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Abstract: Individual-tree aboveground biomass (AGB) estimation can highlight the spatial distribu-
tion of AGB and is vital for precision forestry. Accurately estimating individual tree AGB is a requisite
for accurate forest carbon stock assessment of natural secondary forests (NSFs). In this study, we
investigated the performance of three machine learning and three ensemble learning algorithms in
tree species classification based on airborne laser scanning (ALS) and WorldView-3 imagery, inversed
the diameter at breast height (DBH) using an optimal tree height curve model, and mapped individual
tree AGB for a site in northeast China using additive biomass equations, tree species, and inversed
DBH. The results showed that the combination of ALS and WorldView-3 performed better than either
single data source in tree species classification, and ensemble learning algorithms outperformed
machine learning algorithms (except CNN). Seven tree species had satisfactory accuracy of individual
tree AGB estimation, with R2 values ranging from 0.68 to 0.85 and RMSE ranging from 7.47 kg to
36.83 kg. The average individual tree AGB was 125.32 kg and the forest AGB was 113.58 Mg/ha in
the Maoershan study site in Heilongjiang Province, China. This study provides a way to classify tree
species and estimate individual tree AGB of NSFs based on ALS data and WorldView-3 imagery.

Keywords: individual tree AGB; machine learning; ensemble learning; tree species classification

1. Introduction

Forests are essential resources and require sustainable management approaches to
monitor forest structures and understand the impacts of global climate change on terrestrial
ecosystems. Forest biomass is defined as the total dry weight of organic material, both
aboveground and belowground, in forests. Aboveground biomass (AGB) is the sum of
the dry weight of stems, branches, and foliage above the ground surface [1] and plays a
vital role in carbon stock assessment and the carbon cycle [2–4]. Due to anthropogenic
deforestation, the biomass of natural secondary forests (NSFs) in northeastern China has
changed considerably in the past decades [5]. The accurate estimation of forest biomass
has substantial significance in understanding the ecological and global changes [6].

There are three main methods of estimating forest biomass: physiological model-based
simulation [7], measurements from traditional field survey data [8], and inversion from
remote sensing datasets [9,10]. Physiological model-based simulation methods usually
estimate forest biomass at local or regional scales and rely on various input variables (e.g.,
radiation, climate conditions, and altitude) [11]. Forest resource survey methods (e.g.,
direct destructive harvest measurement or indirect allometric equation models) are the
primary sources of forest AGB measurement and provide accurate information for the
dynamic management and planning of forest resources [12]. National Forest Inventory
(NFI) programs often rely upon the plot-based field inventory and monitoring of forest
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conditions (e.g., forest structure, composition, biomass, and carbon) [13]. However, field
survey methods are commonly laborious, enormously time-consuming, destructive, and
expensive. Thus, the data obtained at field survey points are only suitable for small
study areas.

Remote sensing can serve as a non-destructive alternative for more robust, continuous,
and spatially explicit biomass assessment than traditional forest resource survey meth-
ods [14]. Remote sensing-based AGB estimation can provide a practical and economical
approach to forest surveys and ensure the spatial integrity and time consistency of data
with high precision [15]. Therefore, remote sensing technologies have been extensively
applied for rapid, periodic forest biomass estimates over large areas [16]. Over the last
decades, the retrieval of forest AGB (or forest biomass hereafter) based on remote sensing
data has received increasing attention in both the forestry and remote sensing fields [17–19].
Consequently, a variety of passive and active remote sensing data have been used to esti-
mate forest AGB [20–23]. However, both optical and microwave data suffer from challenges
due to the insensitivity and saturation of the signals at medium and high biomass levels [24].
For example, Le Toan et al. concluded that in different temperate, boreal, and tropical
forests, the saturation of AirSAR and E-SAR occurs at around 30, 50, and 150–200 Mg/ha
in the C, L, and P bands, respectively [25]. Spectral reflectance values are insensitive to
biomass changes in dense and multi-layer forest canopies, which leads to saturation of
optical remotely sensed data with relatively low biomass ranges [26].

Light detection and ranging (LiDAR) is an effective technique for estimating forest
biomass [27]. With a tendency not to saturate even at high biomass levels (>1000 Mg/ha) [28],
LiDAR is widely used to estimate forest biomass [29–31]. Researchers have also demon-
strated that biomass estimation accuracy can be improved by combining LiDAR and passive
imagery compared to using the LiDAR data alone. For example, Luo et al. estimated
forest AGB, underground biomass (BGB), and total biomass (TB) by combining LiDAR and
hyperspectral data [32]. In comparison to LiDAR metrics alone, the fused data improved
R2 by 5.8%, 2.2%, and 2.6%, decreased Akaike information criterion (AIC) values by 1.9%,
1.1%, and 1.2%, and reduced the root mean square error (RMSE) by 8.6%, 7.9%, and 8.3%
for BGB, AGB, and TB, respectively. To explore AGB estimation at an individual tree
level, researchers have also combined high-spatial-resolution imagery (e.g., QuickBird and
WorldView) with LiDAR data [33,34]. LiDAR can detect three-dimensional (3-D) forest
structures, so it has particular value for detecting individual tree canopies [35]. The appli-
cation and development of LiDAR on individual tree crown delineation (ITCD) technology
provides a reliable basis for species identification and parameter estimation (e.g., height,
diameter at breast height (DBH), and AGB) at an individual tree level. Researchers have
found that the accuracy of vegetation type classification can be significantly improved
by combining LiDAR data with passive optical images [36], which is important because
distinguishing vegetation types can be an effective method to improve biomass estimation
accuracy [37,38]. For example, Chen et al. integrated airborne LiDAR data and vegetation
types derived from aerial photographs for biomass mapping and concluded that incorpo-
rating species types reduced the RMSE by 10% [37]. Zhu et al. quantified the differences
in accuracy of AGB estimation between results obtained with and without consideration
of species type using Worldview-2 images and field surveys [39]. However, this study
involved only two types of mangrove species (Sonneratia apetala and Kandelia candel) at
the species level. Few studies have explored the impact of tree species on the accuracy
of AGB estimation at an individual tree level within stands with the more abundant tree
species that are typical in NSFs. Even so, accurate tree species classification is critical to
estimate AGB at the individual tree level. The classification algorithm and the data source
jointly determine classifier performance across different tree species types [40]. In recent
years, the extensive use of machine learning algorithms has contributed significantly to
tree species classification. There are various widely used algorithms, such as random forest
(RF) [41], support vector machine (SVM) [42], convolutional neural network (CNN) [43],
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and extreme gradient boosting (XGboost) [44]. However, the stacking algorithm in the
ensemble algorithm is rarely used for individual tree species classification.

Despite the potential for improved biomass estimation at the individual tree level,
few published studies estimate individual tree AGB of NSFs in China using multi-source
remote sensing data. Compared to an area-based approach, individual tree AGB estimation
based on tree species classification can provide spatially explicit AGB distributions and a
clear understanding of the AGB distribution of each tree species. It is crucial to consider
the value of combining traditional harvesting methods with remote sensing technology to
estimate AGB for individual trees, which not only takes advantage of the high accuracy
of allometric growth equations, but also has the potential to accurately map the spatial
distribution of biomass based on individual trees. This synergistic approach produces a
large amount of data and detail expression, which paves the way for precision forestry and
is also suitable for management decision-making in small or specific areas [33].

Although researchers have incorporated tree species and allometric growth equations
to estimate the AGB of individual trees for specific environments [33], it has not been fully
investigated in NSFs of China, especially in terms of estimating and mapping individual
tree scale AGB. Since NSFs have complex structures, they pose difficulties for individual
tree parameter estimation (e.g., DBH) and tree species classification. This research aims
to determine if ensemble learning algorithms can improve the accuracy of tree species
classification of NSFs compared to classic machine learning algorithms. In addition, we
will investigate whether the integration of tree species with individual parameters (e.g.,
DBH) will support the fine-scale mapping of AGB in NSFs. The objectives of this study
are to: (1) investigate the effects of different features in tree species classification based on
Airborne Laser Scanning (ALS) data and WorldView-3 imagery, (2) explore the performance
of ensemble learning algorithms in classifying tree species of NSFs, (3) estimate AGB for
individual trees and evaluate the estimation accuracy, and (4) map the spatial distribution
of AGB at the individual tree scale. An individual tree AGB map with sufficient resolution
could highlight spatial details and provide reliable data to support subsequent research
and forest management decision-making for the NSFs of China.

2. Materials and Methods
2.1. Overview of the Proposed Methodology

We implemented a five-step methodology to investigate the effect of ensemble learning
algorithms and features from different data sources on tree species classification and to
evaluate the accuracy of individual tree AGB estimation of various tree species: (1) data
preprocessing, (2) individual tree delineation using a region-hierarchical cross-sectional
analysis (RHCSA) algorithm, (3) feature extraction and selection, (4) tree species classifica-
tion using machine and ensemble learning models, and (5) individual tree AGB estimation
and mapping. A flowchart summarizing these five steps is provided in Figure 1.

2.2. Study Area

The 3282 ha study area is located in the Maoershan Experimental Forest Farm, Shangzhi
City, Heilongjiang Province, China (see Figure 2), which ranges from 127◦29′E to 127◦44′E
and from 45◦14′N to 45◦29′N. The terrain is mountainous, rising from south to north
with an average elevation of about 300 m. The study area has a temperate continental
monsoon climate, with an average annual temperature and annual precipitation of 2.4 ◦C
and 700 mm, respectively. Maoershan is a typical natural secondary forest in northeastern
China and is dominated by various broad-leaved trees, such as Manchurian ash (Fraxinus
mandshurica Rupr.), Amur cork-tree (Phellodendron amurense Rupr.), Manchurian walnut
(Juglans mandshurica Maxim.), white birch (Betula platyphylla Suk.), Mongolian oak (Quercus
mongolica Fisch. ex Ledeb.), elm (Ulmus pumila L.), Korean aspen (Populus davidiana), Miyabe
maple (Acer miyabei Maxim.), and lilac (Syringa oblata Lindl.), with a few coniferous trees,
such as Korean pine (Pinus koraiensis Sieb. et Zucc.) and Changbai larch (Larix olgensis Henry).
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2.3. Data and Preprocessing
2.3.1. Field Inventory Data

This study used inventory data of 12 sample plots dominated by the main tree species
of the study area obtained in 2019. Nine sample plots were 0.09 ha (30 m × 30 m) and
three sample plots were 1 ha (100 m × 100 m). In total, the parameters of 4058 trees were
measured, including DBH (cm), tree height (m), and crown width (CW) (m). The tree
species, location, and health of trees were recorded. DBH was measured using a perimeter
ruler with a starting diameter of 5 cm. Tree height was measured using the Vertex IV
ultrasound instrument system, and the location of each tree was recorded using a real-time
kinematic global positioning system receiver with positional error estimated to be within
5 cm. Descriptive statistics for the main tree species in the 12 sample plots are listed in
Table 1.

Table 1. The descriptive statistics for main tree species of the 12 sample plots.

Tree
Species

N
Height (m) DBH (cm)

Mean Max Min Std Median Mean Max Min Std Median

WB 444 15.7 36.1 5.0 3.3 15.5 15.2 26.8 5.6 5.6 14.8
CL 374 15.1 22.9 6.1 3.5 15.6 15.3 29.6 5.0 5.2 14.6
KP 1189 10.5 29.3 4.1 3.2 10.3 12.9 26.4 5.1 5.5 11.9
WA 407 13.8 37.0 5.4 5.3 13.1 16.2 34.1 5.1 8.4 14.4
AS 285 17.7 38.7 5.6 5.4 18.8 20.1 42.5 5.4 8.2 21.3
EL 838 11.1 29.0 4.3 4.2 10.1 12.7 39.1 5.0 6.8 10.6

Others 1 521 8.2 28.9 3.0 2.9 12.7 9.4 42.2 5.0 3.2 13.1
Total 4058 - - - - - - - - - -

Note: WB—white birch; CL—Changbai larch; KP—Korean pine; WA—Manchurian walnut; AS—Manchurian ash;
EL—elm; 1 Others included any remaining tree species.

2.3.2. ALS Data and Preprocessing

The ALS data used in the study were acquired on September 2015 using the LiCHy
airborne observation system designed by the Chinese Academy of Forestry (CAF) and
mounted on a fixed-wing aircraft. The system was equipped with a LiDAR sensor (RIEGL
LMS-Q680i) with data collected at an average flight altitude of 1200 m above ground level
and an average speed of 65 m/s. This system generated laser beams with a wavelength
of 1550 nm wavelength, a beam divergence of 0.5 mrad, a laser pulse duration of 3 ns, a
laser pulse repetition rate of 200 kHz, and a scan width of 60◦ perpendicular to the flight
direction. The average point density within each plot was 8.1 pts/m2 (min = 6.3 pts/m2,
max = 11.0 pts/m2, and σ = 1.5 pts/m2).

The ALS data preprocessing included: (1) noise elimination, (2) classification of ground
and non-ground points, (3) canopy height model (CHM) generation, and (4) CHM filling
and smoothing. Noise elimination removed the effect of noise points such as air points,
low points, and isolated points. Point cloud filtering classified the raw LiDAR points
cloud into non-ground and ground points. We used kriging to generate a digital elevation
model (DEM) and digital terrain model (DTM) from the LiDAR ground points and non-
ground points, respectively, and then generated a CHM with 0.25 m × 0.25 m based on the
difference between the DTM and the DEM. This ALS data processing was implemented
using GreenValley International’s LiDAR 360 V5.1. To fill the CHM, we applied a semi-
automatic hole-filling algorithm [45]. To mitigate potential invalid values and outliers, the
CHM was smoothed using a Gaussian filter with a window size of 3.

2.3.3. WorldView-3 Imagery and Preprocessing

WorldView-3 imagery data were obtained on 9 September 2017 from a fourth-generation
Digital Globe satellite. The image had cloud cover of 0.8%, a sun elevation angle of 49.0◦,
and a sun azimuth angle of 163.1◦. It comprised four multispectral bands (red, green, blue,
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and near-infrared) with 2 m spatial resolution and one panchromatic band with 0.5 m
spatial resolution.

The preprocessing of the WorldView-3 imagery, including radiometric calibration and
the atmospheric correction, was implemented using ENVI 5.3 software. The Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative transfer model
was implemented for atmospheric correction and conversion to surface reflectance in the
ENVI environment. After preprocessing the WorldView-3 imagery, histogram equalization
was applied to adjust image brightness values. Panchromatic bands and multispectral
were fused to improve the nominal spatial resolution of the multispectral imagery. The
fused imagery was matched to the CHM using the relative geographic referencing with a
matching error of less than 1 pixel (0.5 m).

2.4. Individual Tree Crown Delineation

This study applied the region-hierarchical cross-sectional analysis (RHCSA) algorithm
to segment individual trees. This approach is less affected by forest type or crown size,
and has adaptability to the typical NSFs in northeastern China [46]. Similar to other
ITCD algorithms (e.g., watershed) [47] and level sets [48], the RHCSA algorithm considers
tree canopies as a continuous 3-D topographic surface where a tree crown manifests as a
mountain-like uplift on the CHM. The vertices of the tree are equivalent to mountaintops,
with height decreasing continuously from the treetop to the boundary of the crown. The
CHM was scanned horizontally from top to bottom with a fixed height threshold, and
multiple cross-sections were generated for each layer. We determined whether each cross-
section appeared for the first time or was produced by multiple intersecting tree crowns.
Cross-sections that were generated by multiple trees were divided from high to low. This
process was repeated to find the lowest heights of the CHM. The details of the RHCSA
were described in [46].

The ITCD accuracy assessment considers correspondence between delineated crowns
and reference crowns on a location-by-location basis [35]. From the two perspectives of
detected crowns and reference crowns, crown matching considers both the overlapped
crown area and the position of treetops. From the reference crown perspective, accuracy
metrics reflect how well the reference crowns are detected and delineated, while the
detected crown perspective reflects whether detected crowns are represented by reference
crowns [46]. To best delineate the reference crowns, rather than the visual interpretation
method used in many prior studies, reference crowns were generated in ArcGIS 10.2 (Esri,
Redlands, CA, USA) based on the crown sizes and the locations recorded in the field. The
individual tree crown matching from the detected crown perspective and the reference
crown perspective was statistically evaluated. Producer’s accuracy (PA), user’s accuracy
(UA), and overall accuracy (OA) metrics were also used to assess the detection accuracy:

PA =
Npm + Npum

NRe f
(1)

UA =
Num + Nunm

NDet
(2)

OA = 2× PA×UA
PA + UA

(3)

where OA is overall accuracy, Npm and Npnm represent the number of 1:1 matches and
near-matches from the reference crown perspective, respectively, NRef represents the total
number of reference crowns, Num and Nunm represent the number of 1:1 matches and
near-matches for the detected crown perspective, respectively, and NDet represents the total
number of detected crowns. The matching relationship between the reference crowns and
the detected crowns is shown in [35].
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2.5. Tree Species Classification

We used the LiDAR-based individual tree crown segmentation results (1:1 matches
and near-matches from both the reference and detected crown perspectives) as classification
objects to conduct an object-based classification. Then, we extracted spectral features (8),
texture features (28), and vegetation indices (8) from the WorldView-3 data, and height
features (92), intensity features (92), and canopy features (3) from the ALS point cloud. To
investigate the effects of different algorithms on individual tree species classification, three
machine learning algorithms and three ensemble learning algorithms were applied and
compared using the three feature sets (WorldView-3 features, ALS features, and WorldView-
3 + ALS features). The results of individual-tree species classification provided the basis for
subsequent individual-tree AGB estimation.

2.5.1. Classification System and Sample Selections

We classified the main tree species identified in the Fifth Forest Resources Inventory
for the Maoershan Experimental Forest Farm for the 12 plots measured in the field. In
the classification system, we accounted for sample size and the separability of tree species
categories. We considered the major tree species (e.g., white birch, Changbai larch, and
Korean pine), which are widely distributed, and grouped minor tree species (e.g., Miyabe
maple, and lilac) together.

Based on stratified sampling, a representative and evenly distributed sample was
selected using tree species as strata. This classification system consisted of seven categories
with sample sizes as follows: white birch (280), Manchurian walnut (247), Manchurian ash
(152), elm (314), Korean pine (352), Changbai larch (171), and others (205), with the latter
including all other tree species sampled. A 10-fold cross-validation method was used to
test the classification accuracy. The region of interest (ROI) was manually sketched based
on the location of the individual tree and crown width in ArcGIS 10.2.

2.5.2. Feature Extraction and Selection

A total of 44 feature variables were extracted from WorldView-3 data: eight spectral
features, 28 texture features, and eight vegetation indices. We extracted eight feature
variables from the mean and standard deviation of the grayscale values of four bands
(red, green, blue, and near-infrared) using 3 × 3 windows. As a higher-order texture
feature, the Gray-Level Co-occurrence Matrix (GLCM) [49] reflects the frequency of dif-
ferent combinations of gray levels at various distances and directions on the image. We
extracted 28 GLCM texture features, including the mean, variance, homogeneity, second
moment, correlation, entropy, and contrast, for the four image bands (red, green, blue, and
near-infrared). Additionally, eight vegetation indices were extracted, including the normal-
ized vegetation index (NDVI), the difference vegetation index (DVI), the perpendicular
vegetation index (PVI), the triangular vegetation index (TVI), the modified simple ratio
vegetation index (MSR), the atmospherically resistant vegetation index (ARVI), the ratio
vegetation index (RVI), and the enhanced vegetation index (EVI) [50].

To eliminate the effects of low shrubs, values above 2 m in the CHM were defined as
vegetation hit points [51]. LiDAR height metrics based on the distribution of all returns,
such as the mean, standard deviation, minimum, maximum, variance, coefficient of varia-
tion, bias, kurtosis, and accumulated height quantile, as well as the height percentile with
5% intervals, were calculated from the ALS data (46 features). Given the value of intensity
and echo width distribution for tree species classification in prior studies [52], we also
calculated intensity metrics of all returns such as the mean, standard deviation, minimum,
maximum, variance, coefficient of variation, bias, kurtosis, accumulated intensity quantile,
and intensity percentile with 5% intervals (46 features). In addition, we classified the first
or single returns and calculated all features of the first-or-single returns [53]. Three more
canopy metrics were calculated, including the canopy cover [54], leaf area index (LAI) [55],
and gap fraction [55]. With this combination of metrics, a total of 187 LiDAR features,
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including 92 features of the first returns, 92 features of all returns, and three canopy features,
were extracted.

Previous studies have found that feature selection algorithms are effective for avoiding
the dimensional curse [56] or the Hughes effect [57] and improving classification perfor-
mance [40]. RF filters have achieved good results for feature selection to reduce data
redundancy and require two parameters: the number of decision trees (n_estimators) and
random_state. We set n_estimators to 1000 and random_state to 10 using python 3.7 and
machine learning libraries. We used the Mean Decrease Accuracy (MDA) to assess variable
importance. MDA considers the impact of removing individual variables on RF accuracy,
i.e., the variable with a more significant decrease in accuracy contributes more to the
classification than other variables.

2.5.3. Classification Algorithms

To test the performance of tree species classification with different features and al-
gorithms, ensemble learning algorithms (i.e., Boosting, Bagging, and Stacking), and ma-
chine learning algorithms (SVM, KNN, and Convolutional Neural Networks (CNN)) were
implemented based on three sets of features (WorldView-3 features, ALS features, and
WorldView-3 + ALS features). We executed these algorithms using the machine learning
package (Sklearn) and the deep learning package (Tensorflow) in python 3.7.

• SVM: SVM is a generalized linear classifier that performs binary classification of
data in a supervised learning manner, where the decision boundary is the hyper-
plane of maximum margins solved for the learned samples [58]. SVM can perform
nonlinear classification by a kernel method; the parameters of this study were set
as kernel = ‘linear’.

• KNN: The KNN method is a multivariate nonparametric algorithm that uses a set of
predictor feature variables (X) to match each target pixel to a number (k) of the most
similar nearest neighbor reference pixels for which values of response variables (Y) are
known [59]. This study set the number of nearest neighbors to 5 with uniform weight.

• CNN: CNN, first developed in 1995 for the classification of handwritten images [60],
is a representative deep learning algorithm. CNN interprets spatial data by scanning
with a series of trainable moving windows and has the capability of representation
learning in a translation-invariant manner according to its hierarchical structure. In
this study, the CNN had a simple structure with an input layer, two hidden layers, and
an output layer, and was implemented using an epoch of 1000 and a batch size of 60.

• Boosting: The idea of the boosting algorithm is that for a complex task, the result of
multiple learners’ judgment will be better than that of a single learner. Representative
boosting algorithms include adaptive boosting, the gradient boosting decision tree
(GBDT), and XGBoost. XGBoost, which is an improvement of the GBDT algorithm [61],
was used in this study. The main characteristics of this algorithm are (1) prevention
of overfitting by regularization terms, a (2) loss function with first-order derivative
and second-order derivatives, and (3) faster-running speed. The classification function
was set to “multi: softmax”, the depth of the tree was set to 5, and the learning rate
was 0.5.

• Bagging: The RF classifier is a bagging approach that combines multiple decision
trees [62]. RF has excellent reported classification performance, requires little human
intervention, has fast computational speed, is not predisposed to overfitting, and is
robust in dealing with noisy data. The parameters of this study were set as follows:
the number of trees was 1000 and the random state was set to 10.

• Stacked generalization (SG): Stacking or SG differs from bagging and boosting in two
ways. First, stacking usually considers heterogeneous learners (combining different
learning algorithms), while bagging and boosting mainly consider homogeneous
learners. Second, stacking combines base models with meta models, while bagging
and boosting combine weak learners based on deterministic algorithms. Stacking is
an ensemble framework for two-layer models. The first layer (base model) consists
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of several base models, using the original data as model input data to obtain the
prediction structure; the second layer (meta model) uses the prediction results of the
first layer model as input data for retraining, which constitutes the complete stacking
model [50]. We adopted SVM, KNN, and CNN as the base models, and then retrained
the models using their predicted values as the input values of the meta model.

2.5.4. Accuracy Assessment

The user accuracy (UA), producer accuracy (PA), and overall accuracy (OA) were used
to assess the classification accuracy. The equations were shown as follows:

UAi =
Nii
Ni+

(4)

PAi =
Nii
N+i

(5)

OA =
∑k

i=1 Nii

N
(6)

where N represents the total number of samples; Nii is the number of samples assigned to
the correct category; Ni+ and N+i are the number of samples predicted to be in category i
and the number of samples in category i, respectively.

2.6. Estimation of Individual Tree AGB
2.6.1. Individual-Tree DBH Inversion

To estimate individual-tree AGB, it is necessary to produce an inverse of DBH based
on tree height. In temperate coniferous and broad-leaved mixed forests, commonly used
tree height curve models are roughly divided into the nine types shown in Table 2. Based
on field inventory data, tree height curve models of seven tree species types were analyzed
using R. Then, the accuracy of the nine models was compared, and the best model was
selected to inverse DBH. Subsequently, we utilized the individual detected trees to verify
the accuracy of the DBH inversion.

Table 2. Tree height curve models were compared in this study.

Number Model Expression

1 Linear H = a + bD
2 Parabolic H = a + bD + cD2

3 Power function H = aDb

4 Schumacher H = 1.3 + aDb

5 Schumacher H = 1.3 + ae−b/D

6 Logistic H = 1.3 + a/(1 + be−cD)
7 Logarithmic H = a + b × lgD
8 hyperbola H = D2/(a + bD)2

9 Richard H = a× (1− e−b×D)c

H and D are Height and DBH, respectively; a, b, and c are model parameters.

The coefficient of determination (R2) and RMSE were used to assess the goodness-of-fit
of models with calculation formulas as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (7)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)
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where yi represents the measured DBH; y represents the mean of the measured DBH; ŷi
represents the predicted DBH; n represents the number of samples.

2.6.2. AGB Estimation for Individual Trees

Based on the inversion of the optimal tree height curve model for each tree species,
an individual-tree DBH map was obtained. Then, we estimated the biomass of the stems,
branches, and foliage parts of individual trees using species-specific additive biomass equa-
tions [63,64] for northeastern China (Table 3). Finally, individual tree AGB was calculated
based on the sum of the stems, branches, and foliage biomass of different tree species in the
12 sample plots. The additive biomass equations follow the structure below:

ln Ws = as
∗ + b∗s · ln D + εs

ln Wb = ab
∗ + b∗b · ln D + εb

ln W f = a f
∗ + b∗f · ln D + ε f

ln Wa = ln(Ws + Wb + W f ) = ln(as · Dbs + ab · Dbb + a f · Db f ) + εa

(9)

where Wa, Ws, Wb, and Wf represent aboveground biomass, stem biomass, branch biomass,
and foliage biomass (kg), respectively; D represents diameter at breast height (cm); ln is
the natural logarithm; i = [s, b, f], representing stem, branch, and foliage, respectively; εi is
the error term; ai, bi, ai*, and bi* are regression coefficients, which are listed in Table 3 for
different tree species and components.

Table 3. The parameters of additive biomass equations for different tree species and components
used in this study [63,64].

Tree Species Component a b Tree Species Component a b

Korean pine
Branch −3.3911 2.0066

Changbai larch
branch −4.9082 2.5139

foliage −2.6995 1.5583 foliage −4.2379 1.8784
stem −2.2319 2.2358 stem −2.5856 2.4856

white birch
branch −5.7625 3.0656

elm
branch −3.0159 2.0328

foliage −5.9711 2.5871 foliage −3.4241 1.7038
stem −2.8496 2.5406 stem −2.2812 2.3766

Manchurian
ash

branch −5.5012 2.9299
Manchurian

walnut

branch −4.0735 2.4477
foliage −5.2438 2.345 foliage −5.0456 2.2577
stem −3.4542 2.7104 stem −2.6707 2.4413

Note: The AGB of “Others” categories is the average AGB of other minor tree species. The field estimated AGB
was also calculated using this method.

3. Results
3.1. Individual Tree Crown Delineation

Accurately detecting the location and number of trees is critical for estimating AGB
at the individual tree level. Since RHCSA was based on CHM for individual tree crown
delineation, the resolution of the CHM had a significant impact on the results. Accordingly,
this study investigated the effect of the spatial resolution of CHM on the individual tree
detection rate and the overall accuracy of the RHCSA algorithm, with the goal of determin-
ing the optimal resolution where the numbers of detected individual trees best matched
the counts in the field and the overall accuracy was highest. We found (Figure 3a) that
when the CHM resolution was 0.25 m, the detection rate was close to 100%, which means
that the total number of detected tree crowns using the RHCSA algorithm was closest to
the actual numbers of individual trees in the three sample plots. Figure 3b shows that
the OA of individual tree matching initially improved with increasing CHM resolution
(0.5 m–0.25 m), but OA began to gradually decline with further increases in resolution
(0.25 m–0.1 m). Thus, the 0.25 m spatial resolution CHM was adopted for the RHCSA
algorithm in this study.
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(a) detection rate (%); (b) OA (%).

We applied the RHCSA algorithm to detect individual trees in the 0.25 m CHM and
detected 2.9 million individual trees in the study area. We used the three 100 m × 100 m
sample plots (2688 trees in total) to assess the accuracy of individual tree crown delineation.
Figure 4 illustrates the individual treetops detected using the RHCSA algorithm (blue lines)
with green points representing reference treetops.
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Based on the matching conditions listed in [35], PA, UA, and OA were calculated
and the accuracy assessment results for the three plots are shown in Table 4. The field
inventories of the three sample plots measured 2688 trees, while the RHCSA algorithm
detected 2648 trees with a detection rate of 98.51% and an average match rate (including
1:1 matches and near-matches) of 72.3%. The highest match rate was obtained in Plot 2,
possibly due to the presence of fewer small trees, which were suppressed by taller trees in
other plots. The least accurate match rate was obtained in Plot 3, which may be due to the
uneven and very dense distribution of trees in Plot 3.
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Table 4. Accuracy assessment of individual tree crowns match using the RHCSA method.

Tree Count RCP 1 DCP 2 Accuracy

Plot Reference Detected 1:1 Near 1:1 Near PA UA OA

1 917 929 555 96 580 65 71.2% 69.7% 70.5%
2 831 814 581 42 611 49 75.8% 81.5% 78.6%
3 940 905 522 77 556 85 64.4% 71.6% 67.8%

Total 2688 2648 1658 215 1747 199

RCP 1: reference crown perspective; DCP 2: detected crown perspective.

3.2. Feature Selection and Accuracy Assessment of Tree Species Classification
3.2.1. Feature Selection

After extracting feature variables from ALS data and WorldView-3, we selected the
greatest contributing variables using the RF algorithm and used MDA to rank the variables.
In general, the number of features can be determined as the square root of the total number
of features. This process led to the selection of 13 ALS feature variables to participate in
tree species classification (Figure 5).
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Figure 5. The MDA ranking of feature variables from ALS data. Note: Int_cv(first
returns)—coefficient of variation of first-return intensity; Elev_var(first returns)—variance of the
first-return height; Elev_per_95—height 95% quantile; Elev_per_25(first returns)—first-return
height 25% quantile; Elev_mean—height mean; LAI—leaf area index; GapFraction—canopy cover;
Int_skew—intensity skew; Elev_AIH_20—height 20% cumulative percentile; Int_mean—intensity
mean; Int_median—intensity median; Elev_AIH_95—height 95% cumulative percentile;
Elev_per_75—height 75% quantile.

To ensure the consistency of the number of WorldView-3 and ALS features and elim-
inate the influence of the number of features on algorithm comparison, we also selected
13 WorldView-3 features (Figure 6).
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Figure 6. The MDA ranking of feature variables from Worldview-3 data. Note: Contrast_B2, Cor-
relation_B2, and Var_B2 are the contrast, correlation, and variance of the green band of GLCM,
respectively; Mean_B4 and Correlation_B4 are the mean and correlation of the near-infrared band
GLCM; Dis_B1 is the dissimilarity of the red band of GLCM; NIR_STD is the variance in the near-
infrared band; RED_STD is the variance in the red band; GREEN_STD is the variance in the green
band; Hom_B2 is the homogeneity of the green band of GLCM; Mean_B3 is the mean of the blue
band of GLCM; Var_B3 is the variance of the blue band of GLCM.

3.2.2. The Performance of Machine Learning Algorithms in Tree Species Classification

We tested the classification performance for three machine learning methods (SVM,
KNN, and CNN) based on three sets of features (WorldView-3 features, ALS features, and
WorldView-3 + ALS features).

The WorldView-3 features performed better than the ALS features for tree species
classification with the SVM and KNN algorithms when the feature sets were considered
independently. The combination of the ALS features and WorldView-3 features outper-
formed the single feature sets, which indicated the advantage of simultaneously applying
LiDAR and passive imagery in tree species classification. Table 5 shows that the CNN
classifier had the best performance of the three classifiers regardless of features included,
while the SVM classification had the worst performance.

Table 5. Tree species classification performance of three machine learning algorithms.

Features Algorithms OA (%)

SVM 20.1
WorldView-3 KNN 30.2

CNN 41.5

SVM 14.3
ALS KNN 15.4

CNN 50.0

SVM 24.3
WorldView-3 + ALS KNN 50.5

CNN 72.8

3.2.3. The Performance of Ensemble Learning Algorithms in Tree Species Classification

Table 6 shows the performance of the ensemble learning algorithm for tree species
classification. Regardless of the features, the accuracy of the ensemble algorithms was
slightly higher than that of the machine learning algorithms for tree species classification.
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The three ensemble algorithms showed some differences under different features: the RF
algorithm had the highest classification accuracy (OA = 61.7%) with WorldView-3 features;
the SG (CNN) algorithm was the best with ALS features and WorldView-3 + ALS features.

Table 6. Tree species classification performance of the ensemble learning algorithms.

Features Algorithms OA (%)

RF 61.7
XGBoost 55.2

WorldView-3 SG (SVM) 26.5
SG (KNN) 42.7
SG (CNN) 42.4

RF 51.5
XGBoost 57.9

ALS SG (SVM) 27.6
SG (KNN) 47.1
SG (CNN) 59.7

RF 61.0
XGBoost 69.5

WorldView-3 + ALS SG (SVM) 31.8
SG (KNN) 59.3
SG (CNN) 75.0

Note: SG used SVM, KNN, and CNN in the base model, with the meta model denoted in parentheses.

The classification performance of the combination of WorldView-3 features and ALS
features was superior to a single feature set with the ensemble learning algorithms, except
for the RF, where the WorldView-3 features alone achieved similar accuracy. It is worth
noting that the CNN algorithm had only slightly lower classification accuracy (OA = 72.8%)
than SG (CNN) (OA = 75.0%) with the combination of WorldView-3 features and ALS
features, which was higher than the other ensemble learning algorithms.

We selected the best performing algorithm and features (SG (CNN) algorithm and
WorldView-3 features + ALS features) and calculated a confusion matrix (Table 7) showing
the classification accuracy of each tree species. The PA and UA ranged from 66.9% to 82.1%
and from 67.0% to 84.2%, respectively. The highest PA was Manchurian walnut (82.1%) and
the lowest PA was elm (66.9%). The highest UA was elm (84.2%) and the lowest UA was
Manchurian ash (67.0%). The latter situation was caused by high misclassification between
Manchurian ash and elm.

Table 7. Confusion matrix of the classification results with SG (CNN) classifier based on WorldView-3
+ ALS features.

Tree
Species KP CL EL AS WB WA Others 1 UA(%)

KP 96 3 9 3 6 3 5 76.8
CL 4 74 8 3 5 4 3 74.3
EL 5 2 85 4 3 0 2 84.2
AS 6 5 9 63 4 3 4 67.0
WB 8 4 7 3 78 1 2 75.7
WA 6 2 4 3 7 55 3 68.8

Others 1 7 2 5 1 4 1 68 77.3
PA(%) 72.7 80.4 66.9 78.8 72.9 82.1 78.2

OA: 75.0%

Note: KP—Korean pine; CL—Changbai larch; EL—elm; AS—Manchurian ash; WB—white birch; WA—Manchurian
walnut; 1 Others included any remaining tree species.
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3.3. The Estimation and Assessment of Individual Tree AGB
3.3.1. Individual Tree DBH Inversion

We fitted tree height curve models for the seven tree species categories. Table 8 shows
the optimal model for each tree species. For Changbai larch (CL), the optimal model was the
logistic model, while the other six tree species had a power function model. The R2 values
of the seven models were all above 0.60 and the RMSE was between 1.22 m and 2.29 m.
Manchurian walnut (WA), Manchurian ash (AS), and Korean pine (KP) had the best results,
while the white birch (WB), elm (EL), and Changbai larch (CL) models were weaker. The
model for “Others” had a moderate performance.

Table 8. Optimal tree height curve model of main tree species.

Tree Species Optimal Model R2 RMSE (m)

WB H = 0.483D1.253 0.674 2.22
WA H = 0.588D1.242 0.739 1.28
EL H = 0.959D1.055 0.643 2.29
AS H = 0.627D1.193 0.730 1.26
CL H = 1.3 + 48.640/(1 + 17.348e−0.124D) 0.654 1.84
KP H = 0.805D1.166 0.729 1.22

Others 1 H = 0.872D1.083 0.698 1.95
Note: WB—white birch; WA—Manchurian walnut; EL—elm; AS—Manchurian ash; CL—Changbai larch; KP—Korean
pine; 1 Others included any remaining tree species.

The accuracy of DBH inversion directly affected the estimation results of individual
tree AGB. Figure 7 shows the accuracy of estimating DBH for the seven tree species, with the
R2 values for the estimation of DBH ranging from 0.67 to 0.90, while the RMSE ranged from
1.00 cm to 2.10 cm. Overall, white birch, Manchurian walnut, Manchurian ash, and the “Other”
categories had the best estimation results, while elm and the two conifers (Korean pine and
Changbai larch) performed poorly (R2 of approximately 0.6). The weaker performance was
likely associated with the suppression of young trees by upper trees, which prevented the
LiDAR from accurately detecting tree heights and consequently decreased the accuracy of
the DBH inversion. The Korean pine (KP) in the study area were predominantly young trees
and the lack of data for larger DBH may have led to fundamental model flaws.
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3.3.2. Estimation of Individual Tree AGB

Figure 8 shows scatterplots of the accuracy of individual tree AGB based on the
validation samples, with R2 values ranging from 0.68 to 0.85 and the RMSE ranging from
7.47 kg to 36.83 kg for all tree species. Overall, broad-leaved tree species were generally
estimated with better accuracy than coniferous species, with white birch achieving the
highest AGB prediction accuracy (R2 = 0.84, RMSE = 11.29 kg). Korean pine had the worst
AGB prediction performance (R2 = 0.68, RMSE = 9.66 kg). As noted previously, the KP plot
was dominated by young trees, which led to more significant errors in tree height and DBH
estimation due to the shading of taller trees, which ultimately affected the accuracy of the
AGB estimation.
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In practical applications, the CNN algorithm is recommended because it has good
accuracy and can improve efficiency by eliminating the integration process of the ensemble
algorithm. Therefore, we selected the CNN algorithm and the feature set from the combi-
nation of WorldView-3 and ALS for mapping individual-tree AGB in the study area and
generated a map with a spatial resolution of 0.25 m showing the distribution of individ-
ual tree AGB (Figure 9). The value range of AGB is from 0 to 571 kg, with lower values
corresponding to roads, rivers, and villages, and higher values occurring far from roads.
The regions of no data (white in Figure 9) were generated by filtering out non-forest areas
(including farmland, villages, roads, etc.) using a mask. Note that there are also several
voids in this map (see in Figure 2), which correspond to the removal of clouds.



Remote Sens. 2022, 14, 271 17 of 23

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 8. Accuracy comparison of individual tree AGB between field-observed estimation and re-
mote sensing data estimation. Shaded areas represent 95% confidence intervals, and solid lines are 
the 1:1 line. 

In practical applications, the CNN algorithm is recommended because it has good 
accuracy and can improve efficiency by eliminating the integration process of the ensem-
ble algorithm. Therefore, we selected the CNN algorithm and the feature set from the 
combination of WorldView-3 and ALS for mapping individual-tree AGB in the study area 
and generated a map with a spatial resolution of 0.25 m showing the distribution of indi-
vidual tree AGB (Figure 9). The value range of AGB is from 0 to 571 kg, with lower values 
corresponding to roads, rivers, and villages, and higher values occurring far from roads. 
The regions of no data (white in Figure 9) were generated by filtering out non-forest areas 
(including farmland, villages, roads, etc.) using a mask. Note that there are also several 
voids in this map (see in Figure 2), which correspond to the removal of clouds. 

 
Figure 9. Distribution map of individual tree AGB in the study area. Figure 9. Distribution map of individual tree AGB in the study area.

4. Discussion

In this study, we estimated individual tree AGB of different tree species for NSFs by
combining WorldView-3 imagery and ALS data. We generated a fine AGB map with a
spatial resolution of 0.25 m by combining species-specific additive biomass equations with
remote sensing data.

4.1. Individual Tree Crown Delineation Algorithm

In this study, we used three 100 m × 100 m sample plots (2688 total trees) to assess the
accuracy of individual tree crown delineation. While our study had a high detection rate
(98.51%) using the RHCSA algorithm, the overall accuracy for crown delineation (72.3%)
was lower than other studies under similar forest stand conditions [46]. For example, Zhao
et al. delineated individual tree crowns in natural secondary forests of northeastern China
and achieved an average overall accuracy of 85.12% for coniferous forest plots, 83.86% for
deciduous forest plots, and 86.44% for coniferous and broadleaved mixed forest plots [46].
However, one reason could be the difference in the origin of the reference data, which we
based on the location of individual trees and crown size measured in the field. In previous
studies, the reference tree crowns were frequently delineated using visual interpretation
within the CHM or other remotely sensed images [35,46]. This method tends to miss the
detection of young trees in the lower canopy, which are often obscured by trees in the upper
canopy. The NSF study area has high canopy closure, complex understory conditions,
and many young trees. Such conditions frequently lead to merging-matched situations in
individual tree crown delineation [35], which may result in slightly lower OA.

4.2. Tree Species Classification

From the feature selection results (Figure 5), the spectral and textural features of the
green band were particularly significant. This may be because the chlorophyll, carotenoid,
anthocyanin, and lutein content of different tree species are closely related to the reflectance
of the green band. Previous studies have likewise found that green band spectral and
textural characteristics are vital in differentiating tree species [65,66]. We included ALS data
in this study because the 3D canopy structure is closely related to point cloud parameters.
We found four LiDAR metrics—the coefficient of variation of the first returns’ intensity
(Int_cv(first returns)), the variance of the first returns’ height (Elve_var(first returns)), the
95% quantile of height (Elev_per_95), and the 25% quantile of the first returns’ height
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(Elev_per_25(first returns))—to be most important based on MDA ranking. These four
LiDAR metrics were all extracted from the first returns, and their importance was likely be-
cause the first return is sensitive to tree crown structure [38] and can be used to distinguish
different tree species.

The effects of three machine learning and three ensemble learning algorithms on
tree species classification using different features were explored in this study. Similar to
previous studies [38,40,67], our study found that combining WorldView-3 and ALS data
produced better classification performance than a single data source.

For machine learning algorithms, previous studies found no significant difference
between RF and SVM [56]. However, we found that their performance varied in NSFs
of China, with SVM performing well below the accuracy of the RF algorithm. The main
reasons for this phenomenon are differences in forest conditions and data sources. Addition-
ally, SVM performs optimally in solving binary classification problems and has difficulties
in solving multi-class problems [68]. CNN, as a branch of machine learning, is a kind
of deep learning algorithm that shows advantages over other classical algorithms in this
study (such as KNN and SVM). In recent years, CNN models have been increasingly used
in forestry, for example, for predicting forest inventory parameters [50] and identifying
different tree species [36].

The ensemble learning algorithm performed well in this study by combining learners
to strengthen the classifier. Compared with the individual machine learning algorithms,
ensemble learning algorithms performed better in tree species classification, especially
RF, XGBoost, and SG (CNN). RF and XGBoost are often used in tree species classification
and have achieved excellent performance [69,70]. However, the stacking framework is
less common in this application. This approach is characterized by the ability to combine
heterogeneous base learners, e.g., the stacking framework can combine boosting and
bagging. In this study, we chose SVM, KNN, and CNN as the base models of the SG
framework to explore whether ensemble algorithms can effectively improve the accuracy
of tree species classification. The use of the SG algorithm showed more advantages in
strengthening weak learners (e.g., KNN and SVM) than strong learners (e.g., CNN). This
result is similar to the finding of Du et al. [50] in estimating AGB, which supports application
of the SG framework for solving regression and classification problems.

4.3. Comparison with Other Similar Products

We analyzed the average AGB for each tree species and compared the finer resolution
individual tree AGB products of this study to previously published AGB products gener-
ated for northeastern China. Figure 10 shows the average AGB values for the seven species:
WA (142.30 kg) > KP (138.67 kg) > EL (121.43 kg) > AS (109.74 kg) > WB (92.50 kg) > CL
(75.52 kg) > Others (61.51 kg). Manchurian walnut had the highest average AGB in the study
area, whereas the “Others” category consisted mainly of small trees with smaller DBH and,
therefore, had the lowest average AGB.

The individual tree AGB of different tree species estimated in this study is slightly
lower than the results of previous studies. For example, Kwak et al. [71] reported that the
average AGB of Korean pine in low (240 N/ha), medium (370 N/ha), and high (1340 N/ha)
density stands at 150.21 kg, 415.98 kg, and 473.31 kg, respectively. The main reason for the
difference with the individual tree AGB of Korean pine in this study (138.67 kg) is likely
related to the differences in the age of the forest stands. In their study [71], the stands were
older than 50 years and the larger DBH of the individual trees resulted in higher AGB
values. Liu et al. [72] estimated the AGB of Changbai larch at the individual tree level in the
Changbai Mountain region of Heilongjiang Province, China, and found that the average
biomass of young, half-mature, near-mature, and mature stands was 25.12 kg, 94.08 kg,
117.74 kg, and 279.33 kg, respectively. The AGB of Changbai larch (75.52 kg) is similar to
the AGB of half-mature stands in Lu et al.’s study, with the slight differences likely due to
specific stand conditions.
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Figure 10. The AGB statistics at the individual tree level for each tree species in this study. The black
“+” indicates the mean individual tree AGB of corresponding tree species. The red line indicates
the median. The upper and lower box lines of the box plot represent the 75% and 25% quartiles,
respectively. Note: KP—Korean pine; CL—Changbai larch; EL—elm; AS—Manchurian ash; WB—white
birch; WA—Manchurian walnut; Others included any remaining tree species.

The average individual tree AGB in the area is approximately 125.32 kg and the forest
AGB is about 113.58 Mg/ha. These results are greater than previous AGB studies based
on sample plot measurements; for example, Zhang et al. showed that the density of the
average forest AGB in northeast China was 83.50 Mg/ha [3] and Su et al. estimated the
average above-ground biomass to be 92.79 Mg/ha in temperate conifer-broadleaf mixed
forests [73]. The higher AGB values in this study could be because the individual-tree level
AGB captures finer spatial information than the AGB estimated at a broader scale.

4.4. Limitations and Future Research

Although the individual-tree AGB achieved good accuracy in this study, it still has
some limitations. First, our AGB estimates were explicitly tied to crown delineation; thus,
it is critical to ensure the accuracy of the ITCD process. Although many ITCD studies
have been conducted [35,46,74,75], crown delineation is still a major challenge due to the
complexity of forest conditions. Therefore, in further research, it is necessary to develop a
stable and efficient individual ITCD algorithm that is suitable for NSFs. In addition, there
are differences in the properties of various tree species, and the AGB values of individual
trees can vary greatly due to wood density and tree height [8]. Improving the accuracy of
tree species classification would further enhance the estimation accuracy of individual tree
AGB. Spectral resolution and crown structure are important in tree species classification [56];
therefore, we will consider the value of hyperspectral and very-high-spatial-resolution
LiDAR data, e.g., from unmanned aerial vehicles (UAVs), for individual tree species
classification. We will also explore the effects of different classification algorithms (e.g.,
Cubist and multiple architectures of CNN algorithms). Various CNN architectures, such as
AlexNet, VGG, Inception series, and ResNet, have shown good performance in the image
vision field. We expect that the application of these algorithms will lead to a significant
improvement in the accuracy of tree species classification.

Another limitation of this study is the reliance on the biomass equations for each
tree species and DBH inversion. While we used high accuracy equations developed
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from harvesting methods, our individual tree AGB estimation approach is dependent on
having access to similar highly accurate biomass equations for the study area. While many
studies developed biomass models with broad applicability [76], few used tree height; thus,
estimation of DBH is particularly critical for individual tree AGB estimation.

Although our analysis demonstrated that each process had good accuracy, we did
not consider error propagation of the individual tree AGB estimation in this study. Thus,
future studies should systematically assess how the error propagates and explore how the
uncertainty of each procedure affects the results of biomass products.

5. Conclusions

This study evaluated the synergistic utilization of high-spatial-resolution multispectral
imagery and low-posting-density LiDAR data for tree species classification and individ-
ual tree AGB estimation in NSFs. Similar to previous studies [77], we found that the
combination of active and passive remotely sensed data performed better than either
single data source in tree species classification. The CNN model was the best machine
learning algorithm (OA = 72.8%), while for ensemble learning algorithms, the SG (CNN)
model performed best (OA = 75.0%), in both cases using a combination of ALS features
and WorldView-3 features. We found that the stacking model particularly improved the
accuracy and stability of the base model for weaker learners (e.g., KNN and SVM). The en-
semble algorithm generally outperformed the machine learning algorithms for tree species
classification with the texture features of the green band and the first returns of LiDAR
being the most important for the classification. Most tree species had satisfactory accuracy,
with R2 values ranging from 0.68 to 0.85 and RMSE ranging from 7.47 kg to 36.83 kg for
individual tree AGB estimation. Among the species considered, white birch had the best
performance in AGB estimation with R2 = 0.84 and RMSE = 11.29. We also found that the
number of detected trees by the CHM-based individual tree crown delineation was closest
to the number of trees recorded in the field when the resolution of CHM was 0.25 m. We
generated an individual tree-based AGB map with 0.25 m spatial resolution based on the
tree species, DBH, and additive biomass equations. The average individual tree AGB in the
area was 125.32 kg and the forest AGB was approximately 113.58 Mg/ha.

This study took advantage of accurate biomass equations, multiple remotely sensed
datasets, and ensemble learning algorithms for the inversion of individual-tree parameters
(i.e., DBH and AGB) that could be applied at local and regional scales. The effects of
features and algorithms for the tree species classification of NSFs were deeply investigated
in this study. This study provided spatially detailed AGB information at the individual
tree level and demonstrated the reliability of individual tree level AGB estimation using
multi-source remote sensing data. The individual tree-based AGB distribution map is a
critical basis for quantifying error propagation of AGB estimation from the individual tree
level to the plot level and to the landscape level. In addition, employing better quality
data (e.g., hyperspectral images and UAV-LiDAR), developing advanced algorithms, and
quantifying error sources are still fundamental and vital for AGB estimation in the future.
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