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Abstract: This study based on co-occurrence analysis shearlet transform (CAST) effectively combines
the latent low rank representation (LatLRR) and the regularization of zero-crossing counting in
differences to fuse the heterogeneous images. First, the source images are decomposed by CAST
method into base-layer and detail-layer sub-images. Secondly, for the base-layer components with
larger-scale intensity variation, the LatLRR, is a valid method to extract the salient information from
image sources, and can be applied to generate saliency map to implement the weighted fusion of
base-layer images adaptively. Meanwhile, the regularization term of zero crossings in differences,
which is a classic method of optimization, is designed as the regularization term to construct the
fusion of detail-layer images. By this method, the gradient information concealed in the source images
can be extracted as much as possible, then the fusion image owns more abundant edge information.
Compared with other state-of-the-art algorithms on publicly available datasets, the quantitative and
qualitative analysis of experimental results demonstrate that the proposed method outperformed in
enhancing the contrast and achieving close fusion result.

Keywords: image fusion; co-occurrence analysis shearlet transform; latent low-rank representation;
regularization of zero-crossing counting in differences

1. Introduction

Image fusion, as a main part of the image enhancement technology, aims to assimilate
the abundant and valid detail information of the heterogeneous source images to construct
a fused image with rich and interesting information [1–4]. Moreover, for the image fusion of
multi-sensor, the research on the fusion of infrared and visible images is more common [5].
The fused image with robustness and rich information about the scene is significant for a
lot of applications such as surveillance, remote sensing, human perception and computer
vision tasks [6], etc. Although visible images possess texture details in high resolution,
under poor conditions such as low illumination, smoke and occlusion, the quality of the
visual images is hardly satisfying, and some important target information will be lost [7].
However, the infrared sensors generate an image via capturing the heat radiation from the
object and the salient information of the target in the complicated scene can be actively
obtained. Therefore, the infrared images usually are selected as the offset for visual image
during above bad environment. Via combining the complementary sources of information
effectively from these two kinds of images in the same scene, the disadvantages of the
human eyes’ visual characteristics can be improved, and the range of the human visual
band can be extended greatly [2,8].

Multi-scale transform (MST), as the most general method, is adopted in image fusion
applications by numerous researchers with visual fidelity, lower computational complexity
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and higher efficiency [3,9]. Generally speaking, the fusion method based on the MST
consists of 3 stages. First and foremost, the original image data is decomposed into multi-
scale transform domain. Secondly, sub-coefficients in each scale are constructed by the
specific fusion algorithm. Finally, the fused image is obtained by a relevant inverse trans-
form [9]. At present, the MST algorithms primarily include Laplacian pyramid (LP) [10],
wavelet transform (WT) [11], non-subsampled contourlet transform (NSCT) [12], and
non-subsampled shearlet transform (NSST) [13]. Moreover, the MST methods are not
sensitive enough to edge details, and the fused image is easy to smooth much more detail
information during reconstruction.

Lately, more and more scholars applied the edge-preserving filtering (EPF) to the
fields of image processing [9,14,15]. The edge details of the source images can be preserved
as many as possible and the images can also be smoothed well. The universal EPF meth-
ods include Gaussian curvature filtering (GCF) [16], bilateral filtering (BF) [17], guided
filtering (GF) [18,19] and rolling guidance filter [20]. Supposing EPF is also used as an
image decomposition method, the results are full of more spatial information, and various
components compared with MST methods. These traditional edge-preserving filters are
dedicated to smoothing the edges of the images. However, they cannot completely distin-
guish between the edges in the texture area and the boundaries among the texture areas.
Jevnisek et al. put forward co-occurrence filter (CoF), which performs on the pixel itself via
the data statistics of the co-occurrence information in the original image [21]. Therefore,
CoF is excellent enough in smoothing the edge details in the texture area and retaining the
borderlines through the texture area. In this paper, a novel decomposition method based
on co-occurrence analysis shearlet transform is proposed, which is introduced in Section 2.

On account of the low-rank representation (LRR), Latent low-rank representation
(LatLRR) [22] is proposed, which can effectively analyze the multiple subspaces of data
structures. From another perspective, the original image mainly contains base components,
salient components, and some sparse noise according to the decomposition based on
LatLRR [23]. In addition, the salient components that represent the space distribution of
saliency information can be separated from the source images based on LatLRR [24]. Then,
the saliency map formed by LatLRR algorithm is usually selected as the fusion rule to
construct the fused image from heterogeneous images for base-layer images. The fusion
rule is an effective method in which the weight value can be assigned adaptively according
to the salient information.

For detail-layer sub-images, the common “max-absolute” method usually is adopted
as the fusion rule, in which highly salient texture features correspond to large absolute
values, but some redundant information of the original images can be easily abandoned
by this rule. This paper chose the number of zero crossings in differences [25] as the
regularization term to assist the fusion of the detail-layer images. In addition, the texture
gradient features can be transferred to the fused image of the detail-layer as much as
possible via this method. The model uses the counting measure regularization to weaken
low-contrast intensity changes and keep drastic gradients.

In view of the review above, this paper puts forward a novel fusion framework based
on the weight map of LatLRR and the regularization term of zero-crossing counting for
visual and infrared images. Above all, the CAST is utilized as the MST method, in which the
infrared and visual images can be decomposed finely. Next, the base-layer and detail-layer
components can be fused via their respective fusion rules, namely the saliency information
guiding map based on LatLRR and the counting zero-crossing regularization [26]. Finally,
the fused sub-images are reconstructed by corresponding inverse transform.

The rest of the paper is arranged as follows. The fundamental theory of the CAST,
LatLRR and Counting the Zero crossings in differences are introduced in Section 2. The
novel fusion framework is proposed and shown in Section 3. The Section 4 is the part about
experimental setting and result analysis. The conclusion of this algorithm is expounded
in Section 5.



Remote Sens. 2022, 14, 283 3 of 21

2. Related Work

In this section, for a comprehensive review of some algorithms most relevant to this
study, we focus on reviewing including co-occurrence filter, directional localization, latent
low rank representation, and counting the zero crossings in differences.

2.1. Co-Occurrence Filter

The co-occurrence filter (COF) [27] assigns the weight value in accordance with the co-
occurrence information, so that the weight of the frequently occurring texture information
is reduced and smoothed, and the weight of the infrequently occurring edge information is
increased. In this way, the idea of edge detection is directly applied to the filtering process.
It is the perfect combination of edge detection and edge preservation. Figure 1 shows the
comparison between before and after co-occurrence filter processing.
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Figure 1. Working principle of Co-occurrence filter. (a) Image before COF processing, (b) Image after
COF processing.

Based on the Bilateral Filter, the COF introduces the normalized co-occurrence matrix
to take the place of the range Gaussian [4,16]. In addition, the definition of the COF is
as follows:

Jout =

∑
b∈N(a)

Gσs(a, b)·M(a, b)·Iin

∑
b∈N(a)

Gσs(a, b)·M(a, b)
(1)

where Jout and Iin denote the output and input pixel value, respectively, and a, b are pixel
indexes; Gσs(a, b) ·M(a, b) represents the weighted item, measuring the contribution of
pixel b to output pixel a, Gσs(a, b) is the Gaussian filter, M(a, b) is 256 × 256 matrix for
general gray-scale images computed from the following formula:

M(a, b) =
C(p, q)

h(p)h(q)
(2)

where C(p, q) is called as the co-occurrence matrix, and used to collect the co-occurrence
information of the original images; h(p) and h(q) denote the histogram of pixel values
corresponding to frequency statistics of the pixel a and b [28]. The co-occurrence matrix
can be obtained by the following formulas:

C(p, q) = ∑
a,b

exp

(
−d(a, b)2

2σ2

)
[Ia = p][Ib = q] (3)

h(i) = ∑
a

Ia = i, i ∈ (p, q) (4)
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where σ means the parameter of the COF which can control the filtering of the edge texture
in the image and is usually 15; the symbol [·] represents a value definition relationship: if
the Boolean expression in the bracket is true, its value is 1, otherwise the value is 0; d(a, b)
represents the Euclidean distance from pixel a to b in the image plane.

Thence, the COF has excellent performance in smoothing the edges within the texture
area and preserving the boundaries across the texture area. It is obvious that Gaussian
white noise and checkerboard textures are common in the figure, so that the co-occurrence
matrix gives them higher weight. On the contrary, because the borders of dark and shallow
areas appear less frequently, they are given a relatively low weight. COF can remove noise
and smooth texture areas, while clearly retaining the boundaries between different texture
areas. Given the edge retention filter does not blur the edge when decomposing the image,
and there is no ringing effect and artifacts, then there is a good spatial consistency and edge
retention [21].

2.2. Directional Localization

In view of the advantages of the local shearlet filter, such as removing the block effect,
attenuating the Gibbs phenomenon, and improving the convolution calculation efficiency in
time domain, it is applied to processing the high-frequency images to realize the directional
localization [29]. The decomposition framework is shown in Figure 2.
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Figure 2. Image decomposition framework of the proposed method.

The detail-layer image decomposition process is as follows:

(1) Coordinate mapping: from the pseudo-polar coordinates to the Cartesian coordinates;
(2) Based on the “Meyer” equation, construct the small-size shearlet filter;
(3) The k band-pass detail-layer images and the “Meyer” equation are processed by

convolution operation [26].

2.3. Latent Low Rank Representation

Visual saliency detection applies certain intelligent processing algorithms to simulate
the bionic mechanism of human vision, and analyze the salient targets and areas in a
scene. The saliency map consists of the weight information about the image gray value [30].
In this way, the higher the gray value, the greater its saliency, and the larger weight value
is allocated during image fusion. In view of the above, more and more scholars use saliency
detection on the image fusion field. For example, the latent low rank representation
(LatLRR) is commonly used in extracting salient features from the original image data [22].
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The LatLRR problem can be solved by minimizing the following optimization function:

min
L,R,E
‖R‖∗ + ‖L‖∗ + λ‖E‖1 s.t. I = LX + XR + E (5)

where X denotes the data matrix of original image, R is a low-rank component matrix, L
denotes the projection matrix of saliency component, and E represents a sparse matrix with
noisy [5]; λ > 0 is a regularization term, which is usually chosen by cross-validation; ‖ ‖∗
is the nuclear norm and ‖ ‖1 denotes `1-norm.

The projection matrix L can be obtained by LatLRR method, and the saliency parts
of the original image can be calculated by the projection matrix. The result of LatLRR
method is shown as the Figure 3. Firstly, select a n× n window. Then, in the horizontal and
vertical direction, move the window by the S pixels at each stride. Moreover, via sliding the
window, the original image can be partitioned into a lot of image patches. Finally, a new
matrix can be acquired, in which all the image patches are reshuffled and every column
corresponds with an image patch [5]. In Equation (6), the saliency part (Id) is solved via the
projection matrix L, the preprocessing matrix P(·) and the source data I.

Vd = L× P(I) Id = R(Vd) (6)
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The result of decomposition is defined as Vd, and the function of P(·) contains the
window sliding, image partition and reshuffling technique. R(·) denotes the reconstruction
of the saliency image from the detail part. As recovering Vd, the overlapped pixels are
processed by the averaging strategy, in which the pixel average value is calculated via
counting the number of the overlapped pixels in the recovered image.

2.4. Counting the Zero Crossings in Difference

The number of zero crossings, which is a gradient-aware statistic method, can ensure
that the similarity between the processed signal and the original signal is higher. In addition,
there are fewer intervals at each of which it is monotonous, either increased or decreased,
convex or concave in the processed signal. In this paper, the optimization problem about
the number of zero crossings can be solved by evaluating the proximity operator [25].

2.4.1. Proximity Operator of the Number of Zero Crossings

Zero crossing means that the signal passes through the zero point, and the frequency
of the signal fluctuations can be measured by this method. The number of zero crossings
z(·) is defined as follows:

Suppose g =
(

g1, g2, . . . , gN) is a partition of the vector g (gk ∈ RN) into sub-vectors
according to the following conditions:

(1) The number of non-zero elements in each segment is one at least.
(2) None-zero elements’ signs in the same segment are the same.
(3) None-zero elements’ signs in adjacent segments are opposite.

Provided the k-th segment can be denoted as gk, the partition (g1, g2, . . . , gM) is called
the Minimum Same Sign Partition [31] (MSSP for abbreviation).
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Therefore, the number of zero crossings z(g) of the vector g can be defined as:

z(g) = M− 1 (7)

Next, we need to consider the problem of minimizing the proximity operator of z(g),
and introduce auxiliary variable u:

min
u

{
λz(u) + β‖u− g‖2

2

}
(8)

Denote the loss function that needs to be minimized as l(u), namely:

l(u) = λz(u) + β‖u− g‖2
2 (9)

In order to minimize the value of l(u), there are only two possibilities for the value of
every element in the optimal solution, that is ûi = 0 or ûi = gi. It should be pointed out
that the symbol 0 here represents a zero vector [32].

Take lj(·) to represent the loss function of part of the data g1:j, and ζ is an optimal
solution vector of the problem (9). Rewriting, the Formula (9) becomes:

lj(ζ) = λz(ζ) + β‖ζ − g1 :j‖2
2 (10)

Consider the constrained minimum loss function of the last segment

lnz
j

= min
ζ∈Dj ,ζ j 6=0

lj(ζ) (11)

The optimal solution vector ζ̂ (ζ̂ ∈ Dj, Dj =
{

ζ ∈ Rij+1−1 : ζk = 0 or gk
}

, k = 1, 2, . . . , j)
of the Formula (10) must meet the solution vector that lj−1(·) or lj−2(·) can take the
minimum value. In addition, it is obvious that both ζ̂ j−1 and ζ̂ j−2 will not be 0 at the same
time, so there are only two possible situations: (1) ζ̂ j−1 6= 0; (2) ζ̂ j−1 = 0 and ζ̂ j−2 6= 0.
Using ej = ‖gj‖2

(1 ≤ j ≤ M), then for j ≥ 3, the problem can be written as

lnz
j

= min
{

lnz
j−1 + λ, lnz

j−2 + βej−1

}
(12)

Algorithm 1 summarizes the process of using dynamic programming to solve Equation
(8), using the form of filling from the bottom up.

Algorithm 1. Evaluating the proximity operator of z(·)

Input: Vector g ∈ RN , smoothing parameter λ, weight parameter β.
Output: The result u, namely is the proximity operator of z(·).
1 Find a MSSP

{
g1, g2, . . . , gM} from vector g.

2 Initialize relative parameter u← g .
3 Calculate e, then we can get lnz

1 ← 0 and lnz
2 ← min{λ, βe1} .

4 If M ≥ 2 then
5 For j = 3 to M
6 solve for lnz

j in Equation (11) to compute the minimum loss.
7 End for
8 Update the parameter j←M + 1
9 While j ≥ 2 do

10 uj−1 ← 0 ·
[
lnz
j−1 ≥ lnz

j−2 + βej−1

]
+ gj−1 ·

[
lnz
j−1 < lnz

j−2 + βej−1

]
11 j← j− 2 ·

[
lnz
j−1 ≥ lnz

j−2 + βej−1

]
+ 1 ·

[
lnz
j−1 < lnz

j−2 + βej−1

]
12 End while
13 End if
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2.4.2. Image Smoothing with Zero-Crossing Count Regularization

In order to smooth the image of the detail layer, the horizontal and vertical differences
of the image S are processed with regularization:

min
S

{
‖S−Y‖2

2 + λ∑
n2

z
(
(∂xS): , n2

)
+ λ∑

n1

z
((

∂yS
)

n1, :

)}
(13)

where ‖ · ‖2 denotes the `2-norm; Y is the input image, n1 and n2 is the number of
rows and columns of the image Y; ∂ = ∆ or ∆2 (first-order difference or second-order
difference) [33,34], ∂x and ∂y represent the horizontal and vertical difference operators,
respectively; λ (λ > 0) is a relatively important value that can balance the data items and
the regularization items. Next, the problem (13) can be solved via using the alternating
direction method of multipliers [35] (ADMM) algorithm.

First, the auxiliary variables V and H are introduced instead of ∂x and ∂y, respectively,
and the Formula (13) becomes

min
S,V,H

{
‖S−Y‖2

2 + λ∑
n2

z(V: , n2) + λ∑
n1

z(Hn1, : )

}
s.t. ∂xS = V, ∂yS = H (14)

Then its Lagrangian augmented matrix is:

Lρ = ‖S− I‖2
2 + λ

(
∑
n2

z(V: , n2) + ∑
n1

z(Hn1, : )

)
+ β‖∂xS−V + Ṽ‖2

2 + β‖∂yS− H + H̃‖2
2 (15)

where Ṽ and H̃ are the iterative variables of V and H, and their values they take can be
updated by Equation (19).

The ADMM framework consists of the following iterative formulas:

V ← argmin
V

{
λ∑

n2

z(V: , n2) + β‖∂xS−V + Ṽ‖2
2

}
(16)

H ← argmin
H

{
λ∑

n1

z(Hn1, : ) + β‖∂yS− H + H̃‖2
2

}
(17)

S← argmin
S

{
‖S− I‖2

2 + β‖∂xS−V + Ṽ‖2
2 + β‖∂yS− H + H̃‖2

2

}
(18)

Ṽ ← Ṽ + ∂xS−V
H̃ ← H̃ + ∂yS− H

(19)

In the Equation (16), in order to calculate separately each column of the vector V, each
column of the vector V should be decoupled with the others, which allow us to solve each
column separately. The Equation (16) can be rewritten as

V: ,n2 ← argmin
v

{
λz(v) + β‖(∂xS):,n2

− v + Ṽ:,n2‖
2
2

}
(20)

Likewise, the Equation (17) takes the simple form

Hn1,: ← argmin
h

{
λz(h) + β‖

(
∂yS
)

n1,: − h + H̃n1,:‖
2

2

}
(21)

where β is the weight parameter, which will gradually increase after each iteration.
Equations (20) and (21) can be solved efficiently by dynamic programming [36–38].

Algorithm 2 summarizes the zero-crossing smoothing algorithm, in which the update
of auxiliary variables V and H needs to rely on Algorithm 1: Our algorithm is sketched
in Algorithm 2.
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Algorithm 2. Image smoothing via counting zero crossings

Input: Source image I, smoothing weight λ, parameters β, βmax and rate k.
Output: Processed image S.
1 Initialization: S← mean(I) , β← β0 .
2 Calculate the vertical difference V via Equation (20) based on Algorithm 1.
3 Calculate the horizontal difference H via Equation(21) based on Algorithm 1.
4 Repeat
5 Calculate S by Equation(18).
6 Calculate Ṽ and H̃ by Equation(19).
7 Update the weight parameter β← kβ .
8 Until stop condition: the weight parameter β ≥ βmax.
9 End

3. The Proposed Method

The overall fusion framework of the proposed algorithm is shown in Figure 4, mainly
including three parts, which are image decomposition, sub-images fusion, and the final
image reconstruction.
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3.1. Image Decomposition by CAST

Co-occurrence analysis shearlet transform (CAST), a novel hybrid multi-scale transfor-
mation tool, combines the advantages of co-occurrence filter (COF) and shearlet transform.
In addition, the filter process is as following.

3.1.1. The Multi-Scale Decomposition Steps of COF

IVI and IIR denote the original visual image and infrared image, BVI and BIR are the
corresponding base layer images, and COF is applied to scale the source images:

BVI = CoF(IVI) (22)

BIR = CoF(IIR) (23)

The detail layer images are obtained by calculating the difference between the original
image and the base image, and described as DVI and DIR, respectively.

DVI = IVI − BVI (24)
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DIR = IIR − BIR (25)

Then the K-scale decomposition is in the form,

Bi
x = CoF

(
Bi−1

x

)
(26)

Di
x = Bi−1

x − Bi
x, i = 1 · · · k, x = VI or IR (27)

3.1.2. Multi-Directional Decomposition by Using Discrete Tight Support Shearlet Transform

In fact, the traditional shearlet transform is qualified enough for this step. In addition,
on this basis, parabolic scaling function is adopted to control the size of the shear filter
within a reasonable range. In addition, according to the support range of the shearlet
function, the relationship between L and l can be given qualitatively. Thus, an adaptive
multi-directional shearlet filter is constructed as following:

L ≤ min
(√

M,
√

N
)

L ≥ 22l + 1
L = (l + 1)×

(
2l + 1

)
l ≥ 2

(28)

where the parameters M and N denote the sizes of the input image, l represents the
multi-directional decomposition scale parameter, and L is the size of shear filter.

The adaptive shear filter used in this paper performs multi-directional shearlet trans-
formation on each scale detail layer, so as to effectively obtain the optimal multi-directional
detail components. The decomposition details are shown in Figure 5.

Remote Sens. 2022, 14, 283 10 of 22 
 

 

function, the relationship between L  and l  can be given qualitatively. Thus, an adaptive 
multi-directional shearlet filter is constructed as following: 

( )

( ) ( )
2

,

2 1

1 2 1

2

l

l

L min M N

L

L l

l

 ≤

 ≥ +


= + × +


≥

 (28)

where the parameters M  and N  denote the sizes of the input image, l  represents the 
multi-directional decomposition scale parameter, and L  is the size of shear filter. 

The adaptive shear filter used in this paper performs multi-directional shearlet 
transformation on each scale detail layer, so as to effectively obtain the optimal multi-
directional detail components. The decomposition details are shown in Figure 5. 

 
Figure 5. Diagram of Brightness Correction Function. 

3.2. The Brightness Correction of Based-Layer Image  
The grey-scale image is more in line with human visual requirements, if its gray value 

ranges between 0 and 1, and the average value of the image is 0.5. In fact, it is not possible 
that every image is optimal. As a result, the omega correction can be introduced to revise 
the brightness of the base layer [39]. 

The definition of the omega correction is as follows: 

BE BI Iω=  (29)

where BI  presents the base component of the input image; BEI  denotes the base 
component corrected by the correction parameter ω , and the extension degree of the 
image can be controlled via the parameter ω . Obviously, when 1ω = , the corrected 
image is the same as the input image absolutely; when 1ω < , the corrected image BEI  is 

a bit brighter, and the overall brightness of BEI  will increase with the decrease of the 
parameter omega; on the contrary, when 1ω > , the corrected image becomes darker than 
the input image. In addition, the parameter omega can be derived from the following 
formula: 

Figure 5. Diagram of Brightness Correction Function.

3.2. The Brightness Correction of Based-Layer Image

The grey-scale image is more in line with human visual requirements, if its gray value
ranges between 0 and 1, and the average value of the image is 0.5. In fact, it is not possible
that every image is optimal. As a result, the omega correction can be introduced to revise
the brightness of the base layer [39].

The definition of the omega correction is as follows:

IBE = Iω
B (29)
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where IB presents the base component of the input image; IBE denotes the base component
corrected by the correction parameter ω, and the extension degree of the image can be
controlled via the parameter ω. Obviously, when ω = 1, the corrected image is the same
as the input image absolutely; when ω < 1, the corrected image IBE is a bit brighter, and
the overall brightness of IBE will increase with the decrease of the parameter omega; on
the contrary, when ω > 1, the corrected image becomes darker than the input image.
In addition, the parameter omega can be derived from the following formula:

ω = α× µ(x, y) + 0.5 (30)

where α is the rate of correction, and µ(x, y) denotes the average gray value of the base
layer image in the window. Figure 5 indicates that the lower the value of µ is, the higher
the pixel enhancement level is. If µ(x, y) is less than 0.5, the image of the window seems
dark, and the value of the image will be corrected via the brightness correction function
and vice versa.

3.3. Fusion Rule of Base-Layer Image

The base components of the original images consist of the fundamental structures,
the redundant information and light intensity, which are the approximate parts and the
main energy parts. In fact, the effect of the final fused image is dependent on the fusion
rule of the base layer. In order to improve the brightness of the visual image, the omega
correction function and the saliency information weighted map are utilized to fuse the base
layer components.

For the sake of preventing incompatible spectral characteristics from heterologous
images, LatLRR, is utilized to generate the weighted map to guide the fusion of the base-
layer images adaptively. The specific fusion strategy of the base components is provided
below:

Step 1: The saliency features of visual and infrared images can be calculated by
the LatLRR algorithm. The corresponding weighted maps SIR

b and SVI
b are constructed.

In addition, the normalized weighting coefficient matrices of µIR
b and µVI

b can be obtained
by the salient maps’ values.

µIR
b (x, y) =

SIR
b (x, y)−minSIR

b (x, y)
maxSIR

b (x, y)−minSIR
b (x, y)

(31)

µVI
b (x, y) =

SVI
b (x, y)−minSVI

b (x, y)
maxSVI

b (x, y)−minSVI
b (x, y)

(32)

Step 2: The parameters of µIR
b and µVI

b are applied to implement weighted fusion of
the base-layer images adaptively. The specific formulas are as follows:

Ib f1(x, y) = µVI
b · I

VI
b (x, y) +

(
1− µVI

b

)
I IR
b (x, y) (33)

Ib f2(x, y) = µIR
b · I

IR
b (x, y) +

(
1− µIR

b

)
IVI
b (x, y) (34)

Ib f (x, y) =
Ib f1(x, y) + Ib f2(x, y)

2
(35)

where µVI
b and µIR

b are defined as the weights of the base layers, IVI
b and I IR

b are the base
layer images of visual and infrared images, respectively, and Ib f (x, y) denotes the final
base-layer fused coefficients.

Considering the spectral differences between the two original images, it can be com-
pensated by the weighted map. At the same time, the contrast of the visual images can
be improved. In addition, the weighted map mainly is the weighting distribution of the
grayscale value in space, and this fusion strategy can adaptively transfer the saliency com-
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ponents of the infrared images to the visual images with textural components as many as
possible. Finally, the fusion effect of the base-layer images can be greatly improved by the
appropriate combination of the salient components between the two original images [24].

3.4. Fusion Rule of Detail-Layer Image

In contrast with the base-layer images, the detail layers of the images preserve more
structural information, such as some edge and texture components. So the fusion strategy
of the detail-layer components can also affect the final visual effect of the fused image.
In order to avoid excessive punishment for adjacent pixels with large intensity differences,
the number of zero crossings in differences is selected as the regularization term to penalize
the number of convex or concave segments of the sub-images.

The fusion strategy based on mixed zero-crossing regularization is put forward, the
expression of which can be described as follows:

argmin
Dσ,τ

{[
‖Dσ,τ − DVL

σ,τ‖
2
2 + ϕ∑

n2

z
(
∂xDIR

σ,τ
)

: ,n2
+ ϕ∑

n1

z
(
∂yDIR

σ,τ
)

n1, :

] λ

×
[
‖Dσ,τ − DIR

σ,τ‖
2
2 + η∑

n2

z
(
∂xDVI

σ,τ
)

: ,n2
+ η∑

n1

z
(
∂yDVI

σ,τ
)

n1, :

]1−λ
} (36)

where DVL
σ,τ , DIR

σ,τ and Dσ,τ denote the detail-layer sub-coefficients of visual image, infrared
image, and fused image, respectively; σ is the number of the decomposition, τ represents
the decomposition direction in each layer, ϕ and η are the regularization coefficients, ‖ ‖2
represents the `2-norm, z(·) indicates the counting zero crossings and ∂ = ∆2 is the second-
order difference operator. Furthermore, the gradient parameter λ can be used to weigh the
importance of two types of detail-layer components in spatial distribution. The expression
of λ is shown as follows:

λ =

{
1
∣∣DVL

σ,τ(x, y)
∣∣ ≥ ∣∣DIR

σ,τ(x, y)
∣∣

0
∣∣DVL

σ,τ(x, y)
∣∣ < ∣∣DIR

σ,τ(x, y)
∣∣ (37)

When
∣∣DVL

σ,τ(x, y)
∣∣ ≥ ∣∣DIR

σ,τ(x, y)
∣∣, namely λ = 1, the detail-layer coefficients of the

visual image domain the main features of the fusion image, and the zero-crossing number of
the detail-layer coefficients in infrared image is selected as the regular term for supplement.
On the contrary, λ = 0 indicates that the detail layer sub-coefficients of the infrared image
include more information.

Next, using ADMM algorithm to solve the problem (36), the process is as follows:
Step 1: Let the parameters H and V replace ∂x and ∂y operators, respectively, so the

Equation (36) becomes:

argmin
Dσ,τ , V,H

{[
‖Dσ,τ − DVI

σ,τ‖
2
2 + α∑

n1

z
(

H IR)
: ,n1

+ α∑
n2

z
(
V IR)

n2, :

] λ

×
[
‖Dσ,τ − DIR

σ,τ‖
2
2 + β∑

n1

z
(

HVI)
: ,n1

+ β∑
n2

z
(
VVI)

n2, :

]1−λ
} (38)

s.t. ∂xDIR
σ,τ = H IR, ∂yDIR

σ,τ = V IR

∂xDVI
σ,τ = HVI , ∂yDVI

σ,τ = VVI
(39)

Step 2: When λ = 1, the Lagrangian augmented function is:

Lρ = ‖Dσ,τ − DVI
σ,τ‖

2
2 + α

(
∑
n1

z
(

H IR)
: ,n1

+ ∑
n2

z
(
V IR)

n2, :

)
+ ω‖∂yDIR

σ,τ −V IR + Ṽ IR‖2
2 + ω‖∂xDIR

σ,τ − H IR + H̃ IR‖2
2

(40)
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Step 3: The ADMM framework consists of the following iterative formulas:

V IR
: ,n2
← argmin

v

{
αz
(

vIR
)
+ ω‖(∂xDIR

σ,τ

)
:,n2
− vIR + Ṽ IR

:,n2
‖2

2

}
(41)

H IR
n1,: ← argmin

h

{
αz
(

hIR
)
+ ω‖(∂yDIR

σ,τ

)
n1,:
− hIR + H̃ IR

n1, :‖
2

2

}
(42)

Dσ,τ ← argmin
Dσ,τ

{
‖Dσ,τ − DVI

σ,τ‖
2
2 + ω‖(∂xDIR

σ,τ
)

:,n2
− vIR + Ṽ IR

:,n2
‖2

2
+ ω‖(∂yDIR

σ,τ
)

n1,: − hIR + H̃ IR
n1, :‖

2

2

}
(43)

Ṽ IR ← Ṽ IR + ∂xDIR
σ,τ −V IR

H̃ IR ← H̃ IR + ∂yDIR
σ,τ − H IR (44)

where ω is the weight parameter, which will gradually increase after each iteration until ω
satisfies the termination criterion of the iteration. In addition, Equations (40) to (43) can be
solved efficiently by dynamic programming.

When λ = 0, repeat the step 2 and step 3. By repeating the above steps, the fused
images of the detail layers can be obtained. This final fusion effect will be tested in the
experiments of the Section 4.

4. Experimental Results and Analysis

So as to affirm the fusion effect of the proposed method in this paper, the common
infrared and visual image fusion sets are used as experimental data. Moreover, some classic
and state-of-the-art algorithms are tested to compare with our algorithm from qualitative
and quantitative aspects, respectively.

4.1. Experimental Settings

Seven pairs of infrared and visible images (i.e., namely, Road, Camp, Car, Marne,
Umbrella, Kaptein and Octec) from TNO [40] are selected for testing, which are exhibited
in Figure 6.
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Figure 6. Seven pairs of input images. The first row consists of infrared images, and the bottom row
contains visual images. From left to right are Road, Camp, Car, Marne, Umbrella, Kaptein and Octec.

Among them, “Road” is a set of images taken under the low illumination condition.
The image pair of “Camp” contains rich background information in the visible image and
has the clearer hot targets in another image. Both visible and infrared images in “Car”,
“Marne”, “Umbrella” and “Kaptein” contain significant and abundant information. In
“Octec”, the infrared image has the interesting region, but the visible image is blocked
by smoke. The size of images is 256 × 256, 270 × 360, 490 × 656, 450 × 620, 450 × 620,
450 × 620, 640 × 480, respectively. The various samples can fully confirm the effect of the
novel algorithm.

The proposed algorithm is compared with several present methods, including weighted
least square optimization-based method (WLS) [30], Laplacian pyramid (LP) [10], curvelet
transform (CVT) [41], complex wavelet transform (CWT) [42], anisotropic diffusion fusion
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(ADF) [43], gradient transfer (GTF) [44], and multi-resolution singular value decomposition
(MSVD) [45]. These different types of image fusion algorithms can obtain, respectively,
desire fusion results. Via comparing with them, the superiority of the proposed method
can be shown distinctly.

In this paper, the compared algorithms are tested based on the public Matlab codes
and the parameters in the code take the default value. In addition, all experiments are run
on the computer with 3.6 GHz Intel Core CPU and 32GB memory.

4.2. Subjective Evaluation

The subjective evaluation for the fusion of the infrared and visible images depends on
the visual effect of fused images. As shown in Figures 7a–h–13a–h, each method has its
advantage in preserving detail components, but our method can balance the relationship
between retaining significant details and maintaining the overall intensity distribution as
much as possible. Through experiments and analysis, the novel algorithm can enhance the
contrast ratio of the visible image, and enrich the image detail information; moreover, the
noise can also be well limited.
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Figure 7. Performance comparison of different fusion methods on the image pair “Marne”. (a–h) are
the results of CVT, CWT, WLS, LP, ADF, GTF, MSVD and our algorithm, respectively.

The fusion results of the first group on the “Marne” image pairs are shown in Figure 7.
It is obvious that the most of fused images can contain rich textures of original visual image
and the hot targets of infrared image. Furthermore, the cloud in the sky should be retained
clearly in the final fused image as much as possible so that the fused image with higher
contrast looks more natural. The results of the CVT, CWT and ADF algorithms own the
lower contrast, so the visual quality of the fused image is a little bad. The algorithm of
WLS can also improve the brightness distribution of the visible image, but the outline of
the cloud in the red box does not look natural enough. The MSVD algorithm cannot fuse
more edge and detail information into each layer of the image. In addition, the result of
GTF algorithm is fused by more information from the infrared image, and the pattern on
the car is the clearest. Although the CVT, WLS, LP, GTF and the proposed algorithm can
preserve the target light regions, the proposed algorithm can transfer more textures of the
cloud and the edges of the tree in visible images into the fused image.

Figure 8 exhibits the fusion results of the “Umbrella” image pair based on various
fusion algorithms. Although all of these fusion methods in this paper can realize the aim
of image fusion, the fusion effect of different fusion methods is still very different. The
results of the CVT and CWT methods pay more attention to preserving the infrared areas
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of interest, but some components in the visible image are missing. The background of
the WLS and GTF methods are over bright, which leads to the poor visual effect. The
result based on the LP method owns better visual effect than Figure 8a, and the contrast
of the background is not too bad, but it still needs to be improved. The diverse feature
information cannot be extracted absolutely from the input images by the ADF and MSVD
methods, so the results lose the significant information and tiny details, and the contrast is
also low. Moreover, the result based on the method of this paper is suitable for the human
visual perception system via enhancing the contrast of the interesting regions of the input
images. In conclusion, the fused image of the “Umbrella” based on the proposed method
contains more complementary information from the input images.
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Next, the image pairs of “Kaptein” and “Car” are chosen as the test sets in order
to affirm the effect of the proposed method further. The fusion results of the existing
algorithms and ours are displayed in Figures 9 and 10, respectively. It is very obvious that
there are more noise and image artifacts in the fused images acquired by the methods of
WLS and MSVD. In addition, the methods of the ADF and GTF cannot preserve more detail
components of the visible image. Moreover, the background information is receiving more
and more attention, and LP, CVT and CWT are proposed to keep more visual information.
The final images fused by CVT, CWT and LP methods have more significant features and
setting information. However, those images with so much complementary information
look more similar to the infrared images, especially the background. Compared with
the previous methods, the proposed algorithm can cut down the saliency features of the
infrared image and the fused image is easier to be accepted. Furthermore, in Figure 9,
the texture information in the ‘bushes’ (red box) and the ‘ground’ (green box) can be
preserved as much as possible via our method, and the fused image is clearer and the detail
information is more abundant.
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In Figure 10, the fusion algorithms of CVT, CWT, LP and ours can reserve more salient
features of the visible images. However, these results about the rest of the methods are
fused by a lot of background information of the infrared image. By this way, it is very
difficult to extract the salient components from the input image so that the background
information and the context around the saliency regions are obscure and even not visible.
Compared with the other fusion algorithms in this paper, our fusion method can fuse more
detail components and keep the higher contrast of infrared components. The ‘tree’ in the
red box of the fused image based on our method is clearer, and the detail information is
richer than the others. Therefore, our method can maintain an optimal balance between the
visual context information and the infrared saliency features.

In fact, our proposed method focuses on maintaining as much visible texture details as
possible and highlighting the thermal target. Therefore, we hope that the experimental re-
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sults based on our method can be more in line with human vision, and the large infrared tar-
gets will not be lost, such as the umbrella in the Figure 8, the human in the Figures 9 and 10.
However, the texture of the forest in Figure 8, the floor in Figure 9 and the trees in Figure 10
is clearer than other methods due to the omega correction in the Section 3.2, which can
be used in greyscale images for changing their dynamic range and the local contrast. Of
course, it is possible that these sets of experimental parameters are too biased towards
the enhanced contrast of visible information, so they are a little darker. In addition, the
adaptive adjustment of these parameters will also be our next task.

Moreover, it is necessary to prove the effect of retaining complementary information
in this method. The fusion results based on different algorithms on the image “Camp”
are displayed in Figure 11. The hot targets in the green box are clear enough on different
methods. However, the contour of the figure in green box obtained by the methods of WLS
and ours is more distinct and its brightness is improved greatly. In addition, the image
details of the bushes in the red boxes reveal that the proposed algorithm possesses the
following advantages. Firstly, the image contrast can be improved by the proposed method
via enhancing the brightness of the bushes. Secondly, our algorithm can transmit more
texture information of the bushes to the fused result so that the fused image looks more
similar to the visible image and reserves much more infrared information.
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In addition, the low contrast image pair “Octec” is selected to verify the fusion effect
of our method. In Figure 12, there is some cloud of smoke in the center of the visual
image, behind which the interesting target in the infrared image conceals. In addition,
the fusion methods are ought to merge the hot target and the houses sheltered from the
smoke into the result. CWT, WLS, LP and our algorithm all meet the above performance
requirements. Moreover, the methods of the ADF and GTF can enhance the brightness of
the fusion images, but the hot target in the green box is lost. Although the CWT algorithm
improves the visual brightness of the fused result, the contrast of the fused image is very
poor. In addition, the result of MSVD algorithm is without enough details of the trees and
houses. As for CWT and GTF algorithms, the detail information of visible image cannot
be reserved into the fused image so that the image looks a little blurry. Finally, the result
obtained by the proposed method owns clearer detail information of the roof in the red
box, and its contrast is more suitable for human vision.
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As for the algorithms of CWT, WLS and ADF, the interesting parts such as the vehicles,
the person and the lights are not able to be well highlighted. At the same time, the results
of GTF and MSVD fusion algorithms do not conform to human eye vision observation
due to its blurred details. Furthermore, the image contrast of the CVT and LP methods is
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better than the results obtained by the rest of the compared fusion algorithms. However,
the proposed method can enhance the tiny features properly, for example, the person in the
green box is clearer than the others, especially the outline between two legs; and the details
of the car in the red box can also be preserved well. Therefore, the method proposed in this
paper can meet the needs of night the observation.

Although the WLS and GTF can preserve more thermal characteristics than ours in
Figures 8–10, the visual detail components are not so much as ours. For example, the
texture features of the bush in Figures 8 and 9 are richer. Of course, this also shows that
our algorithm can integrate more visual significant features of the visible image into the
fused image. Moreover, there are some small infrared detail information lost in ours, such
as the brightness information on the human in Figure 10. However, this will not affect our
recognition of infrared targets. Of course, our next focus will also be to find a better way to
balance while retaining more infrared and visible information.

In conclusion, obviously, our method can not only improve the contrast of the fusion
images, but also fuse more infrared brightness features in each experiment. Although the
compared methods can also highlight the interesting parts of input images, they cannot fuse
more details of the input images such as this method. In a word, the proposed algorithm in
this paper can achieve a better balance between highlighting infrared targets and reserving
detail information, and the results are easier to be accepted by human eyes.

4.3. Objective Evaluation

Five fusion quality evaluation metrics are selected to evaluate our fusion algorithm
objectively, such as average gradient (AVG) [46], mutual information (MI) [47], edge
strength (Qab/f) [30], spatial frequency (SF) [48] and standard deviation (SD) [49]. The
fusion performance improves with the eight methods of all these five metrics, and the
results are shown in Table 1.

Table 1. The objective evaluation results for experiments.

Group Metrics CVT CWT WLS LP ADF GTF MSVD Proposed

AVG 3.114 3.022 4.101 3.193 2.696 3.211 2.592 3.673
MI 13.398 13.275 14.350 13.693 13.090 14.702 12.995 15.034

Marne Qab/f 0.202 0.149 0.306 0.144 0.121 0.182 0.039 0.266
SF 6.346 6.271 8.633 6.607 5.553 6.654 5.338 9.327
SD 25.664 24.486 36.793 28.216 23.077 41.608 22.557 45.640

AVG 5.100 5.095 5.520 5.375 4.192 4.389 4.250 6.282
MI 13.000 12.937 13.458 13.245 12.647 13.028 12.638 12.189

Umbrella Qab/f 0.153 0.128 0.192 0.133 0.061 0.076 0.011 0.238
SF 10.467 10.534 10.838 10.963 8.580 9.564 8.568 11.146
SD 30.557 30.531 40.463 35.340 27.678 37.642 27.213 45.772

AVG 4.400 4.343 5.052 4.536 3.675 3.885 3.606 6.922
MI 13.544 13.401 13.910 13.538 13.195 14.099 13.078 14.031

Kaptein Qab/f 0.173 0.143 0.226 0.141 0.044 0.070 0.013 0.242
SF 8.482 8.480 9.761 8.858 6.578 7.736 6.946 11.584
SD 34.090 33.554 48.580 36.148 31.638 47.391 31.549 54.582

AVG 4.977 4.990 5.109 5.146 2.948 4.419 3.948 5.321
MI 13.813 13.797 14.020 14.227 13.187 14.142 13.298 13.950

Car Qab/f 0.593 0.621 0.549 0.691 0.444 0.654 0.464 0.508
SF 14.796 14.881 15.470 15.240 8.696 13.998 11.993 16.482
SD 34.315 34.471 47.796 40.897 28.287 48.457 29.516 52.094

AVG 6.620 6.455 7.405 6.975 4.895 5.876 5.711 9.321
MI 13.660 13.567 13.861 13.920 13.196 14.049 13.151 13.253

Camp Qab/f 0.385 0.432 0.404 0.497 0.385 0.448 0.322 0.318
SF 13.413 13.315 14.418 14.038 9.610 11.922 10.914 15.493
SD 32.424 31.595 34.416 35.148 27.858 36.659 27.836 40.387
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Table 1. Cont.

Group Metrics CVT CWT WLS LP ADF GTF MSVD Proposed

AVG 3.995 3.923 4.223 4.034 3.637 3.088 3.131 4.932
MI 13.120 12.860 13.248 12.984 12.664 13.384 12.489 13.190

Octec Qab/f 0.173 0.128 0.217 0.139 0.090 0.113 0.012 0.292
SF 10.525 10.494 9.960 10.585 9.215 8.321 7.902 11.729
SD 30.009 29.071 33.146 30.657 28.165 32.189 27.674 35.603

AVG 10.240 10.255 10.583 10.686 8.028 9.042 8.955 11.402
MI 14.504 14.457 14.500 14.691 14.076 14.539 13.992 12.361

Road Qab/f 0.214 0.166 0.169 0.150 0.071 0.070 0.042 0.239
SF 20.995 21.454 22.188 22.228 16.335 19.169 18.757 24.049
SD 41.613 41.667 42.919 47.292 34.667 42.080 34.913 52.268

The evaluation results are shown in Table 1, in which the values marked in bold are the
best of all. From the 7 experiments, we can see that the AVG value of the proposed algorithm
is higher than the other algorithms besides the fourth experiment, which indicates that our
algorithm can keep the gradient texture information contained in the original images into
the fusion image, and our fused images have the most abundant detail information. The
amount of the edge information can be counted by the metric of Qab/f, which represents
the ability that the edges are shifted to the fused images from the input images. We can
clearly see that in addition to the second to forth group of experiments, the Qab/f values
of our algorithm keeps leading. This shows again that our method owns the prominent
effect both on the reconstruction and restoration of the gradient information. As for the
evaluation of SF and SD values, the SF value indicates the global activities of the image in
the domain of the space, and the value of SD is used to reflect the gray-value distribution of
each pixel, which is another manifestation of sharpness and is computed indirectly by the
average values of the image. Both SF and SD values of other methods are lower than the
proposed algorithm, so the result of our proposed method has the higher overall activity in
the spatial domain and the contrast of the image is promoted well. MI characterizes the
degree of correlation between the fused image and the original image. Except the fourth
group of experiment, the values of other methods perform better than ours, which indicates
that the proposed algorithm in this aspect still needs to be improved.

5. Conclusions

This paper proposed a novel fusion model for infrared and visual images based on
co-occurrence analysis shearlet transform. Firstly, the CAST is used as the multi-scale
transform tool to decompose the source images. Next, for the base-layer images that
represent the energy distribution, we adopt the LatLRR to generate the saliency maps, and
a weighted model guided by the salient map is put forward as the fusion rule. For the
detail-layer images that reflect the texture detail information, an optimization model based
on zero-crossing counting regularization is adopted as the fusion rule. In order to confirm
the performance of our method, relevant experiments are implemented in this paper. The
results show that the fused images obtained by ours with a higher contrast and rich texture
detail information outperform the others in terms of visual evaluation.
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