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Abstract: To analyze the hyperspectral reflectance characteristics of rice canopies under changes in
diffuse radiation fraction, experiments using different cover materials were performed in Nanjing,
China, during 2016 and 2017. Each year, two treatments with different reduction ratios of diffuse
radiation fraction but with similar shading rates were set in the field experiment: In T1, total solar
radiation shading rate was 14.10%, and diffuse radiation fraction was 31.09%; in T2, total solar
radiation shading rate was 14.42%, and diffuse radiation fraction was 39.98%, respectively. A non-
shading treatment was included as a control (CK). Canopy hyperspectral reflectance, soil and plant
analyzer development (SPAD), and leaf area index (LAI) were measured under shading treatments on
different days after heading. The red-edge parameters (position, λ0; maximum amplitude, Dλ; area,
α0; width, σ) were calculated, as well as the area, depth, and width of three absorption bands. The
location of the first absorption band appeared in the range of 553–788 nm, and the second and third
absorption bands appeared in the range of 874–1257 nm. The results show that the shading treatment
had a significant effect on the rice canopy’s hyperspectral reflectance. Compared with CK, the canopy
reflectance of T1 (the diffuse radiation fraction was 31.09%) and T2 (the diffuse radiation fraction was
39.98%) decreased in the visible light range (350–760 nm) and increased in the near-infrared range
(800–1350 nm), while the red-edge parameters (λ0, Dλ, α0), SPAD, and LAI increased. On the other
hand, under shading treatment, the increase in diffuse radiation fraction also had a significant impact
on the hyperspectral spectra of the rice canopy, especially at 14 days after heading. Compared with
T1, the green peak (550 nm) of T2 reduced by 16.12%, and the average reflectance at 800–900 nm
increased by 10%. Based on correlation analysis, it was found that these hyperspectral reflectance
characteristics were mainly due to the increase in SPAD (2.31%) and LAI (7.62%), which also led to
the increase in Dλ (8.70%) and α0 (13.89%). Then, the second and third absorption features of T2 were
significantly different from that of T1, which suggests that the change in diffuse radiation fraction
could affect the process of water vapor absorption by rice.

Keywords: diffuse radiation fraction; rice; hyperspectral reflectance

1. Introduction

Based on observational data, the surface solar irradiation (SSI) decreased from 1950
to 1990, which is called global dimming, with a mean decreasing amplitude of 5 W/m2

per decade [1,2]. After 1990, SSI increased in Europe and North America (0.66 W/m2);
however, in the southern and eastern regions of China [3,4], SSI is still decreasing, while
in these regions, the diffuse radiation and diffuse radiation fraction are increasing [5–7].
Based on Xie’s study, the diffuse radiation fraction in China has steadily increased after
1994 [6]. By analyzing the data from 1981 to 2010, Ren found that China’s diffuse radiation
has increased by 7.03 MJm−2 yr−1 per decade [5]. The main cause of these phenomena is
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the increase in aerosol in the atmosphere, which has been confirmed by data analysis and
physical models [6,8–11].

Solar radiation, which is the energy source of photosynthesis for food crops, has a
significant effect on crop growth, dry matter accumulation, and crop productivity. Through
observation, it is found that a reduction in solar radiation will lead to a significant drop in
ecosystem primary productivity (GPP) [12]. However, some studies show that with the
decrease in solar radiation, the fraction of diffuse radiation will increase, which can enhance
the radiation use efficiency of the canopy [13]. Further, the increased fraction of diffuse
radiation has a strong fertilization effect on crop yield and GPP of ecosystems [14–17].
For rice, the increased fraction of diffuse radiation also has a fertilization effect. The LAI,
SPAD, and leaf nitrogen concentration of rice increase with the increase in diffuse radiation
fraction. This shows that the increase in diffuse radiation fraction can also raise the grain
filling rate and increase the yield [18]. Zheng used a 3D model to simulate the growth of rice.
He found that the LAI at the bottom of the rice would increase with the increase in diffuse
radiation fraction, which increased the photosynthetic rate of the rice population [19].

Hyperspectral remote sensing, which possesses high spectral resolution, can acquire a
large amount of information to accurately express the effects of various external environ-
mental stresses on rice [20,21]. For example, Sahoo indicates that under flood stress, the
hyperspectral reflectance of rice canopy in the near-infrared region changes significantly; in
addition, its first derivative hyperspectral reflectance reveals a more obvious phenomenon,
i.e., a double reflection peak at 680–760 nm [22]. The temperature stress also has a signif-
icant impact on hyperspectral reflectance at visible and near-infrared regions [23]. More
specifically, the increasing temperature leads to an increase in reflectance in the visible
region and a decrease in the near-infrared region [24]. In addition, with the increasing
atmospheric concentration of carbon dioxide, the reflectance rates at the green peak and
red bandalso show remarkable changes [25]. Therefore, hyperspectral reflectance makes it
possible to monitor rice growth.

Generally, there are three types of methods for monitoring rice growth: empirical
statistical, physical, and a hybrid of both. For the empirical model, on the one hand, it
is very important to select reasonable hyperspectral parameters. The vegetation indices
constructed by reflectance are one of the common hyperspectral parameters. Xie, Viña,
and Liang et al. used some specific vegetation indices to monitor the LAI and SPAD
values of rice [23,24,26,27]. Compared with vegetation indices, Kokaly and Herrmann
found the model incorporated with absorption band width performs better in simulating
LAI [28,29]. Fan also highlighted that the rice LAI monitoring model, which uses first and
second derivative hyperspectral data, has better accuracy and stability [30]. Fu and Dong
used vegetation index to monitor dry matter weight [31,32], but the accuracy of the model
mainly depended on the relationship between LAI or SPAD and dry matter [33]. For this
reason, some scholars insist on using vegetation index to monitor the dry matter weight
of individual organs to improve accuracy [34]. On the other hand, partial least-squares
regression (PLSR), support vector machine (SVM), random forest (RF), artificial neural
networks (ANNs), and other machine learning regression models are used to improve
the accuracy and efficiency of monitoring [35]. Kanning [36] used hyperspectral imagery
to establish an accurate regression model of LAI and chlorophyll based on PLSR. The
PROSAIL model, as a widely used physical model, has become one of the most important
tools for estimating various vegetation parameters. Wang [37] used this model to retrieve
the LAI and chlorophyll content of rice from unmanned, aerial, vehicle-based hyperspectral
images. Furthermore, a hybrid method combining physical models and statistical methods
was proposed by Liang [38] to estimate the LAI values of crops.

In practice, the hyperspectral reflectance characteristics of rice should be extended
to a larger geographic space. Therefore, the extraction of spectral information on ground
objects (such as the spectral reflectance characteristics of rice-growing regions) and land
classification have become hot topics, especially based on hyperspectral images. For
example, by comparing N-FINDR, VCA, and other algorithms, it was concluded that the
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ant colony optimization (ACO) could accurately extract endmembers, which are some pixels
including only one ground object in the image [39]. Further, the high-accuracy model for
estimating rice yield was established by integrating vegetation index that recalculated from
endmember spectra with abundance data [40]. On the other hand, with the development
of machine learning and deep learning in recent years, it has become possible to process
and analyze hyperspectral images to classify land cover. Convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have been proven to efficiently classify
hyperspectral images with high accuracy [41,42]. Furthermore, considering the topological
relationship between pixels, the graph neural network (GCN) has also begun to be used for
hyperspectral image classification [43]. However, GCNs also have some drawbacks, such
as high storage and computational cost, and the need to retrain the model when new data
are fed. Therefore, a new supervised version of GCNs, called miniGCNs, was developed to
solve these problems [44].

As one of the main food crops, rice accounts for 40% of the total grain production
in China. The lower Yangtze River region is an important rice production area in China.
Changes in SSI, especially the diffuse radiation fraction, will have remarkable effects on
rice growth and yield in this region. In recent years, because of the increasing concentration
of aerosols in the atmosphere, the diffuse radiation fraction is changing. However, there
are few studies on analyzing rice growth and the hyperspectral reflectance characteristics
of canopy under this changing situation. Our research was based on rice field experiments
in two years and comprised two main parts. Firstly, with the experimental data, the change
in LAI, SPAD, and hyperspectral reflectance characteristics, including the band reflectivity,
red-edge parameters, and absorption features parameters, was analyzed in two scenarios.
In the next part, the paper attempted to explore the underlying reasons for these different
hyperspectral reflectance characteristics and to provide useful information for relevant
research.

2. Materials and Methods
2.1. Experimental Setup

The experiment (variety: Lingliangyou 268) was conducted during 2016–2017 in the
Agricultural Meteorological Experiment Station (118.70◦ E, 32.20◦ N) of Nanjing University
of Information Science and Technology. The climate of the region where the station is located
belongs to the subtropical monsoon climate, with an average multi-year precipitation of
1100.0 mm and an average multi-year temperature of 15.6 ◦C. The maximum temperature
in this area is 39.7 ◦C, and the minimum temperature is −13.1 ◦C. The annual average
sunshine hours in this station exceeds 1900 h, and the frost-free period is 237 days.

Figure 1 shows the variations in meteorological elements during the rice season of 2016
and 2017, respectively. From May to September 2016, the total precipitation was 815.0 mm,
of which the precipitation time was mainly concentrated in the first 10 days of July, and
the total radiation and average temperature were 1202.8 MJ/m2 and 24.6 ◦C, respectively.
From May to September 2017, the total precipitation was 485.5 mm, and the total radiation
and average temperature were 1472.2 MJ/m2 and 26.7 ◦C, respectively.

Two shading treatments (T1 and T2) were set up in the experiment. After transplanting,
two different shading materials were used to shade the rice until harvest. Each treatment
was repeated 3 times with a random block design. The area of each experimental plot was
3 m × 3 m, and the interval between plots was 2 m. In each treatment, the shading material
effectively covered 4 m2 and was dynamically adjusted to keep 0.6 m above the canopy.
The radiation transmittance rate and diffuse radiation for each treatment are shown in
Table 1. The diffuse radiation and total radiation were measured by the solar radiation
monitor SPN1 (SPN1-MS1, Dalta-T, Inc., Cambridge, UK). The diffuse radiation and total
radiation of each treatment were repeatedly measured 10 times, and the measurement data
were tested for significance with a least significant difference (LSD) test (p < 0.05). The test
results are outlined in Table 1. It is shown that, for the total radiation, CK was significantly
different from T1 and T2, but there was no difference between T1 and T2, and for the diffuse
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radiation fraction, there were significant differences between CK, T1, and T2. Under these
treatments, the rice experienced distinct radiation conditions, which helped to effectively
simulate the growth of rice under an environment with changing radiation, as well as to
determine the changes in LAI, SPAD, and hyperspectral reflectance characteristics.
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Table 1. Data of shading treatments.

Treatment Shading Material Radiation Transmittance
Rate (%)

Diffuse Radiation
Fraction (%)

CK None 100.00 a 19.13 a
T1 Nylon mesh 85.90 b 31.09 b
T2 Plastic film 85.58 b 39.98 c

Different lower case letters (a,b,c) between treatments indicate significant differences at p < 0.05.

2.2. Experimental Measurements

All canopy spectra were measured with an ASD FieldSpec Pro spectrometer (Analytical
Spectral Devices, Boulder, CO, USA). This spectrometer is fitted with a 25◦ field of view,
which operates in the 350–2500 nm spectral range, with sampling intervals of 1.4 nm
between 350 nm and 1050 nm, and 2 nm between 1050 nm and 2500 nm. The spectrometer
was calibrated using the whiteboard before the measurement. The measurements were
made from a height of 0.6 m above the rice canopy under clear sky conditions between 9:00
a.m. and 11:00 a.m. on the 14th, 21st, and 28th day after rice heading (DAH 14d, DAH 21d,
and DAH 28d; DAH means “days after heading”.).

Meanwhile, three samples from each plot were selected for measuring LAI and SPAD.
During the measurement, the instruments LI-3000C and SPAD-502 Plus were employed,
and flag leaves were selected for the SPAD measurement. Three flag leaves of rice were
randomly selected to measure SPAD in each plot, and there were nine SPAD measurement
data in the same period for each treatment. Three rice plants were also randomly selected
to measure the LAI of rice in each plot.
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2.3. Data Analysis
2.3.1. Parameters of Red Edge

The canopy reflectance spectra in the domain 680–760 nm are called “red edge”. The
red edge, which contains considerable information and has a strong correlation with the
chlorophyll abundance, nitrogen concentration, and leaf area index, can well characterize
the growth status of rice. In general, there are two ways to derive red-edge parameters
from red-edge reflectance spectra.

In the first method, a first-derivative curve of the spectra at the red edge was retrieved
by Equation (1). The maximum value at this curve is defined as the red-edge amplitude
(Dλ), and the corresponding wavelength is the red-edge position (λ0). The integral area of
the first-derivative curve at the red edge is defined as the red-edge area (α0). Dλ, λ0, and
α0 are red-edge parameters.

R′(λi) =
dR(λi)

dλ
=

R(λi+1)− R(λi−1)

λi+1 − λi−1
(1)

where λi is the i-th wavelength, R(λi) is the reflectance corresponding to the i-th wave-
length, and R′(λi) is the first-derivative reflectance corresponding to the i-th wavelength.

In the second method, the inverse Gaussian model [45] was applied to derive λ0 since
the model can fit the shape of the reflectance curve at the red edge well.

R(λi) = Rs − (Rs − R0) exp

(
−(λ0 − λi)

2

2σ2

)
(2)

In Equation (2), λi is the wavelength, and R(λi) is the reflectance. Rs is the maximum
reflectance in the near-infrared range. R0 is the minimum reflectance in the red-light range.
In this paper, the average reflectance in 780–795 nm and 670–675 nm was set as Rs and
R0, respectively. In the above equation, λ0 and σ represent the red-edge position and the
red-edge absorption band width, respectively. Both values were derived from an optimized
Equation (2), with λi and R(λi) data used as input.

In this paper, the two methods were used separately to calculate λ0. The results are
presented in the box plots shown in Figure 2. From the figure, it can be seen that the
average value of λ0 (728 nm) estimated by the first method was higher than the value of λ0
(687 nm) by the second method, but many outliers resulted from the first method. Against
the possible high uncertainty in the further analysis, we chose the estimate by the second
method as the default value of λ0 in this paper.

2.3.2. Parameters of Absorption Features

The absorption features of the rice canopy spectral curve are also important in analyz-
ing the absorption characteristics for radiation. The baseline normalization method [28]
was used to calculate the absorption features parameters of the spectral curve (Figure 3).
To implement the method, points of local maximum on the spectral curve were detected
first. With these points, linear interpolation was used to retrieve a linear upper envelope
(Figure 3a). Afterward, by dividing the linear upper envelope, the normalized spectral
curve was obtained from the canopy spectral curve (Figure 3b).
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Figure 3. Illustration of deriving values of the absorption features parameters: (a) shows the process
of retrieving upper envelope of the spectral curve; (b) shows the normalized spectral curve and the
absorption features parameters.

The normalized spectral curve contains three ordered absorption bandsfrom 350 nm to
1350 nm. The absorption bandparameters (A1, A2, A3, D2, A4, A5, D3, A6) were calculated
using the method in Table 2. Detailed information about these parameters can be found in
Figure 3b.
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Table 2. The description and calculation method of each absorption band parameter.

Name Description Calculation Methods

A1 The area of the left part of the first absorption band λ1
c − λ1

s −
∫ λ1

c
λ1

s
Rn(λ)dλ

A2 The area of the right part of the first absorption band λ1
e − λ1

c −
∫ λ1

e
λ1

c
Rn(λ)dλ

A3 The area of the left part of the second
absorption band λ2

c − λ2
s −

∫ λ2
c

λ2
s

Rn(λ)dλ

D2 The depth of the second absorption band Rn
(
λ2

c
)

A4 The area of the right part of the second
absorption band λ2

e − λ2
c −

∫ λ2
e

λ2
c

Rn(λ)dλ

A5 The area of the left part of the third absorption band λ3
c − λ3

s −
∫ λ3

c
λ3

s
Rn(λ)dλ

D3 The depth of the third absorption band Rn
(
λ3

c
)

A6 The area of the right part of the third
absorption band λ3

e − λ3
c −

∫ λ3
e

λ3
c

Rn(λ)dλ

Rn is the normalized spectral reflectance curve, and λ is the wavelength (350–1350 nm). λ1
s , λ1

c , and λ1
e are the

start position (the average of all data is 553 nm), the deepest absorption position (673 nm), and the end position
(788 nm) of the first absorption band; λ2

s , λ2
c , and λ2

e are the start position (874 nm), the deepest absorption position
(969 nm), and the end position (1072 nm) of the second absorption band; λ3

s , λ3
c , and λ3

e are the start position
(1072 nm), the deepest absorption position (1192 nm), and the end position (1257 nm) of the third absorption
band.

2.3.3. Statistical Analysis

Pearson’s correlation coefficient (R) [46,47], which is calculated with Equation (3),
was used to analyze the correlation between SAPD, LAI, and the spectral parameter. A
strong correlation between SPAD, LAI, and the spectral parameter could be observed if the
absolute value of R was high.

R =
∑m

i=1(xi − x)(yi − y)√
∑m

i=1(xi − x)2
√

∑m
i=1(yi − y)2

(3)

where xi is a spectral parameter, which includes the spectral reflectance, red-edge parame-
ters, and absorption features parameters. x is the average of all spectral parameters. yi is
the rice physiological indices, which include SPAD and LAI. y is the average value of the
rice physiological indices. m is the sample size.

For the Pearson’s correlation coefficient, we focused on statistical inference with the
aim to test the null hypothesis, through which the true correlation coefficient ρ is equal to
0, based on the value of the sample correlation coefficient R [46]. Then, we used the exact
distribution to calculate the p-value—namely, when the samples x and y follow the normal
distribution, the probability density function of the correlation coefficient R distribution
can be calculated by Equation (4), while the p-value can be estimated using Equation (5).
Generally, the smaller the p-value is, the more significant the correlation is. In this paper,
0.05 was used as the standard for significant correlation.

f (R) =
(
1− R2)(m/2−2)

B
(

1
2 , m

2 − 1
) (4)

P =

|R|∫
−|R|

f (R)dR (5)

where R is the correlation coefficient, m is the sample size, and B represents the Beta
distribution.
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Two scientific computing languages—R 4.1.0 and Python 3.7.1—were used for all the
above-mentioned modeling and data analysis. Furthermore, The LSD test was used to test
the significance of the difference between treatments. The LSD test is used in the context of
the analysis of variance when the F ratio suggests rejection of the null hypothesis H0, that
is, when the difference between the population means is significant [48].

3. Results
3.1. The SPAD between Different Experimental Treatments

The SPAD of different treatments is shown in Table 3. It shows that the SPAD of T1
and T2 were generally higher than that of CK. Compared with CK, SPAD of T1 increased
by 3.92%, 2.11%, and 1.20% at DAH 14d, DAH 21d, and DAH 28d (2016, p < 0.05, the
same below), respectively. The average SPAD of T1 and T2 were close (39.74 for T1 and
40.53 for T2), but compared with T1, SPAD of T2 increased by 2.31%, 2.18%, and 1.30% at
DAH 14d, DAH 21d, and DAH 28d, respectively, which could be due to the higher diffuse
radiation fraction in T2. In addition, the largest difference of SPAD between T2 and T1
appeared at DAH 14d and then decreased after heading. The distribution of SPAD in 2016
and 2017 was also analyzed, which showed that the distribution was consistent. The above
results suggest that the increase in the diffuse radiation fraction promotes the increase in
rice SPAD.

Table 3. The SPAD of rice under different treatments at different periods after heading in 2016–2017.

Years Days after
Heading Treatments SPAD Years Days after

Heading Treatments SPAD

2016

DAH 14d
CK 43.64± 1.47 a

2017

DAH 14d
CK 44.56± 0.61 a

T1 45.35± 1.02 b T1 46.10± 1.09 b
T2 46.40± 0.61 c T2 47.13± 0.09 c

DAH 21d
CK 40.79± 1.00 a

DAH 21d
CK 39.73± 1.05 a

T1 41.65± 0.88 b T1 40.81± 0.92 b
T2 42.56± 1.32 c T2 41.54± 1.62 c

DAH 28d
CK 31.83± 0.36 a

DAH 28d
CK 33.11± 0.36 a

T1 32.21± 0.13 b T1 33.71± 1.12 b
T2 32.63± 0.40 b T2 34.03± 1.13 b

DAH, days after heading. The data in the table are the mean ± standard deviation (n = 9). Different lower case
letters between treatments at each growth stage indicate significant differences at p < 0.05. The same definitions
are held in subsequent tables.

3.2. The LAI Values between Different Experimental Treatments

The LAI values of different treatments are shown in Table 4. Compared with CK, the
LAI of T1 and T2 increased significantly. For instance, the LAI of T1 increased by 4.58%,
3.30%, and 3.86% at DAH 14d, DAH 21d, and DAH 28d, respectively. Furthermore, the
average values of LAI for T1 and T2 in different periods were 5.03 and 5.42, respectively.
Compared with T1, the LAI of T2 increased by 7.62%, 7.39%, and 8.06% at DAH 14d, DAH
21d, and DAH 28d, respectively. It was also found that the distribution of LAI in 2017
was consistent with 2016. The behavior of the change in LAI under the shading treatment
indicates that an increase in diffuse radiation fraction led to an increase in rice LAI.
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Table 4. The LAI values of rice under different treatments at different periods after heading, in
2016–2017.

Years Days after
Heading Treatments LAI Years Days after

Heading Treatments LAI

2016

DAH 14d
CK 5.02± 0.11 a

2017

DAH 14d
CK 5.27± 0.09 a

T1 5.25± 0.10 b T1 5.61± 0.09 b
T2 5.65± 0.12 c T2 5.89± 0.08 b

DAH 21d
CK 4.85± 0.16 a

DAH 21d
CK 5.09± 0.07 a

T1 5.01± 0.08 a T1 5.31± 0.02 ab
T2 5.38± 0.06 b T2 5.54± 0.03 b

DAH 28d
CK 4.66± 0.06 a

DAH 28d
CK 4.93± 0.08 a

T1 4.84± 0.04 b T1 5.08± 0.03 b
T2 5.23± 0.08 c T2 5.21± 0.07 c

3.3. The Canopy Spectral Characteristics between Different Experimental Treatments

The canopy spectral curves of rice at different days after heading are shown in Figure 4.
There was low reflectance in the visible region (350–760 nm), and its maximum reflectance
appeared at near 550 nm (the green peak). In the near-infrared region (800–1350 nm), the
reflectance was high, and there were a plateau region (800–900 nm) and two absorption
bands at the spectral curve. It can be inferred from Figure 4 that the reflectances of T1
and T2 in the visible region were lower than that of CK, but the reflectances of T1 and
T2 in the near-infrared region were higher than that of CK. The reflectances of T1 and
T2 had a significant difference, and compared with T1, the reflectance of T2 decreased
in the visible region and increased in the near-infrared region, which could be because
of the higher diffuse radiation fraction in T2. Moreover, the largest difference of spectral
curves between T2 and T1 appeared at DAH 14d, when the green peak reflectance of T2
decreased by 16.12% (2016), 21.34% (2017), and the average reflectance of T2 at plateau
region (800–900 nm) increased by 10% (2016), 11% (2017). The analysis results suggest that
an increase in diffuse radiation fraction led to a decrease in reflectance in the visible region
and an increase in reflectance in the near-infrared region.
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3.4. The Characteristics of the Canopy Red-Edge Spectra

Figure 5 shows the first derivative for the red-edge reflectance spectra averaged over
each of the treatments. There was a clear platform region at 700 nm–715 nm and a double
peak, with existing multiple small peaks on the second peak, at 716 nm–740 nm. As the
days after heading increased, the phenomenon of double peak became more significant,
and the first derivative reflectance decreased gradually. The largest difference region of
the first derivative reflectance spectra between T1 and T2 was in the double peak region,
where the first derivative reflectance averaged over all the treatments of T2 was 16% higher
than that of T1 (2016).

More detailed information about the red edge can be gained from Table 5, which lists
the red-edge parameters (λ0, Dλ, α0, and σ) under different treatments. Compared with CK,
it shows that the λ0 of T1 and T2, with a value in the range of 685–690 nm, shifted toward
the long-wavelength region of the spectra. However, there was no significant difference of
λ0 between T1 and T2. The Dλ of T1 and T2 were generally higher than that of CK. The
Dλ value of T1 and T2 were in the range of 0.0054–0.01 nm−1, and compared with T1, Dλ
of T2 increased by 8.70%, 17.19%, and 7.41% at DAH 14d, DAH 21d, and DAH 28d (2016).
The α0 of T1 and T2, with a value in the range of 0.25–0.43, was also higher than that of
CK. Compared with T1, the α0 of T2 increased by 13.89%, 13.33%, and 12.00% at DAH 14d,
DAH 21d, and DAH 28d (2016). The σ has no obvious change among all treatments. The
distribution of red-edge parameters in 2016 and 2017 was also analyzed, which showed
that the distribution was consistent. The results show that an increase in diffuse radiation
fraction led to an increase in parameters Dλ and α0.
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Table 5. Red-edge parameters of rice canopy spectra between different treatments.

Years Days after
Heading Treatments λ0(nm) Dλ∗102(nm−1) α0 σ(nm)

2016

DAH 14 d
CK 688± 1.2 a 0.68± 0.07 a 0.31± 0.04 a 4.61± 0.07 a
T1 690± 0.8 b 0.92± 0.09 b 0.36± 0.03 b 4.65± 0.05 a
T2 690± 1.2 b 1.0± 0.08 c 0.41± 0.04 c 4.63± 0.05 a

DAH 21 d
CK 685± 1.9 a 0.55± 0.03 a 0.26± 0.02 a 4.70± 0.04 a
T1 687± 1.1 b 0.64± 0.06 b 0.30± 0.03 b 4.71± 0.06 a
T2 688± 1.1 c 0.75± 0.06 c 0.34± 0.03 c 4.69± 0.03 a

DAH 28 d
CK 684± 2.3 a 0.49± 0.07 a 0.24± 0.03 a 4.68± 0.05 a
T1 686± 0.9 b 0.54± 0.04 b 0.25± 0.02 a 4.73± 0.03 b
T2 686± 1.3 b 0.58± 0.05 b 0.28± 0.03 b 4.74± 0.03 b

2017

DAH 14 d
CK 684± 0.9 a 0.70± 0.09 a 0.36± 0.04 a 4.70± 0.03 a
T1 689± 1.5 b 0.85± 0.06 b 0.39± 0.04 b 4.74± 0.07 b
T2 688± 0.9 b 0.91± 0.03 c 0.43± 0.01 c 4.85± 0.03 c

DAH 21 d
CK 683± 1.7 a 0.66± 0.08 a 0.33± 0.04 a 4.74± 0.05 a
T1 686± 1.5 b 0.76± 0.01 b 0.36± 0.04 b 4.72± 0.07 a
T2 687± 0.5 b 0.81± 0.06 b 0.40± 0.03 c 4.68± 0.02 b

DAH 28 d
CK 682± 0.8 a 0.65± 0.10 a 0.30± 0.04 a 4.63± 0.06 a
T1 686± 1.4 b 0.76± 0.01 b 0.33± 0.06 ab 4.62± 0.04 a
T2 685± 1.3 c 0.71± 0.09 b 0.33± 0.05 b 4.77± 0.03 b

3.5. Analysis of Absorption Feature Parameters

The absorption features parameters between the different treatments are shown in
Table 6. Compared with CK, the parameters A1, A2, A4, D2, A5, and D3 of T1 and T2
decreased significantly. There were also remarkable differences in absorption features
between T1 and T2. The area of the first absorption feature of T2 was lower than that of T1.
For instance, compared with T1, the parameter A1 of T2 decreased by 6.34%, 9.21%, and
7.82%, while A2 of T2 decreased by 8.11%, 4.43%, and 4.40% at DAH 14d, DAH 21d, and
DAH 28d (2016), respectively. It was also found that the area of the right part and depth
of the second absorption feature of T2 were lower than those of T1. Compared with T1,
the parameter A4 of T2 decreased by 9.21%, 5.66%, and 18.11%, while D2 of T2 decreased
by 20.59%, 13.79%, and 8.33% at DAH 14d, DAH 21d, and DAH 28d (2016), respectively.
Furthermore, the area of the left part and depth of the third absorption feature of T2 were
lower than those of T1. More specifically, compared with T1, A5 of T2 decreased by 10.90%,
14.20%, and 4.58%, while D3 of T2 decreased by 15.38%, 18.18%, and 23.81% at DAH 14d,
DAH 21d, DAH 28d (2016), respectively. The distribution of absorption features in 2017
was also analyzed, which was consistent with that in 2016. All results suggest that an
increase in diffuse radiation fraction could change the absorption features of the rice canopy
remarkably.
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Table 6. Absorption feature parameters of rice canopy spectra curve under different treatments.

Years Days after
Heading Treatments A1 A2 A3 A4 D2 A5 A6 D3

2016

DAH 14d
CK 94.38± 3.19 a 52.78± 0.68 a 6.79± 0.80 a 10.88± 0.95 a 0.39± 0.04 a 13.85± 0.38 a 8.70± 0.30 a 0.30± 0.03 a
T1 91.51± 3.14 b 51.78± 1.77 b 6.58± 0.64 a 8.36± 0.65 b 0.34± 0.03 b 12.65± 0.46 b 8.77± 0.02 a 0.26± 0.03 b
T2 85.71± 2.89 c 47.58± 1.61 c 6.35± 0.59 a 7.59± 0.79 c 0.27± 0.04 c 11.27± 0.33 c 8.28± 0.03 a 0.22± 0.04 c

DAH 21d
CK 89.16± 1.13 a 49.87± 1.56 a 5.31± 0.81 a 8.37± 0.86 a 0.33± 0.03 a 13.07± 0.04 a 7.69± 0.10 a 0.25± 0.02 a
T1 84.45± 2.77 b 47.41± 1.09 b 5.44± 0.97 a 7.24± 0.50 b 0.29± 0.02 b 11.27± 0.63 b 7.65± 0.10 a 0.22± 0.01 b
T2 76.67± 1.92 c 45.31± 0.50 c 5.32± 0.83 a 6.83± 0.32 c 0.25± 0.01 c 9.67± 0.67 c 7.63± 0.43 a 0.18± 0.01 c

DAH 28d
CK 84.45± 1.77 a 44.54± 1.70 a 5.00± 0.60 a 7.07± 0.66 a 0.27± 0.03 a 9.81± 0.51 a 7.11± 0.09 a 0.22± 0.03 a
T1 79.19± 2.04 b 42.47± 1.81 b 4.40± 0.46 b 6.90± 0.26 a 0.24± 0.02 b 9.38± 0.25 a 7.04± 0.35 a 0.21± 0.02 b
T2 73.00± 2.73 c 40.60± 1.84 c 4.30± 0.68 b 5.65± 0.27 b 0.22± 0.04 c 8.95± 0.11 b 7.41± 0.38 a 0.16± 0.02 c

2017

DAH 14d
CK 90.34± 2.5 a 52.66± 1.79 a 6.91± 0.35 a 9.19± 0.56 a 0.41± 0.02 a 12.95± 0.74 a 8.26± 0.32 a 0.31± 0.01 a
T1 88.88± 1.23 b 53.37± 0.16 a 6.83± 0.53 a 8.98± 0.53 b 0.37± 0.03 b 12.07± 0.99 b 8.79± 0.19 a 0.28± 0.02 b
T2 77.49± 2.90 c 43.37± 3.38 b 6.75± 0.52 a 7.47± 0.62 c 0.33± 0.01 c 10.62± 0.64 c 8.68± 0.20 a 0.25± 0.01 c

DAH 21d
CK 83.43± 2.65 a 46.47± 3.72 a 5.53± 0.55 a 7.17± 0.82 a 0.37± 0.01 a 12.10± 0.11 a 7.84± 0.47 a 0.30± 0.00 a
T1 78.06± 1.14 b 41.75± 2.90 b 5.34± 0.33 a 6.96± 0.62 b 0.34± 0.02 b 11.14± 0.20 b 7.44± 0.63 a 0.26± 0.01 b
T2 72.58± 2.06 c 40.61± 2.72 b 5.21± 0.61 a 6.89± 0.56 b 0.32± 0.00 c 10.38± 0.53 c 7.16± 0.82 a 0.24± 0.01 c

DAH 28d
CK 76.04± 1.76 a 44.47± 2.74 a 5.92± 0.78 a 6.98± 0.17 a 0.32± 0.01 a 9.13± 0.67 a 7.44± 0.50 a 0.25± 0.01 a
T1 75.00± 0.61 b 42.21± 2.28 b 5.44± 0.62 a 6.71± 0.19 a 0.31± 0.00 b 9.26± 0.31 a 7.07± 0.30 a 0.25± 0.00 b
T2 69.57± 2.17 c 39.46± 2.15 b 5.12± 0.35 a 6.37± 0.58 a 0.29± 0.01 c 9.46± 0.27 a 7.06± 0.53 a 0.22± 0.00 c
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4. Discussion

Shao and Shin et al. indicate that shading treatment will increase the SPAD and LAI
values of rice [49,50], which is consistent with the experimental results (CK compared with
T1 and T2) presented in this paper. In summary, the shading treatment caused a decline in
rice canopy spectral reflectance in the visible region and an increase in the near-infrared
region. It also increased red-edge parameter values of λ0, Dλ, and α0. However, the
treatment reduced the values of A1, A2, A4, D2, A5, and D3.

For the comparison of T1 and T2, when the diffuse radiation fraction improved,
the SPAD and LAI values of rice increased significantly, and the rice canopy spectral
reflectance also decreased in the visible region and increased in the near-infrared region.
The hyperspectral reflectance of rice canopy in different wavelengths is affected by rice
chlorophyll content, LAI, cell structure, leaf structure, etc. [51]. To determine the reasons
for the changes in the rice canopy spectra under the increasing diffuse radiation fraction,
the correlation and p-value between the rice SPAD, LAI, and the spectral reflectance in
DAH 14d, DAH 21d, and DAH 28d were calculated, as shown in Figure 6.
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Figure 6a,c show that the strongest negative correlation appeared at 355 nm (R =−0.79)
in DAH 14d and 405 nm (−0.40) in DAH 28d. However, the correlation in DAH 21d did
not pass the test of significance (Figure 6b). The rice SPAD was negatively correlated with
the reflectance of the blue-violet light band. In other words, under the increasing diffuse
radiation fraction, the increasing SPAD resulted in a stronger absorption of visible light. Li
revealed that the shading treatment can lead to an increase in chlorophyll b [52], which is
an important factor affecting the rice canopy spectra in the visible region [53,54]. This is
consistent with the results presented in this paper.

Figure 6d–f show that the strongest positive correlation appeared at 814 nm (R = 0.62)
in DAH 14d, 806 nm (0.66) in DAH 21d, and 934 nm (0.35) in DAH 28d. There was a
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strong positive correlation between the LAI value of rice and the spectral reflectivity in
the near-infrared region. Therefore, under the increasing diffuse radiation fraction, the
increasing LAI in rice led to increasing reflectivity in the near-infrared region [55,56]. In
addition, the canopy spectra of T1 and T2 had the largest difference between 800 nm and
900 nm, which is affected by leaf and canopy structure [57]; that is, an increase in diffuse
radiation fraction may cause changes in rice leaf and canopy structure [2].

The red-edge parameters of T1 and T2 had significant changes as the SPAD value
of rice leaves changed [58,59]. The values of Dλ and area of T2 were greater than those
of T1, with no significant difference in λ0. However, Evri [60] pointed out that, without
shading treatment, the red-edge parameter λ0 has a strong correlation with changes in rice
SPAD, and the SPAD monitoring model based on λ0 has high accuracy, which indicates
that when the diffuse radiation fraction increased, the model established with the red-edge
parameters Dλ and area could have higher accuracy.

For the absorption features parameters, there was also a significant difference between
T1 and T2. Under the increasing fraction of diffuse radiation, both parameters A1 and A2,
which are the areas of the left and right of the first absorption band (the average wavelength
was in the range of 553–788 nm.), decreased. The change in LAI, which has an impact
on the shape of the first absorption band, is the main reason for the decrease in A1 and
A2 [61]. The parameters A3, A4, and D2 are the left area, right area, and the depth of the
second absorption band. Additionally, the parameters A5, A6, and D3 are the left area,
right area, and the depth of the third absorption band. The results from Table 6 show
that the parameter values of A4, A5, D2, and D3 of T2 experienced a significant decline
when compared with T1. In addition, the normalized widths of the second and third
absorption bands (W1, W2) calculated with Equations (6) and (7), shown in Table 7, reveal
that there was a significant increase in parameter values of W1 and W2 of T2. For example,
in comparison with T1, W1 of T2 increased by 17.50% and 11.16% at DAH 14d and DAH
21d (2016), respectively, and W2 increased by 7.87%, 11.76%, and 30.77% at DAH 14d,
DAH 21d, and DAH 28d, respectively. In general, the depth and area of the second and
third absorption band of T2 significantly reduced, but the width increased. The difference
in absorption band shape between T1 and T2 is shown in Figure 7. In fact, the second
and third absorption bands (the average wavelength was in the range of 874–1257 nm)
are mainly affected by water vapor absorption [62–64]. Therefore, an increasing diffuse
radiation fraction could also affect the water vapor absorption process of rice.

W1 =
(A3 + A4)

D2
(6)

W2 =
(A5 + A6)

D3
(7)

Table 7. Normalized widths of the second and third absorption bands in T1 and T2.

Parameters Treatments
2016 2017

DAH 14d DAH 21d DAH 28d DAH 14d DAH 21d DAH 28d

W1
T1 43.94 43.72 47.08 42.73 36.18 39.19
T2 51.63 48.60 45.23 43.09 37.81 39.62

W2
T1 82.38 86.00 78.19 74.50 71.46 65.32
T2 88.86 96.11 102.25 77.20 73.08 75.09
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Figure 7. Schematic diagram of the morphological changes of the second and third absorption bands
on T1 and T2.

It is shown that an increase in diffuse radiation fraction had a positive effect on rice growth,
including an increase in LAI, population photosynthesis capacity, and yield [13,17–19,43],
which is also the reason for the changes in canopy spectra and red-edge parameters in this
experiment.

5. Conclusions

In this paper, we analyzed the changes of SPAD, LAI, and canopy spectral characteris-
tics of rice under increasing diffuse radiation fraction. The results show that the increase
in diffuse radiation fraction led to the increase in SPAD and LAI of rice. Additionally,
the reflectivity of canopy spectra in the visible light region decreased, while that in the
near-infrared region increased. The absorption features, calculated with the baseline nor-
malization method, changed remarkably as the diffuse radiation fraction increased. The
correlation between spectral parameters and SPAD and LAI of rice was analyzed, and it
seems more accurate monitoring models of SPAD and LAI values in rice under changes in
the diffuse radiation fraction can be established based on the results of this paper. Further
analysis of the different morphology of the canopy spectra between T1 and T2 shows that
the increase in the diffuse radiation fraction will also affect the structure of rice leaf and
canopy and the process of water vapor absorption. Building on this paper, in the future,
the spectral parameters, which were highly correlated with SPAD and LAI in this paper,
will be used to establish rice monitoring models with high accuracy and efficiency. Further,
these models can be used in hyperspectral images to analyze the impact of increasing the
diffuse radiation fraction on rice in large geographic regions. In addition, more rice field
experiments should be designed to analyze the influence of increasing the diffuse radiation
fraction on the water vapor absorption process of rice.
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