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Abstract: Landscape change is a dynamic feature of landscape structure and function over time
which is usually affected by natural and human factors. The evolution of rocky desertification is a
typical landscape change that directly affects ecological environment governance and sustainable
development. Guizhou is one of the most typical subtropical karst landform areas in the world.
Its special karst rocky desertification phenomenon is an important factor affecting the ecological
environment and limiting sustainable development. In this paper, remote sensing imagery and
machine learning methods are utilized to model and analyze the spatiotemporal variation of rocky
desertification in Guizhou. Based on an improved CA-Markov model, rocky desertification scenarios
in the next 30 years are predicted, providing data support for exploration of the evolution rule of
rocky desertification in subtropical karst areas and for effective management. The specific results
are as follows: (1) Based on the dynamic degree, transfer matrix, evolution intensity, and speed, the
temporal and spatial evolution of rocky desertification in Guizhou from 2001 to 2020 was analyzed.
It was found that the proportion of no rocky desertification (NRD) areas increased from 48.86% to
63.53% over this period. Potential rocky desertification (PRD), light rocky desertification (LRD),
middle rocky desertification (MRD), and severe rocky desertification (SRD) continued to improve,
with the improvement showing an accelerating trend after 2010. (2) An improved CA-Markov model
was used to predict the future rocky desertification scenario; compared to the traditional CA-Markov
model, the Lee–Sallee index increased from 0.681 to 0.723, and figure of merit (FOM) increased from
0.459 to 0.530. The conclusions of this paper are as follows: (1) From 2001 to 2020, the evolution speed
of PRD was the fastest, while that of SRD was the slowest. Rocky desertification control should not
only focus on areas with serious rocky desertification, but also prevent transformation from NRD to
PRD. (2) Rocky desertification will continue to improve over the next 30 years. Possible deterioration
areas are concentrated in high-altitude areas, such as the south of Bijie and the east of Liupanshui.

Keywords: landscape change; spatiotemporal evolution of rocky desertification; improved CA-Markov
model; future scenario prediction

1. Introduction

As an important part of global change, the evolution of rocky desertification has a
significant impact on the quality of regional ecological environments. Rocky desertification
landscape change is a dynamic feature of landscape structure and function over time which
is usually affected by terrain, climate, and human factors. Karst rocky desertification
is a surface landscape change similar to desertification, characterized by such features
as vegetation degradation, soil erosion, and exposed bedrock, against the background
of a fragile karst geology and tropical–subtropical humid or semihumid climate [1–3].
It comprises a dynamic land degradation process. Guizhou Province in China is one
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of the most typical subtropical karst landform areas in the world [4,5]. Its special karst
rocky desertification is an important factor affecting the local ecological environment and
sustainable development [6–8]. The monitoring and control of rocky desertification and its
impact on the ecological environment of Guizhou are the focus of current research [9–13]
and have important value and significance not only in the scientific and systematic research
of rocky desertification, but also for ecological protection, ecological management and
disaster prevention, and rocky desertification environmental control [14–16]. Remote
sensing technology has the characteristics of fast and efficient data information acquisition,
wide monitoring range, and low cost. In recent years, it has gradually become the main
means of rocky desertification information extraction [17–21].

The landscape pattern of rocky desertification in Guizhou has changed significantly
in the past 30 years. In the 1990s, excessive deforestation led to the deterioration of
rocky desertification. After 2000, especially in the recent 10 years, with the control of
the ecological environment, rocky desertification has been alleviated to a certain extent.
Quantitative prediction of rocky desertification landscape patterns in the future is helpful
to better ecological environment management. The commonly used landscape pattern
prediction models include regression analysis model, Conversion of Land Use and Its
Effects (CLUE) model, Predicting Urbanisation with Multi-Agents (PUMA) [22], Dinamica
EGO (environment for geoprocessing objects) model [23], LUCAS model [24], sleuth genetic
algorithm model [25], spatially explicit regional growth model (SERGoM) [26], and Markov
model. RS-based prediction models have become a research hotspot in recent years; in
particular, cellular automata (CA) combined with Markov model is one of the basic models
widely used in landscape pattern prediction [27].

Through remote sensing technology monitoring, scholars have analyzed the spatial
distribution status, distribution law, and evolution trend of rocky desertification at different
spatial scales, providing a scientific basis for formulating forward-looking and targeted
ecological environment protection and restoration planning [28–31]. Xiong et al. [32]
divided the degree of rocky desertification into six levels. Based on Landsat image data
and human–computer interactive interpretation, they established a spatial database of
rocky desertification in Guizhou. Bai et al. [33] discussed and evaluated the temporal
and spatial evolution process of rocky desertification in Guizhou using multistage rocky
desertification data. Zhuo et al. [34] used TM images to interpret the rocky desertification
information in Bijie, Guizhou, discussed the temporal and spatial variation characteristics
of rocky desertification, and focused on the transfer between different degrees of rocky
desertification. Liu et al. [35] used Landsat images to realize remote sensing monitoring of
rocky desertification and predict the distribution trend of rocky desertification in Guangxi.
Zhao et al. [36] established a vegetation coverage calculation model in Guangxi by using
the pixel dichotomy model method and studied and analyzed the spatiotemporal evolution
process and characteristics of rocky desertification. Ma et al. [37] studied the temporal
and spatial evolution law of rocky desertification in the Liuzhi special area of Guizhou
using a Markov model. Zhang et al. [38] used a Markov model to predict the evolution of
landscape patterns in the central urban area of Liupanshui in 2020. An et al. [39] applied a
Markov process to simulate the dynamic evolution process and future evolution trend of
rocky desertification sensitivity. Cao et al. [40] took the karst valley area in southern China
as the research object. Based on an improved soil erosion algorithm for the karst area, they
quantitatively analyzed the temporal and spatial evolution characteristics of soil erosion in
the valley area and predicted the future scenario of soil erosion using a CA-Markov model.
Chen et al. [41] used a land-use transfer matrix, land-use amplitude change model, and
land-use speed change model, supplemented by CA-Markov future land-use prediction
model, in order to determine the temporal and spatial evolution law of land-use in the
Weiku oasis arid area, as well as to predict future land-use types.

Considering the abovementioned studies, there exist two major problems: (1) The
existing studies are more limited to small areas—that is, at the city and county level—and
fail to reflect the spatial pattern of rocky desertification in Guizhou Province [40,42,43].
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(2) Most of the research periods selected by the existing research institutes have focused
on the 1990s through to the beginning of the 21st century, and there are no research
results for the past five years, and especially less analysis and simulation research focused
on the evolution trend in future scenarios, which makes it difficult to provide effective
data support for present and future rocky desertification control. Using the 2001–2020
rocky desertification grade mapping and suitability factors, this study utilizes quantitative
statistics and analysis of the temporal and spatial changes of rocky desertification from
a dynamic perspective, as well as rocky desertification change intensity and speed, thus
revealing the historical evolution law of rocky desertification in Guizhou and improving the
CA-Markov transfer matrix to predict the rocky desertification scenario in the next 30 years.
Furthermore, we set up three different governance scenarios to analyze the temporal and
spatial evolution pattern of rocky desertification, in order to explore the evolution trend of
rocky desertification in the future and to provide data support for the accurate management
of rocky desertification.

2. Data and Materials
2.1. Research Area

Guizhou Province in China is one of the most typical areas featuring subtropical
karst landform development. It is located in the hinterland of Southwest China (latitude
24◦37′–29◦13′; longitude 103◦36′–109◦35′). It spans about 595 km from east to west, 509 km
from north to south, and has a total area of 176,200 km2 [44]. The research area was shown
as Figure 1.
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Guizhou Province is an area where carbonate is widely distributed and karst is strongly
developed. The landform in Guizhou is divided into four basic types: plateau, mountain,
hill, and basin. It is mostly mountain, followed by hills, together comprising 92.5% of the
province [45]. The soil types in the province are complex and diverse, mainly including red
soil, yellow soil, and yellow–brown soil, of which yellow soil has the largest area and is
mainly distributed in the central region, representing the main soil type in the province. The
annual average temperature in Guizhou is −1 to 25 ◦C, the annual sunshine is 900–2600 h,
the annual precipitation is 500–2500 mm, and the perennial relative humidity is more than
70% [7,46]. Affected by climate, soil, and mountainous terrain, the vegetation types in the
province are diverse. The central and northern part is dominated by middle subtropical
evergreen broad-leaved forest, the southern part is subtropical evergreen broad-leaved
forest with tropical composition, the middle eastern part is humid forest, and the western
part is semihumid forest. Cold temperate subalpine coniferous forest is distributed in
high-altitude areas, and hidden karst evergreen deciduous broad-leaved mixed forest
and secondary deciduous broad-leaved forest are distributed in limestone and dolomite
mountains [47].

2.2. Data

Using the MODIS data set and National Forest Continuous Inventory data (NFCI) on
the Google Earth Engine (GEE) platform, and referring to previous research methods, we
constructed rocky desertification maps for different periods [48–50]. In the National Forest
Continuous Inventory data (NFCI) of Guizhou, rocky desertification is divided into five
categories, coded as 00, 10, 21, 22, and 23–24, representing NRD, PRD, LRD, MRD, and
SRD, respectively [51]. We obtained rocky desertification level maps for Guizhou Province
in 2001, 2005, 2010, 2015, and 2020 from Zenodo (http://doi.org/10.5281/zenodo.5102744,
accessed on 30 November 2021). The relevant data are shown in Figure 2.
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The state of rocky desertification in Guizhou presents a distribution pattern of “heavy
in the west, light in the east, heavy in the south, and light in the north”. The areas with
severe rocky desertification are mainly distributed in Bijie in the northwest, Liupanshui in
the west, and southwest Guizhou and Anshun in the southwest, while the areas without
rocky desertification are mainly distributed in southeast Guizhou, Zunyi, and other places.

DEM data were obtained from Geospatial Cloud (http://www.gscloud.cn/, accessed
on 13 May 2021). The resolution of the DEM is 30 m. In order to be consistent with the rocky
desertification mapping result, we resampled the DEM to 250 m. The suitability factors
used included temperature, humidity, light, precipitation, elevation, slope, gross domestic
product (GDP), lighting, lithology, and soil, which were obtained from the resource and
environmental science data center of the Chinese Academy of Sciences (https://www.
resdc.cn/, accessed on 13 May 2021) and the Karst Science Research Data Center (https:
//www.resdc.cn/, accessed on 13 May 2021). The suitability factor set is detailed in Figure 3.
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soil; (d) urban area; (e) rock; (f) river bars and islands; (g) leaching soil; (h) lake or reservoir; (i) lime
soil; (j) iron bauxite.

3. Technical Approach
3.1. Processing Workflow

First, the rocky desertification level (NRD, PRD, LRD, MRD, SRD) map was obtained
from the previous research [51], where the multiple line model (ML), random forest model
(RF), and support vector machine model (SVM) were compared to the constructed rocky
desertification classification model. The overall accuracies (OAs) of these models were
73.8%, 78.2%, and 80.6%, respectively. The SVM model had the best performance. After
combining vegetation types and vegetation seasonal phases, the SVM model accuracy
reached 91.1%. SVM model was suitable for remote sensing data classification [52]. Second,
we analyzed the temporal and spatial evolution of rock desertification from three aspects:
dynamic degree, evolution intensity, and evolution velocity. Third, the suitability factor set
was designed for future scenario prediction of rocky desertification. We predicted the rocky
desertification scenarios in the next 30 years based on an improved CA-Markov model
and set three different rocky desertification control scenarios to analyze the future rocky
desertification evolution results. The results provide detailed data support for the rocky
desertification ecological environment restoration. The processing workflow is shown in
Figure 4.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 29 
 

 

 
Figure 4. The processing workflow. 

3.2. Transition Matrix 
The evolution direction and scale of rocky desertification are typically complicated 

within a certain period and often vary from place to place. Therefore, the evolution tran-
sition matrix was constructed to clarify the general direction and trend of evolution 
[13,53], shown as Equation (1): 

𝑠, = 𝑠ଵ,ଵ 𝑠ଵ,ଶ ⋯ 𝑠ଵ,𝑠ଶ,ଵ 𝑠ଶ,ଶ ⋯ 𝑠ଶ,⋯ ⋯ ⋯𝑠,ଵ 𝑠,ଵ ⋯ 𝑠,, (1)

where S is the area (unit, 103 km2); m and n are the start and end time of a period, respec-
tively; and  𝑠, is the area of rock desertification grade i transformed into rock desertifi-
cation grade k during this period (unit, 103 km2). 

The transfer speed is calculated as shown in Equation (2):  𝑝 = 𝑠ଶ − 𝑠ଵ𝑇 , (2)

where pi is the evolution speed of rocky desertification (unit, 103 km2/a), S1 is the area at 
the start of a period, S2 is the area at the end, and T is the length of the period. 

3.3. Dynamic Degree 
The dynamic degree of each level of rocky desertification evolution can be quantita-

tively interpreted from the change rate of rocky desertification. This not only allows for 
comparison of the difference of rocky desertification levels among regions, but also plays 
an important role in the simulation of future rocky desertification level change. The dy-
namic degree provides a description of the change rate of rocky desertification. It refers 
to the quantitative change of a certain level of rocky desertification within a certain period 
[54,55]. The calculation method is as shown: 

Figure 4. The processing workflow.



Remote Sens. 2022, 14, 292 7 of 27

3.2. Transition Matrix

The evolution direction and scale of rocky desertification are typically complicated
within a certain period and often vary from place to place. Therefore, the evolution transi-
tion matrix was constructed to clarify the general direction and trend of evolution [13,53],
shown as Equation (1):

sm,n =


s1,1 s1,2 · · · s1,k
s2,1 s2,2 · · · s2,k
· · · · · · · · ·
sk,1 sk,1 · · · sk,k

, (1)

where S is the area (unit, 103 km2); m and n are the start and end time of a period, respec-
tively; and si,j is the area of rock desertification grade i transformed into rock desertification
grade k during this period (unit, 103 km2).

The transfer speed is calculated as shown in Equation (2):

pi =
s2 − s1

T
, (2)

where pi is the evolution speed of rocky desertification (unit, 103 km2/a), S1 is the area at
the start of a period, S2 is the area at the end, and T is the length of the period.

3.3. Dynamic Degree

The dynamic degree of each level of rocky desertification evolution can be quantita-
tively interpreted from the change rate of rocky desertification. This not only allows for
comparison of the difference of rocky desertification levels among regions, but also plays an
important role in the simulation of future rocky desertification level change. The dynamic
degree provides a description of the change rate of rocky desertification. It refers to the
quantitative change of a certain level of rocky desertification within a certain period [54,55].
The calculation method is as shown:

K =
(Ub −Ua)

Ua
× 1

T
× 100% (3)

where K represents the dynamic degree of a certain level of rocky desertification change
in the time domain, Ua represents the area of a certain level of rocky desertification in the
beginning year a, Ub represents that in the end year, and T represents the time span.

3.4. CA-Markov Model
3.4.1. Traditional CA-Markov Model

The Markov model is a method to predict the probability of an event occurring. It
allows for the forecasting of what will happen in the future, using a Markov chain based
on the past and known conditions of the event. This method has been widely used in land
cover-change modeling. However, when using the traditional Markov model, it is difficult
to predict spatial pattern changes in time. The cellular automata (CA) model has strong
spatial operation ability and can effectively simulate the spatial changes of the system. The
CA-Markov model combines the ability of the CA model to simulate the spatial variation
of a complex system with the long-term prediction ability of the Markov model. The model
is applied to the future scenario prediction of rocky desertification, which can guarantee
the prediction accuracy of rocky desertification level evolution and effectively simulate the
spatial change in the rocky desertification pattern. Therefore, this model is scientific and
practical [56–58].

The CA-Markov model can simulate each grid as a cell in the spatial distribution
pattern of rocky desertification, where the rocky desertification level is the cell state. A
Markov process is used to match the possible states of rocky desertification, where the
area or proportion of phase transformation between rocky desertification types is the state
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transition probability. Equation (4) can be used to predict the change state of the rocky
desertification structure:

S(T) = Sm,n ∗ S(T0), (4)

where S(T) and S(T0) are the rocky desertification structure states at times T and T0,
respectively, and Sm,n is the Markov transition matrix.

3.4.2. Factor Weighting Based on Analytical Hierarchy Process (AHP)

AHP, a useful multicriteria decision-making method, was used to assign weights to
each established factor for reasonable assessment [59]. We use the following steps shown
in Figure 5 to calculate the weights of the factors based on the AHP method. The Saaty
scale is shown in Table 1 [60]. The normalized weights of all factors were examined for the
consistency ratio (CR) [61].
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Table 1. Saaty’s scale of preference between two factors in AHP.

Scale Degree of Preference Description

1 Equally When two parameters contribute equally
2 Intermediate Preference between 1 and 3
3 Moderately The judgment slightly to moderately favors one parameter
4 Intermediate Preference between 3 and 5
5 Strongly The judgment strongly or essentially favors one parameter
6 Intermediate Preference between 5 and 7
7 Very strongly Very strong preference or importance
8 Intermediate Preference between 7 and 9
9 Extremely Quite preferred or quite important
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3.4.3. Improved CA-Markov Model

Since different change accelerations are different, we set up an acceleration to better
express and simulate the rocky desertification level matrix. Therefore, we optimized the
Markov transition matrix based on acceleration. The formula is as follows:

trans f ert−1∼t = a× trans f ert−2∼t−1 + b

a =


0 1− a1 1− a1 1− a1 1− a1

1 + a2 0 1− a2 1− a2 1− a2
1 + a3 1 + a3 0 1− a3 1− a3
1 + a4 1 + a4 1 + a4 0 1− a4
1 + a5 1 + a5 1 + a5 1 + a5 0

,

b =


b1 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5



(5)

where a is the acceleration matrix and the matrix b guarantees that the sum of each row of
the Markov transition matrix is 1. The flowchart of the improved CA-Markov prediction
model for rocky desertification is shown in Figure 6.
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3.5. Lee–Sallee Index

In this paper, the modified Lee–Sallee shape index is used to judge the accuracy [43].
The expression is given in Equation (6):

L =
A0 ∩A1

A0 ∪A1
(6)

where L is the revised Sallee index (with value ranging from 0 to 1), A0 is the real distri-
bution map of rocky desertification in a certain year, and A1 is the rocky desertification
distribution map predicted by the CA-Markov model in this year.

3.6. Figure of Merit (FOM) Index

We also perform the comparison quantitatively by computing the components of
the FOM. The FOM is a ratio, where the numerator is the intersection of simulated and
reference change, while the denominator is the union of simulated and reference change [62].
Equation (7) shows how the FOM is derived from its four components: Misses, Hits, Wrong
Hits, and False Alarms [63].

FOM =
(Hits)100%

Misses + Hits + Wrong Hits + False Alarms
(7)

where Misses = error owing to observed change predicted as persistence; Hits = correct,
observed change predicted as change with the same; Wrong Hits = error owing to observed
change predicted as change but with a wrong gaining category; False Alarms = error due
to observed persistence predicted as change.

4. Results and Analysis
4.1. Spatiotemporal Distribution of Rocky Desertification Evolution
4.1.1. Dynamic Degree of Rocky Desertification Evolution

We calculated the annual dynamic degree of rocky desertification in four periods, as
detailed in Table 2. A positive number indicates an increase in the rocky desertification
area, while a negative value indicates its decrease. A positive value of the dynamic degree
indicates growth in the rate, while a negative value indicates a decrease in the rate.

Table 2. Evolution area and annual average dynamic degree of rocky desertification (NRD: no rocky
desertification, PRD: potential rocky desertification, LRD: light rocky desertification, MRD: medium
rocky desertification, SRD: severe rocky desertification).

Level

2001–2005 2005–2010 2010–2015 2015–2020

Evolution
Area

(103 km2)

Annual
Average
Dynamic

Degree (%)

Evolution
Area

(103 km2)

Annual
Average
Dynamic

Degree (%)

Evolution
Area

(103 km2)

Annual
Average
Dynamic

Degree (%)

Evolution
Area

(103 km2)

Annual
Average
Dynamic

Degree (%)

NRD 5.346 1.553 3.011 0.659 6.202 1.314 11.287 2.243
PRD −2.973 −1.602 2.395 1.103 −0.518 −0.226 −4.976 −2.198
LRD −2.182 −2.202 −1.447 −1.281 −2.707 −2.561 −3.473 −3.768
MRD −0.253 −0.466 −2.742 −4.120 −1.852 −3.504 −2.009 −4.609
SRD 0.062 0.288 −1.217 −4.471 −1.124 −5.318 −0.828 −5.337

The change in NRD area presented a continuous upward trend. The growth of this
type of area increased from 5.346 × 103 km2 in 2001–2005 to 11.287 × 103 km2 in 2015–2020.
The average annual dynamic degree increased from 1.553% to 2.243%. Meanwhile, PRD,
LRD, MRD, and SRD all showed decreasing trends. The SRD increased in 2001–2005,
then decreased from 1.127 × 103 km2 in 2005–2010 to 0.828 × 103 km2 in 2015–2020.
The average annual dynamic degree decreased from 0.288% to −5.337%. Therefore, the
NRD area increased year by year, while the area of the other rocky desertification levels
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continued to decline, indicating that rocky desertification has been well-controlled and
governed. The average annual dynamic degree was small during the first period and then
gradually increased during the next three periods. This demonstrates that the speed of
rocky desertification control has been accelerating annually.

4.1.2. Spatiotemporal Rocky Desertification Evolution Intensity

We set up five rocky desertification grades. The evolution intensity of rocky desertifica-
tion was the span distance of rocky desertification level transformation, with value ranging
from −4 to 4. The spatial and temporal distribution of rocky desertification evolution
intensity is shown in Figure 5, where positive values indicate that the rocky desertification
situation in the area has been ameliorated and the numerical value indicates the amelio-
ration strength. Meanwhile, a negative value indicates the deteriorating state of rocky
desertification, where the numerical value indicates the deterioration strength. Overall,
the transformation of rocky desertification mainly occurred between adjacent levels; that
is, the evolution intensity of rocky desertification was generally 1 or −1. In particular,
there was a large proportion of change between NRD and PRD. The larger the separation
level, the smaller the probability of rocky desertification transformation. This is because
the development of rocky desertification is a gradual process—in the natural state, it is
impossible for the evolution of rocky desertification with great intensity to occur over
a short period of time. Of course, there were still some cross-level rocky desertification
evolution areas, which need to be paid special attention to in rocky desertification control.

As shown in Figure 7, the amelioration area of rock desertification was larger than that
of rock desertification deterioration. This demonstrates that the implementation of slope
and ladder, water conservancy project construction, afforestation, and other measures in
the rocky desertification control project has been effective and the rocky desertification
control effect is good. The amelioration area of rocky desertification was not only from
PRD to NRD, but also from SRD to MRD, MRD to LRD, and LRD to PRD.

The area distribution of rocky desertification evolution intensity is provided in Figure 8.
The upper triangular part of the matrix represents the amelioration of rocky desertification,
while the lower triangular part indicates deterioration. The diagonal line is zero, indicating
that the rocky desertification state remained unchanged. It can be seen, from the figure, that
the total amelioration area of rocky desertification was 63.24 × 103 km2 from 2001 to 2020,
the deterioration area was 17.97 × 103 km2, and 94.95 × 103 km2 remained unchanged.
The area with positive evolution intensity of rocky desertification was much higher than
that with negative evolution intensity. The areas with rocky desertification evolution
intensity of 1, 2, 3, and 4 were 45.726 × 103 km2, 14.164 × 103 km2, 2.679 × 103 km2, and
0.464 × 103 km2, respectively, and the areas with rocky desertification evolution intensity
of −1, −2, −3, and −4 were 10.970 × 103 km2, 2.987 × 103 km2, 1.796 × 103 km2, and
0.732 × 103 km2, respectively.

Figure 9 shows the detailed evolution intensity of rocky desertification at each level.
According to the analysis in Figures 8 and 9, the evolution regions with high rocky deserti-
fication level were mainly distributed in southwest Guizhou, such as Bijie and Liupanshui.
The evolution regions with relatively light rocky desertification were mainly distributed in
southeast Guizhou and northwest Zunyi. From 2001 to 2020, the rocky desertification areas
changing from SRD to MRD, LRD, PRD, and NRD were 1.556 × 103 km2, 1.448 × 103 km2,
0.882 × 103 km2, and 0.464 × 103 km2, respectively, accounting for 0.883%, 0.822%, 0.501%,
and 0.263% of the total, respectively. The areas changing from MRD to LRD, PRD, and
NRD were 4.304× 103 km2, 5.200× 103 km2, and 1.797 × 103 km2, respectively, accounting
for 2.443%, 2.952%, and 1.020%, respectively. The areas changing from LRD to PRD and
NRD were 11.703 × 103 km2 and 7.516 × 103 km2, accounting for 4.266% and 6.644%,
respectively. The area changing from PRD to NRD was 28.163 × 103 km2, which accounted
for 15.987%.
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4.1.3. Spatiotemporal Rocky Desertification Evolution Speed

Dividing the area of rocky desertification evolution by the year span, we obtained
the speed of rocky desertification evolution, as shown in Figure 10. Rocky desertification
evolution areas rarely appeared in Qiandongnan, which is dominated by nonlithologic
areas. In Qiandongnan, the water and temperature conditions are good, the vegetation is
flourishing, and rock desertification is rare. The regions with rapid rocky desertification
evolution were mainly distributed in areas with medium lithology, but not in Bijie and
Liupanshui, where the lithology of rocky desertification is serious. This means that areas
with low rocky desertification level are more likely to undergo evolution. In regions with
high levels of rocky desertification, it is relatively difficult to control the desertification
and its evolution is slower. From 2001 to 2005, the rapid evolution regions were mainly
distributed in Guiyang and northern Zunyi. From 2005 to 2010, the rapid evolution regions
were mainly distributed in Guiyang and Anshun. From 2010 to 2015, Zunyi and Tongren
were the main regions where rocky desertification evolved rapidly. From 2015 to 2020, the
rapid evolution regions of rocky desertification were widespread, radiating from the capital
city Guiyang to the surrounding areas, mainly distributed along the Wujiang and Liujiang
rivers. This means that the change of rocky desertification was affected by both natural
conditions and human disturbances.

As shown in Figure 11, the evolution speeds of PRD, LRD, MRD, and SRD were all
positive. This means that the four levels of rocky desertification all showed a trend of
alleviation. The evolution speeds of NRD and PRD were relatively high. Considering
Table 1, which shows the area and proportion of rocky desertification at each level, due to
the obvious control effect of LRD, MRD, and SRD, their proportions decreased annually,
with most of them eventually evolving to PRD. The evolution speeds of NRD and PRD
were higher than those of other rocky desertification levels. The evolution speeds of NRD
were 2.591 × 103 km2/a, 3.155 × 103 km2/a, 2.263 × 103 km2/a, and 1.544 × 103 km2/a
in the four periods, respectively. The evolution speeds of PRD were 1.551 × 103 km2/a,
1.847 × 103 km2/a, 2.193 × 103 km2/a, and 2.884 × 103 km2/a in the four periods, re-
spectively. This indicates that the evolution between NRD and PRD was frequent, widely
distributed, and that they can easily alternate. The tendency of rock desertification can
occur if little attention is paid to vegetation and soil protection in NRD areas. If the PRD
regions are governed strongly, they can easily be transformed into NRD. Therefore, not
only should the control of MRD and SRD be strengthened, but attention should also be
paid to prevention and control in PRD regions. The slow evolution of rocky desertification
occurred mostly in the regions where the evolution intensity was larger than two levels.
This means that the evolution of rocky desertification has hierarchical inertia, and the
higher the level of rocky desertification, the slower its evolution and the more difficult
its governance.
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The net profit speed of rocky desertification evolution refers to the sum of the speeds
of the deteriorating and ameliorating parts of a certain level of rocky desertification. The
annual statistics are shown in Table 3, which indicates that the average annual evolving net
profit speed was positive. The evolution speed increased annually, from 1.704 × 103 km2/a
in 2001–2005 to 4.937 × 103 km2/a in 2015–2020, demonstrating that the effect of rocky
desertification control is becoming more and more obvious.

Table 3. Net profit speed of rocky desertification evolution.

Year 2001–2005 2005–2010 2010–2015 2015–2020 2001–2020

Net profit speed
(103 km2/a) 1.704 2.808 3.225 4.937 2.515

4.2. Future Scenario Prediction of Rocky Desertification
4.2.1. Improved CA-Markov Prediction Model Performance

Markov models predict the future based on the probability of events occurring in
the past. From the above analysis in this paper, the evolution of rocky desertification in
Guizhou showed a trend of accelerating amelioration over the past two decades, especially
after 2010. Using the traditional CA-Markov model to predict rocky desertification in
Guizhou cannot reflect this accelerating trend.

For our experiment, we used the remote sensing inversion results of rocky desertifica-
tion from 2001 to 2015 to construct a Markov transition matrix with an interval of 5 years.
The set of suitability factors was composed of 10 factors, namely temperature, humidity,
sun, precipitation, elevation, slope, GDP, light, lithology, and soil, as shown in Figure 4. We
used the AHP method to calculate the factor weight, and the result is shown in Table 4.
The CR value is 0.04, which is lower than 0.1, meeting the threshold value of the AHP
method. In this paper, 5 rocky desertification levels (as the dependent variables) and the
corresponding 10 suitability factors (as independent variables) of the image were calculated
by logistic regression. As shown in Table 5, the ROC regression results for the selected
10 suitability factors reflected the spatial distribution of rocky desertification well. The
reflection ability for NRD was the strongest, with ROC of 0.9209. The ROC values for MRD,
LRD, SRD, and PRD were 0.8637, 0.8481, 0.8361, and 0.8169, respectively. The ROC values
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of every rocky desertification level were all above 0.8, which indicates that there was good
consistency between the predicted and real distributions.

Table 4. Factor weight result based on AHP.

Factor Precipitation Temperature Sun Lithology Soil Slope Humidity Light GDP Elevation

Weight 0.0717 0.0466 0.0686 0.2467 0.1985 0.0328 0.0753 0.0170 0.0170 0.2257

Table 5. ROC results.

NRD PRD LRD MRD SRD

ROC 0.9209 0.8169 0.8481 0.8637 0.8361

After constructing the suitability factor set, the CA-Markov model was used to predict
the rocky desertification in 2020, as shown in Figure 12b. Then, based on the remote
sensing inversion result of rocky desertification in 2020, shown in Figure 12a, the Markov
transition matrix from 2001 to 2015 was optimized, as shown in Table A1. Using an iterative
operation, where the difference between the results of the two iterations is less than 0.1,
the acceleration parameter a was calculated. The optimized rocky desertification result for
2020 is shown in Figure 12c. Finally, a was used for future scenario prediction of rocky
desertification after 2020.
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Combined with Figure 12 and Table 6, the improved CA-Markov prediction model
of rocky desertification was used to calculate the results in 2020. Compared with the
traditional CA-Markov model, the method proposed in this paper improved the consistency
of the proportion of each rocky desertification level. The RMSE of each rocky desertification
level decreased from 2.016 to 0.056.

Table 6. Comparison of inversion and prediction results.

NRD PRD LRD MRD SRD
(%)

Remote sensing inversion 63.527 22.881 8.492 3.809 1.291
Prediction result before optimization 61.869 23.969 8.804 3.950 1.408
Prediction result after optimization 63.520 22.906 8.498 3.765 1.312

The proportions of the confusion matrix between simulation result and reality result
are shown in Table 7. As shown in Table 8, the improved CA-Markov model was used
to simulate the rocky desertification data in 2020, and the Lee–Sallee shape value was
0.723, higher than that obtained with the traditional CA-Markov model (which was 0.681).
Compared with the Lee–Salle value of 0.629 obtained by Ma et al. [37], the improved
CA-Markov model had higher accuracy. The improved CA-Markov model also had a
higher overall accuracy and Kstandard value. Thus, the improved CA-Markov model can
accurately reflect the evolution trajectory of rocky desertification.

Table 7. Proportions of confusion matrix between inversion and prediction results.

Prediction (%)
Inversion Reality (%)

Level NRD PRD LRD MRD SRD Total

Traditional
CA-Markov Model

NRD 56.993 4.186 0.328 0.211 0.150 61.869
PRD 5.237 16.295 2.127 0.287 0.024 23.969
LRD 0.532 2.096 5.042 0.921 0.214 8.804
MRD 0.552 0.263 0.849 2.031 0.255 3.950
SRD 0.214 0.041 0.145 0.360 0.649 1.408
Total 63.527 22.881 8.492 3.809 1.291 100

Improved
CA-Markov Model

NRD 58.536 4.291 0.413 0.167 0.113 63.520
PRD 4.045 16.682 1.718 0.420 0.040 22.906
LRD 0.456 1.623 5.618 0.623 0.178 8.498
MRD 0.352 0.254 0.616 2.345 0.197 3.765
SRD 0.138 0.031 0.127 0.253 0.763 1.312
Total 63.527 22.881 8.492 3.809 1.291 100

Table 8. Comparison of model accuracy.

Lee–Sallee Index Overall Accuracy Kstandard

Improved CA-Markov Model 0.723 0.839 0.700
Tradtional CA-Markov Model 0.681 0.810 0.650

Ma et al. [37] 0.629 -

The FOM result is shown in Figure 13. The wrong hit value in the improved CA-
Markov model was 1.559, 0.192 lower than that of the traditional CA-Markov model. The
FOM of the improved CA-Markov model was 0.530, and that of the traditional CA-Markov
model was 0.459. The improved CA-Markov model performed better.
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4.2.2. Future Scenario Prediction Based on Improved CA-Markov Prediction Model

Based on the improved CA-Markov model, taking the remote sensing inversion rocky
desertification result in 2020 as a baseline, and using the set of suitability factors in 2020, we
set the iteration interval to 5 years and predicted the future scenario of rocky desertification
from 2025 to 2050. The results are shown in Figure 14.
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Figure 14. Future scenario prediction of rocky desertification from 2025 to 2050.

In this paper, the amelioration part of the future rocky desertification scenario is
defined as the region where the evolution intensity of rocky desertification is greater
than or equal to 2, while the deterioration part of rocky desertification is the region is
where the evolution intensity of rocky desertification is less than or equal to −2. The
amelioration and deterioration parts in the future scenarios of rocky desertification from
2020 to 2030 were accurately located, as shown in Figure 15. From 2020 to 2030, the
amelioration regions of rocky desertification were significantly larger than the deterioration
regions. The amelioration regions in future scenarios of rocky desertification were widely
distributed, in areas such as Bijie, Liupanshui, Qianxinan, Guiyang, and Qiannan. The
deterioration regions in future scenarios were mainly distributed in Bijie and Liupanshui.
Bijie and Liupanshui are the two regions featuring both amelioration and deterioration
areas at the same time, which should be taken into consideration when planning rocky
desertification governance.
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4.2.3. Future Scenario Prediction of Rocky Desertification under Different Governance Scenarios

Three different control scenarios were considered: historical evolution, major gover-
nance, and complete governance. In the major governance scenario, three levels of rocky
desertification—PRD, LRD, and MRD—were taken as the key control aims of the restora-
tion of karst rocky desertification. These three levels of karst rocky desertification are more
easily transformed into other levels in the middle stage of the succession process of karst
rocky desertification. Therefore, they can be more effectively governed and restored [38].
Previous studies have shown that, due to the favorable rainfall and heat conditions for plant
growth, through the implementation of vegetation restoration and management projects,
the vegetation coverage can be increased by 10–30% within 10 years [37,64]. Considering
the existing measures for controlling and restoring rocky desertification in the historical
evolution situation, in the major governance scenario, the mean value was taken as 20%. In
this study, the transition matrix of karst rocky desertification under historical evolution
scenarios was adjusted, in order to calculate the transition matrix for the major governance
scenario. Here, the probability of transformation of PRD, LRD, and MRD to more seri-
ous karst rocky desertification level was decreased by 20% and that to minor karst rocky
desertification was increased by 20%.

The complete governance scenario emphasizes ecological restoration and management
strategies that restrict regional development, with an aim to realize the comprehensive
restoration of karst rocky desertification. Human activities in karst areas are restricted
to relieve the pressure on the land. Based on the rock desertification transfer matrix of
complete governance scenarios, the adjustment of transformation probability of karst rock
desertification was extended to two grades: NRD and SRD. The rules of the transformation
matrix modification were as follows: the probability of all levels of karst rocky desertifica-
tion being converted to a more serious level was reduced by 20%, while that to minor karst
rocky desertification was increased by 20%.

The prediction results of rocky desertification under different control scenarios in 2030
are shown in Figure 16 and Table 9.
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Table 9. Comparison of different governance scenario results in 2030.

Year 2030
NRD PRD LRD MRD SRD

Area
(103 km2)

Rate
(%)

Area
(103 km2)

Rate
(%)

Area
(103 km2)

Rate
(%)

Area
(103 km2)
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(%)

Area
(103 km2)

Rate
(%)

Historical evolution 128.103 72.717 33.146 18.815 9.753 5.536 3.889 2.208 1.276 0.724
Major governance 133.521 75.792 30.849 17.511 7.857 4.460 2.765 1.569 1.175 0.667

Complete governance 135.711 77.035 28.856 16.380 7.839 4.450 2.887 1.639 0.874 0.496

5. Discussion
5.1. Improvement of Future Prediction Accuracy by Modifying Markov Transition Matrix

On one hand, the proposed prediction model of rocky desertification based on the
CA-Markov method depends on the reliability and stability of the transition probability
matrix. On the other hand, it depends on the interpretation of a suitability factor set for
rocky desertification. In this paper, the transfer matrix from 2001 to 2015 was taken as the
probability matrix and the rocky desertification in 2015 served as a base image. The rocky
desertification in 2020 was predicted by the proposed CA-Markov model and compared
with the real results in 2020. Then, the acceleration coefficient matrix was used to adjust
the Markov transition probability matrix, thus improving the prediction accuracy. This is
similar to previous studies, such as that of Xu et al. [64] who quantified the impact of rocky
desertification expansion on a designated area. They analyzed the neighborhood effect of
karst rocky desertification of different grades and corrected the probability matrix of rocky
desertification. This strategy is suitable for medium- or high-resolution image analysis.
However, this study was based on MODIS 250 m resolution data products, which does not
quite fit the scale of neighborhood effects. Therefore, we used the error term between the
predicted results and the real results to iteratively optimize the probability matrix, thus
improving the matrix optimization and prediction accuracy.

Thanks to the support of sufficient sample data, the method of [51], in this paper,
obtained remote sensing inversion results of rocky desertification level in 2020 bearing sim-
ilarity to the real results, providing a reliable data basis for CA-Markov prediction of future
prospects. Although there were errors within a certain allowable range, the results can still
be considered reliable. The suitability factor set in this paper was derived from the average
values from 2001 to 2020, including such factors as temperature, precipitation, and light.
The suitability factor set can reflect the level difference of rocky desertification. However,
there were still time differences between these suitability factors in different years. In future
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research, we will consider varying factors in different years to compare and optimize the
suitability factor set, in order to improve the performance of the prediction model.

5.2. Temporal and Spatial Evolution of Rocky Desertification and Its Influence

From the spatial perspective, the distribution pattern of rocky desertification in
Guizhou was “heavy in the west and south, light in the east and north”, consistent with
the results of previous studies [65,66]. The spatiotemporal change of rocky desertification
has a great relationship with the natural environment and geological background. In this
paper, we found that the severe rocky desertification areas were mainly distributed in
three regions: Bijie in northwest Guizhou, Liypanshui in west Guizhou, and Qinxinan and
Anshun in southwest Guizhou. Pure carbonate is widely distributed in these regions, and
the terrain has a larger slope and high soil erosion. However, non-rocky desertification was
mainly distributed in Qindongnan and Zunyi in Guizhou, which are nonkarst areas with
good geothermal and superior forest site conditions.

Considering the time dimension, the evolution of rocky desertification in Guizhou
was obvious from 2001 to 2020, predominantly showing a gradual amelioration trend. The
evolution of rocky desertification was continuous, mostly occurring in adjacent levels:
as expected, the greater the separation level, the smaller the evolution probability of
rocky desertification. The net profit speed of each rocky desertification level transfer
showed a trend of improvement. Among them, the transfer speed of potential rocky
desertification was the fastest. Especially from 2015 to 2020, the transfer net profit speed
reached 4.937 × 103 km2/a. The dynamic degrees from 2015 to 2020 were also the most
dramatic. The area of PRD was relatively large and easy to transfer, and the transfer
direction was alternating. Therefore, it would be ideal to pay attention to the prevention
and control of PRD deterioration. Meanwhile, SRD was the slowest to evolve, with net
profit speed of transfer being only 0.423 × 103 km2/a from 2015 to 2020. The change rate of
rocky desertification is inversely proportional to its level, which is consistent with previous
research [67]. The spatial and temporal evolution pattern of rocky desertification is not only
related to the natural environment, including geology and climate, but also closely related
to human activities and the background of China’s social and economic development
and ecological construction during this period. Since 1999, China has implemented the
“six major” forestry projects. In 2003, the decision on “Accelerating the Development of
Forestry” was issued, and the forest resources in Guizhou were further improved. After
2010, with the further implementation of the greening and beautification project and the
construction of beautiful countryside, forest site conditions have been greatly improved
and forest resources are growing. Guizhou has been practicing the scientific judgment that
“lucid waters and lush mountains are invaluable assets”. Thus, it can be stated that rocky
desertification has been ameliorated based on scientific management and the returning
farmland to forests project.

5.3. Discussion on Suitability Governance of Future Scenarios of Rocky Desertification

Based on the prediction of the improved CA-Markov model, the rocky desertification
in Guizhou will continue to be ameliorated from 2025 to 2050. In particular, for Qianxi-
nan in southwest Guizhou, rocky desertification will be strongly ameliorated. With the
development of economy and society, the national investment in ecological environment
management projects is also increasing. The implementation of such projects will promote
the amelioration of the rocky desertification situation. The ecological environment is be-
coming better and better. The regions with severe rocky desertification in 2025 were mainly
distributed in Bijie, Liupanshui, Qindongnan, and Anshun, and the areas with severe rocky
desertification will be smaller from 2025 to 2030 than those from 2020 to 2025. However,
Bijie and Liupanshui are still relatively serious regions. Therefore, these regions should be
given priority for the control of rocky desertification.

It was found that the occurrence of rocky desertification is lower in the southeast and
south of Guizhou; furthermore, these areas are dominated by forest. This demonstrates
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that vegetation can prevent rocky desertification. Forestation is an effective method to
prevent rocky desertification. The main vegetation types in rocky desertification regions
and non-rocky desertification regions can be further studied in future research. Study-
ing what kind of forest species and tree species are suitable for planting in the rocky
desertification areas can provide effective data and planning support for future rocky
desertification governance.

6. Conclusions

In this study, we analyzed the temporal and spatial evolution law of rocky desertifi-
cation in Guizhou, China, from 2001 to 2020, considering three aspects: dynamic degree,
intensity, and speed of rocky desertification evolution. The CA-Markov model was im-
proved to better predict the rocky desertification level. The Lee–Sallee index reached 0.723,
overall accuracy reached 0.839, and FOM reached 0.530, indicating a significant improve-
ment over the traditional CA-Markov model. The future scenario of rocky desertification in
Guizhou, China, from 2025 to 2050 was predicted, and three different governance scenarios
were set to analyze the possible improvement and deterioration areas of rocky desertifica-
tion in the future. The conclusions of this paper are as follows: (1) Considering the dynamic
degree of rocky desertification, the annual average dynamic degree gradually increased,
showing that the speed of rocky desertification control has accelerated year by year. The
government has vigorously carried out a pilot project of comprehensive rocky desertifi-
cation control, which has curbed the deterioration from rocky desertification in Guizhou
Province. From the perspective of the intensity and speed of rock desertification evolution,
the transformation rates of NRD and PRD were the highest, while that of SRD was the
lowest. Therefore, in the process of rocky desertification control, relevant actors should
pay attention to the effect of MRD and SRD control, as well as avoiding the deterioration
of NRD and PRD. (2) By improving the CA-Markov model, we improved the accuracy of
prediction for rocky desertification future scenarios and could better explore the evolution
rule of rocky desertification. Based on the improved CA-Markov model results, we found
that the serious regions of rocky desertification in the future are mainly in Bijie, Liupanshui,
Qindongnan, and Anshun. Thus, more attention should be paid to these areas in the control
of rocky desertification.

The improved Markov model improves the prediction accuracy, can predict the future
rocky desertification scenario more accurately, and is conducive to the accurate analysis
of the future rocky desertification landscape pattern. At the same time, through the
simulation of three different control levels, it provides a basis for scientific control of
rocky desertification. The accurate positioning of areas that may deteriorate in the next
10 years can well guide the accurate control of local rocky desertification in Guizhou. In
future research, more landscape prediction models should be tested in the future scenario
prediction of rocky desertification, and better prediction methods should be explored.
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Appendix A

Table A1. Markov transition probability matrix for 2001–2015.

Level NRD PRD LRD MRD SRD

Before
optimization

NRD 0.9163 0.0551 0.0083 0.0148 0.0055
PRD 0.3265 0.5964 0.0752 0.0019 0.0000
LRD 0.0000 0.5355 0.3785 0.0720 0.0140
MRD 0.0000 0.1284 0.4815 0.3293 0.0608
SRD 0.0000 0.0000 0.1447 0.4482 0.4072

After
optimization

NRD 0.9273 0.0479 0.0072 0.0129 0.0048
PRD 0.4052 0.5363 0.0571 0.0014 0.0000
LRD 0.0000 0.5548 0.3623 0.0694 0.0135
MRD 0.0000 0.1370 0.5138 0.2925 0.0567
SRD 0.0000 0.0000 0.1589 0.4921 0.3490

a1
a2
a3
a4
a5

=


0.131
0.241
0.036
0.067
0.098


b1
b2
b3
b4
b5

=


0.110
−0.601
−0.162
−0.368
−0.582
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