7% 90.0% 0.816 85.5% 95.9% 0.904
flat 91.3% 92.2% 0.917 86.8% 86.9% 0.868

hipped 34.2% 15.3% 0.211 44.3% 17.3% 0.249
complex 40.6% 9.2% 0.150 48.1% 8.1% 0.139

mono-pitched 16.7% 1.5% 0.028 20.0% 1.8% 0.033

Our Model

gabled 90.0% 82.4% 0.860 96.2% 92.1% 0.941
flat 90.3% 98.0% 0.940 88.5% 91.6% 0.900

hipped 56.3% 94.7% 0.706 69.7% 74.3% 0.719
complex 97.7% 77.0% 0.861 67.8% 85.4% 0.756

mono-pitched 37.5% 66.7% 0.480 54.2% 46.4% 0.500

4.2.2. Overall Recognition Accuracy of Roofs Compared to Other Deep Learning Models

The overall recognition accuracy of different deep learning models on the roof types
of rural buildings is shown in Table 5, and the results show that the model proposed in this
paper has higher evaluation indexes than other deep learning models in both T1 and T2
test areas, with F1-score, KC and OA improving, respectively, by 0.095, 0.125 and 0.076 on
average over the original Mask R-CNN, 0.248, 0.178 and 0.082 on average over U-Net, 0.271,
0.164 and 0.082 on average over DeeplabV3, and 0.305, 0.151 and 0.07 on average over
PSPNet. Although the original Mask R-CNN, U-Net, DeeplabV3 and PSPNet have more
stable extraction results in both T1 and T2 test areas, there are more false identifications
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and missed identifications for roof types with smaller sample sizes and more complex
features, resulting in lower accuracy of roof type recognition, and thus these models have
shortcomings in robustness and generalizability.

Table 5. Comparison of the overall recognition accuracy with other deep learning models.

Model
T1 T2

Precision Recall F1-Score KC OA Precision Recall F1-Score KC OA

Mask R-CNN 71.0% 69.0% 0.700 0.688 0.807 72.7% 61.3% 0.665 0.705 0.851
U-Net 66.3% 40.4% 0.502 0.66 0.807 73.5% 44.6% 0.555 0.626 0.838

DeeplabV3 42.2% 45.2% 0.437 0.65 0.791 74.6% 46.7% 0.575 0.663 0.854
PSPNet 51.5% 41.6% 0.460 0.682 0.82 56.9% 42.0% 0.483 0.657 0.849

Our Model 74.4% 83.8% 0.788 0.831 0.903 75.3% 78.0% 0.766 0.811 0.907

5. Discussion
5.1. Sensitivity Analysis of Different Feature Combinations on the Training Results of the Improved
Mask R-CNN

To verify the effect of different feature combinations on the training curves of the
improved Mask R-CNN model used in this paper, we trained the improved Mask R-CNN
model with 20 epochs of learning on sample datasets with different feature combinations
and obtained the loss curves of the training and validation sets during the training process.
As shown in Figure 9, in terms of training efficiency, the training curves of the RGBS feature
combinations exhibit a faster convergence rate, which is 40% higher than other feature
combinations under the same epochs, greatly improving the model training efficiency. In
terms of model stability, the training curve of the RGBS feature combination has the least
fluctuation and is highly stable, which can reduce the occurrence of overfitting problems.
In terms of training accuracy, the training and validation loss values of the RGBS feature
combination are closer to 0.5 than those of the other feature combinations. It can be seen that
the combination of Sobel features and UAV RGB images is more conducive to improving
the training efficiency, stability, and accuracy of the model.
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5.2. Effect of Different Feature Extraction Layers of ResNet on the Accuracy of Results

Feature extraction is the key for deep learning models to maintain high accuracy in
recognition results. To investigate the effect of using different typical layers of ResNet on
the accuracy of Mask R-CNN models in recognizing complex rural building roof types, we
used migration learning to deploy pre-trained ResNet18, ResNet34, ResNet50, ResNet101
and ResNet152 on the Mask R-CNN feature extraction layer and trained on the RGBS
feature combination sample dataset with the highest recognition accuracy, and compared
their recognition accuracy and efficiency of rural building roof types on T1 and T2 test
areas. As shown in Table 6, using ResNet152 as the feature extraction layer of Mask R-
CNN was able to obtain a much higher roof type recognition accuracy than ResNet18,
ResNet34 and ResNet50. Although the recognition accuracy of the Mask R-CNN model
based on ResNet101 is very close to that of ResNet152, it consumes much more training
time than ResNet152, which may be due to the fact that ResNet152 has more residual blocks,
which reduced the complexity of the model to extract features, thus improving the feature
extraction capability and efficiency.

Table 6. Comparison of the roof type recognition accuracy of Mask R-CNN based on classical layers
of different ResNet.

Model
T1 T2 Training Time

(min)Precision Recall F1-Score KC OA Precision Recall F1-Score KC OA

ResNet18 39.6% 48.2% 0.435 0.443 0.596 77.0% 62.7% 0.691 0.588 0.733 187
ResNet34 53.4% 49.9% 0.516 0.512 0.633 57.2% 59.3% 0.583 0.615 0.752 198
ResNet50 71.0% 69.0% 0.700 0.688 0.807 72.7% 61.3% 0.665 0.705 0.851 211
ResNet101 69.8% 83.9% 0.762 0.808 0.884 77.1% 70.6% 0.737 0.779 0.913 301
ResNet152 74.4% 83.8% 0.788 0.831 0.903 75.3% 78.0% 0.766 0.811 0.907 220

5.3. Analysis of the Limitations of Roof Type Identification Methods for Complex Rural Buildings

With the wide application of UAV high-resolution remote sensing images, the accurate
recognition of rural building roof types has gradually become possible. However, there
are a large number of complex rural building roof types in UAV visible images and other
features that are easily confused with building roof types, which poses a great challenge to
the existing methods. Therefore, this paper proposes an improved Mask R-CNN model
based on the combination of different visual features, which can effectively improve the
recognition accuracy of complex rural building roof types in UAV visible images and
provide a feasible reference solution for rural roof surveys. Specifically, the RGBS feature
combination uses Sobel edge detection features to highlight the surface texture, shape
and boundaries of different rustic building roof types, making it easier for the model to
extract important features of complex building roof types, and the results show that the
model based on this feature combination can completely and accurately segment the vector
contours of different building roof types, clearly separating the gaps between buildings. The
RGBV feature combination, on the other hand, uses VDVI features to highlight vegetation
areas to distinguish them from buildings, reducing misclassification of dense areas of rural
buildings, such as small building roofs covered by trees and green pads. In addition, we
compare the accuracy of the improved Mask R-CNN model with other deep learning
models for roof type recognition, and the results also show that the improved Mask R-
CNN model exhibits the highest accuracy and the best robustness, with good performance
in coping with different complex scenarios for recognizing roof types of rural buildings.
However, the method proposed in this paper also has some false recognition and missed
recognition for more complex building types and their morphologies (e.g., large buildings,
irregularly shaped buildings, dark buildings, etc.), resulting in model recognition accuracy
that is not very high, so we analyze the causes of these errors and their improvement
methods.
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(1) Uneven sample size across roof types

The uneven sample size of different roof types is an important reason for the error in
identifying the roof types of complex buildings. In this paper, the roof types of buildings in
UAV images are divided into five categories, but since rural buildings are far less numerous
and dense than urban buildings, the sample size of these five categories of building roofs
cannot be guaranteed to be evenly distributed, so the hipped, complex and mono-pitched
roof type datasets with smaller sample sizes were trained separately and secondarily, and
the results showed more accurate recognition than training the five categories together. We
combined the results of training the full class dataset and the three class datasets with a
smaller sample size to obtain the overall results of building roof type recognition. However,
the recognition results and accuracy still did not reach a high level. This may be due to the
unbalanced samples of the five categories of roof datasets, which makes the model pay
more attention to the gabled and flat categories with large data volume, and the parameters
in the network are optimized mainly based on the losses of these two categories, resulting
in much lower test accuracy for the remaining categories; for example, rural buildings
rarely have large irregular buildings with less training sample data, which reduces the
model’s ability to recognize these morphological building roof types (hipped and complex
type roofs). Mono-pitched roof types with the same small sample size generally have
more dark buildings and tend to cling to the sides of taller buildings, causing them to
be obscured by shadows and other building walls, which also prevents the model from
accurately extracting the features of this type of roof, resulting in low accuracy identification
of mono-pitched roof types. In addition, the category with larger sample data does not
mean that higher recognition accuracy can be obtained; the more samples of the category,
the higher its recall rate will be, and therefore a certain accuracy will be lost accordingly [75].
For example, in the T2 test area, the recognition results of RGBV feature combinations
have a higher Recall for flat type roofs (Table 2 and Figure 8e), but the Precision is 24.9%
different, indicating a decrease in the F1-score. The recognition error problem caused by
the imbalance between samples can be improved by increasing the sample size of complex
roof types in other larger regions or by setting higher weights of network parameters for
the categories with more complex features and smaller sample sizes.

(2) Limitations of different visual feature extraction methods

Different visual features also have limitations for feature extraction of building roof
types for complex scenes. The Sobel edge detection algorithm in the RGBS feature combi-
nation used in this paper can only detect the edges in the horizontal and vertical directions
of the image, which often has low detection accuracy for more complex scenes, and its
detected image edges are coarse, which cannot precisely locate the location of the edge
points and may generate additional background noise. Furthermore, while using VDVI in
the RGBV feature combination distinguishes vegetation from buildings, it also eliminates
building roof shapes and textures in densely built-up areas, resulting in a model that cannot
effectively extract features of different building roof types. The Sobel algorithm can be
improved to refine the detected edge features and improve its edge detection accuracy in
complex scenes.

(3) Mask R-CNN structure problem

The structure of Mask R-CNN itself suffers from the problem of inadequate utilization
of the features of each scale roof type. Although this paper uses the migration learning-
based ResNet152 as the feature extraction layer of Mask R-CNN, there are still two problems
with the structure of Mask R-CNN itself: first, the path between the highest-level features
and the lowest-level features is too long, which easily leads to the loss of feature information
transfer and cannot effectively utilize the lower-level features. Second, the feature mapping
map input to the RPN network is only a map carrying information about itself and the
higher-level features, which does not make full use of the feature information at each
scale, resulting in lower detection accuracy [76]. These problems make the improved Mask
R-CNN model unable to effectively utilize the extracted features of complex building
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roof types at all scales, thus reducing the accuracy of the model in recognizing complex
building roof types. Future research can improve the network structure of the Mask R-CNN
model (e.g., FPN network) to shorten the path from low-level feature transfer to high-level
mapping, reduce the feature information loss in the transfer process, and improve the
feature utilization efficiency of the model, thus improving the performance of the model.

6. Conclusions

Rural areas in China account for nearly half of the Chinese population, and the survey
of rural building roof types is of great significance for the planning and construction of
beautiful villages in China. Aiming at the current problems that most of the UAV high-
resolution remote sensing images only have a visible band, that the existing methods have
difficulties extracting features of complex roof types, and that features with similar spectral
features such as low reflection, obscured vegetation, and concrete roads are easily confused
with building roof types, this paper proposes a method to identify rural building roof
types in UAV visible images based on different combinations of visual features, and an
improved Mask R-CNN deep learning model is used to improve the recognition accuracy
of complex building roof types. VDVI features based on spectral vision and Sobel edge
detection features based on spatial vision are combined with UAV visible images to form
different feature datasets applied to a deep learning model for roof type recognition. We
evaluate the recognition results of the models with four different feature combinations,
RGB, RGB + Sobel, RGB + VDVI and RGB + VDVI + Sobel, and also compare the accuracy
of the improved Mask R-CNN with the original Mask R-CNN, U-Net, DeeplabV3 and
PSPNet deep learning models.

The results show that adding Sobel features or VDVI features to the UAV visible
RGB images can improve the accuracy of the model in recognizing the roof types of rural
buildings. Firstly, adding Sobel features to RGB images can identify the types and contours
of different building roofs more clearly, especially in the dense building areas, and can
show the gaps between different buildings well. Secondly, combining RGB images with
VDVI features can effectively distinguish buildings and vegetation areas and improve the
recognition accuracy of buildings obscured by vegetation. In contrast, when combining
RGB images with VDVI and Sobel features together, the recognition accuracy of the model
for roof types is reduced instead, indicating that too many feature combinations may not
be beneficial to the recognition of building roof types. In addition, the F1-score, KC and
OA of the improved Mask R-CNN rustic building roof type recognition results used in this
paper are higher than those of other deep learning models, showing the highest accuracy
and robustness in the test area.
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