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Abstract: Effective feature extraction (FE) has always been the focus of hyperspectral images (HSIs).
For aerial remote-sensing HSIs processing and its land cover classification, in this article, an efficient
two-staged hyperspectral FE method based on total variation (TV) is proposed. In the first stage,
the average fusion method was used to reduce the spectral dimension. Then, the anisotropic TV
model with different regularization parameters was utilized to obtain featured blocks of different
smoothness, each containing multi-scale structure information, and we stacked them as the next
stage’s input. In the second stage, equipped with singular value transformation to reduce the
dimension again, we followed an isotropic TV model based on split Bregman algorithm for further
detail smoothing. Finally, the feature-extracted block was fed to the support vector machine for
classification experiments. The results, with three hyperspectral datasets, demonstrate that our
proposed method can competitively outperform state-of-the-art methods in terms of its classification
accuracy and computing time. Also, our proposed method delivers robustness and stability by
comprehensive parameter analysis.

Keywords: feature extraction; hyperspectral image; total variation; smoothing

1. Introduction

Hyperspectral imaging technology is based on multi-spectral imaging, in the spectral
range from ultraviolet to near-infrared, using an imaging spectrometer to continuously
scan within tens or hundreds of spectral bands of the scenes. Therefore, hyperspectral
images (HSIs) not only capture spatial features but also obtains rich spectral information
from each pixel, which can achieve the classification and recognition of the target objects
more efficiently than traditional images. Nowadays, many HSIs passively acquired on
satellite or airborne have broad ranges of land cover; they are widely used in many fields
such as urban mapping [1], agriculture [2], forest [3], and environmental monitoring [4]. In
addition, HSIs can also be obtained by active remote sensing technology [5], which usually
utilizes wide spectral light sources [6] to replace the sun to illuminate the scenes and which
play a significant role in object detection [7] and recognition [8]. HSI classification has
always been a hot topic of application among these fields. It can provide high-level intuitive
judgment and interpretation, especially for land use and analysis.

However, some characteristics of HSIs bring difficulties to its application. Firstly, a
few pixels of HSI may represent the land cover of tens of square meters, resulting in some
specific samples availability being limited, which will lead to low accuracy when directly
using the spatial information of HSIs for scene detection. In addition, as the number of
bands rises, the amount of data expands sharply, and adjacent bands are highly correlated,
noise and redundant information are relatively increased, especially for active technology
because of the stability of the light source, which will also affect the classification accuracy.
More importantly, these characteristics will bring considerable time and storage overhead
in the computing of related algorithms.
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Therefore, effective and discriminative feature extraction (FE) processing has become
the key to hyperspectral technology [9], and many methods have been applied in the
hyperspectral community. Regarding HSIs as three-dimensional cube data, data projection
and transformation are commonly used FE methods, such as principal components analysis
(PCA) [10], independent component analysis (ICA) [11], and maximum noise fraction
(MNF) [12], which are dedicated to linearly transforming the data into a low-dimensional
feature space and which reduce the band dimension of HSIs. In addition, supervised linear
transformation methods are used, such as linear discriminant analysis (LDA) [13], and some
extended versions, including low-rank discriminant analysis (LRDA) [14], locally weighted
discriminant analysis (LWDA) [15], and flexible Gabor-based superpixel-level unsupervised
linear discriminant analysis [16]. Considering the nonlinear characteristics of HSIs, some
techniques using kernel methods have been proposed, such as kernel PCA (KPCA) [17],
which can obtain a linearly separable training set by nonlinearly mapping data to a high-
dimensional space. What’s more, manifold learning methods [18] have been continuously
developed, and some advanced methods include GPU parallel implementation of isometric
mapping [19], which can greatly accelerate the speed of data transformation. Spatial–
spectral multiple manifold discriminant analysis (SSMMDA) [20] can explore spatial–
spectral combined information and reveal the intrinsic multi-manifold structure in HSIs.
In [21], a novel local constrained collaborative representation model was designed; it can
characterize the collaborative relationship between sample pairs and explore the intrinsic
geometric structure in HSI. Projection and transformation techniques usually look for the
separability of the data in the transformed feature space. Generally, only the internal
pattern of the data itself is considered, and the specific physical characteristics are usually
lost, especially the continuous correlation of the spectral information in HSI. In addition,
data mapping methods are often used as one of the steps of FE, such as completing
dimension reduction.

When focusing on the continuous and high correlation of bands, some methods
based on band selection and clustering [22] have been proposed and used to mitigate the
“curse of dimensionality” problem. The combination of image fusion and recursive filters
was applied in [23]. In [24], Wang et al. designed a method of band selection based on
optimal neighborhood reconstruction, which exploited a recurrence relation for the optimal
solution. Tang et al. [25] proposed a hyperspectral band selection method based on spatial–
spectral weighted region-wise multiple graph fusion-based spectral clustering. In [26], an
unsupervised BS approach based on an improved genetic algorithm was proposed, which
utilized modified genetic operations to reduce the redundancy of selected bands. Band
selection methods fully excavate the spectral characteristics of HSI, but it often combines
spatial information predominately for the FE process in practical applications.

The method of using energy functional optimization, which is a common technique of
traditional image processing, has been widely developed in hyperspectral FE. It’s aim is to
minimize a constrained loss function, which usually contains fidelity and regularization
terms, and play an important role in restoring and noise reduction for HSI [27]. In [28], an
orthogonal total variation component analysis (OTVCA) was proposed and used a cyclic
descent algorithm for solving the minimization problem. Duan et al. [29] showed a fusion
and optimization framework of dual spatial information for more feature exploration. A
novel multidirectional low-rank modeling and spatial–spectral total variation (MLR-SSTV)
model was proposed in [30] for removing HSI mixed noise, and they developed an efficient
algorithm for solving the derived optimization based on the alternating direction method of
multipliers. By adding different regularization term constraints, a l0-l1 hybrid total variation
(l0-l1HTV) was presented in [31], which yielded sharper edge preservation and obtained
superior performances in HSI restoration. But they usually have more computational
overhead because numerous iterations are needed to solve the optimization problem.

In addition, with the development of deep learning, many deep FE methods have
been proposed for image processing. In [32], Zhu et al. proposed a defogging network
based on dual self-attention boost residual octave convolution, which effectively enhances



Remote Sens. 2022, 14, 302 3 of 22

the definition of foggy remote sensing images. As for HSIs, rich spectral information needs
to be considered, and convolutional neural networks are also widely used to extract the
spectral and spatial information of HSIs [33,34]. Li et al. [35] proposed a double-branch
dual-attention mechanism network (DBDA) for HSI classification, where the two branches
enabled to refine and optimize the extracted feature maps. Additionally, some remarkable
models, such as ResNet [36] and DenseNet [37], have also been continuously developed.
The method combining the scattering transform with the attention-based ResNet was given
in [38], which provided higher unmixing accuracy when using limited training data. In [39],
Xie et al. proposed the MS-DenseNet framework, which introduced several dense blocks
to fuse the multiscale information among different layers for the final HSIs classification.
To achieve effective deep fusion features, a pixel frequency spectrum feature based on fast
Fourier transformation was presented in [40] and introduced a 3D CNN, which showed that
adding the presented frequency spectrum feature into CNNs can achieve better recognition
results. However, deep learning techniques often need sufficient training sets to achieve
their excellent performance [9], but the samples are limited in HSI. Similarly, they often
need a lot of computing resources and expenses.

For aerial remote sensing HSIs processing and their land cover classification, there
are several core problems in the FE method to be considered and addressed. According
to the different sensors and their scanning positions, the spatial resolution of different
HSIs is diverse. Developing the FE method suitable for multi-scale HSIs is the key. At the
same time, FE need to fully excavate the spatial characteristics of HSI so that the features
information of various classes can be fully retained, especially considering the limited
samples of individual classes. On the other hand, computing overhead has increasingly
become the bottleneck of tasks, and it is necessary to design lightweight methods for
real-time applications. Stemming from a motivation to solve these key issues, in this
article, an efficient two-staged hyperspectral FE method based on total variation (TV) [41] is
proposed. In the first stage, in order to extract multi-scale structural information, we used
the anisotropic total variation model (ATVM) [42] under numerical solution to process the
average fused data. The model, with different regularization parameter outputs, featured
blocks of different smoothness, each containing multi-scale structure information and then
stacking them as the next stage’s input. In the second stage, in order to prevent weakening
of the feature representation of small sample classes and to fully strengthen the information
of all classes, we used an isotropic total variation model (ITVM) based on the split Bregman
algorithm [43] to process the data after SVD of the stacked block, where complete dimension
reduction and global smoothing was performed. Finally, it was fed to the spectral classifier
for the classification task. The main contributions of our study are summarized as follows:

1. This work innovatively proposes an efficient two-staged FE method based on total
variation for HSI. Based on different solutions of anisotropic and isotropic models, it
successively completes the extraction of multi-scale structure information and detail
smoothing enhancement of HSI, improving the discriminative ability of different
land covers.

2. Our design has no complex framework or redundant loop, which greatly reduces
computational overhead. When compared with many state-of-the-art algorithms, our
method can significantly outperform in classification performance and computing
time, especially achieving better results in most classes.

3. We give a sufficiently detailed parameter analysis and give the reasonable value and
change explanation of each parameter. There is no need to reset parameters for diverse
datasets, and the results show that our method has strong robustness and stability,
strengthening the advantages in hyperspectral practical application.

The remainder of this article is structured as follows. In Section 2, the proposed
method is described. Section 3 shows experimental results and comparisons using three
real datasets. Section 4 gives parameter analysis and discussion in detail. The conclusions
and future work are presented in Section 5.
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2. Proposed Method

This section will be divided into three parts. First, the ATVM under the numerical
solution of the first stage is described. The second part gives ITVM based on split Bregman
algorithm, and the third part shows the overall design of the proposed method.

2.1. ATVM

The energy function optimization model often adds different regularization terms,
such as TV terms, to maintain the smoothness and suppress the noise of the image. The
ATVM under numerical solution, which is derived from relative TV [44], can effectively
decompose the structure and texture in an image and strengthen the retention of structural
information. The general form aims to solve the following optimization problem:

argminF ∑p

{(
Fp − Rp

)2
+ |(∇F)p|

}
. (1)

R denotes a single-band image of the input raw HSI, F is the output featured image of the
corresponding band, and p denotes the index of the two-dimensional image pixels. The TV
term can be written in the following anisotropic form:

∑p |(∇F)p| = ∑ |(∇xF)p|+ |
(
∇yF

)
p|. (2)

To better extract the structure, the improved model is as follows,

argminF ∑p

{(
Fp − Rp

)2
+ λ·

(
Dx(p)

Lx(p) + ε
+

Dy(p)
Ly(p) + ε

)}
, (3)

where λ is the regularization parameter, and ε is a small positive number to prevent the
divisor from being 0, Dx(p) and Lx(p) are, respectively, called windowed total variations
and windowed inherent variation in the x direction for pixel p, expressed as

Dx(p) = ∑q∈Rp gp,q·|(∇xF)q|,
Lx(p) = |∑q∈Rp gp,q·(∇xF)q|.

(4)

where Dy(p) and Ly(p) represent the y direction, the definition and calculation are the
same as x direction. In Formula (4), q is the index of all pixels in a square window centered
on p, and g is the weighting function.

gp,q ∝ exp(−
(
xp − xq

)2
+
(
yp − yq

)2

2σ2 ), (5)

where σ specifies the scale size of filtering elements of the window. Then the regularization
term in Formula (3) can be approximately calculated as follows:

∑p
Dx(p)

Lx(p)+ε
= ∑q ux qwx q(∇xF)2

q ,

ux q =

(
Gσ ∗ 1

|Gσ∗∇y F|+ε

)
q
,

wx q = 1
|(∇x F)q |+ε2

,

(6)

where G is the Gaussian filter with standard deviation σ, ∗ is the convolution symbol, and
ε2 is a small value to prevent division by zero. The calculation in the y direction is the same
way as stated above.

Then, with these operators, Formula (3) can be written in the following matrix form:

(vF − vR)
T(vF − vR) + λ

(
vT

F CT
x UxWxCxvF + vT

F CT
y UyWyCyvF

)
. (7)
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Taking the derivative of Equation in (7), one can obtain the following linear equation:

vF = (1 + λM)−1vR,

M = CT
x UxWxCx + CT

y UyWyCy,
(8)

where vF and vR represent the column vectors of F and R, respectively, Cx and Cy are
forward difference operators, and U and W are diagonal matrices, where the value comes
from u and w in their respective directions.

The numerical solution of ATVM is briefly given in analytical Formula (8), which
mainly includes two steps: calculation of coefficient matrix M and solution of linear
equation. The two key parameters, λ, can control the smoothness, and σ specifies the scale
size. Here, we creatively used the scale size parameter σ as the loop condition, entering
the fixed σ as the maximum, and extracting structural information at multiple scales with
a small number of loops. In other words, we use few loops to extract the features of
different scales in one output, without setting the number of iterations in advance, reducing
redundant iterations. The calculation process of the whole model is briefly summarized in
Algorithm 1. In line 5–7, we use the same coefficients to solve the linear equation for each
dimension of the image.

Algorithm 1: The ATVM under Numerical Solution to Extract Different Scale Structure

1: Input: input raw image Rn; regularization parameter λ; scale size parameter σ;
2: Initialize: T = R; setting ε = 0.001 and ε2 = 0.01 for enough small; σt = σ;
3: While σt ≥ 0.5
4: M = computeCoe f f icient(T, σt);
5: for i = 1 : n
6: Ti = solveLinearEquation

(
Rn

i , M, λ
)
; Rn

i denotes the i− th dimension o f Rn.
7: end;
8: T = [T1, T2, · · · , Tn],
9: σt = σt/2.0;
10: End
11: Output: Structure image T.

2.2. ITVM

Using the isotropic expression of TV term, ITVM pays more attention to the global
unified detail smoothing of the image rather than structure extraction, which is widely
used in image deblurring and restoration [37]. The split Bregman algorithm is an extremely
efficient algorithm to solve convex optimization problems, especially ITVM, and is briefly
given as follows.

ITVM wishes to solve

argminF ∑p

{
µ

2
(

Fp − Rp
)2

+

√
(∇xF)2

p + (∇yF)2
p

}
, (9)

where µ is the fidelity parameter. Setting dx ≈ ∇xF and dy ≈ ∇yF, the equation constrained
optimization problem can be transformed into an unconstrained optimization problem
as follows:

argminF,dx,dy‖dx, dy‖2 +
µ

2
‖F− R‖2

2 +
λi
2
‖dx −∇xF− bx‖2

2 +
λi
2
‖
(
dy −∇yF− by

)
‖2

2. (10)

‖dx, dy‖2 = ∑
p

√
d2

x,p + d2
y,p, ‖·‖2 denotes L-2 norm, λi denotes the regularization parameter in ITVM,

and bx and by are proper constant terms. For fast iteration, we chose the Gauss–Seidel method, where
the following is obtained

Fk+1
ij = Gk

i,j =
λ

µ+4λ (Fk
i+1,j + Fk

i,j+1 + Fk+1
i−1,j + Fk+1

i,j−1

+dk
x,i−1,j − dk

x,i,j + dk
y,i,j−1 − dk

y,i,j − bk
x,i−1,j + bk

x,i,j − bk
y,i,j−1 + bk

y,i,j) +
µ

µ+4λ Ri,j.
(11)
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where i, j represent the coordinates of the pixel p, and k denotes the number of iterations. The
ITVM based on the split Bregman algorithm is given in Algorithm 2, and the comprehensive math-
ematical process is detailed in [43]. For simplicity, Algorithm 2 shows the process of single band
image processing.

Algorithm 2: The ITVM Solution Based on Split Bregman Algorithm for Smoothing

1: Input: input image R; fidelity parameter µ; regularization parameter λi;
2: Initialize: F0 = R, and d0

x = d0
y = b0

x = b0
y = 0; stopping tolerance tol = 0.1;

3: While ‖Fk − Fk−1‖2 > tol
4: Fk+1 = Gk

i,j

5: sk =

√∣∣∣∇xFk + bk
x

∣∣∣2 ++
∣∣∣∇yFk + bk

y

∣∣∣2
6: dk+1

x = max
(

sk − 1
λ , 0
)
∇x Fk+bk

x
sk

7: dk+1
y = max

(
sk − 1

λ , 0
)∇y Fk+bk

y

sk

8: bk+1
x = bk

x +
(
∇xFk+1 − dk+1

x

)
9: bk+1

y = bk
y +

(
∇yFk+1 − dk+1

y

)
10: End
11: Output: Smoothed image F.

2.3. Overall Design
The overall flowchart of our proposed method is given in Figure 1, and its overall calculation

process is described in Algorithm 3.
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The original HSI has a large amount band dimension. In order to reduce the calculation time of
the subsequent steps and the influence of image noise, we first use the average fusion method for
preliminary dimension reduction in the first stage. The average fusion is an effective band selecting
and merging method, and more importantly, its calculation is very efficient [23]. The simple rule of
average fusion method is as follows. We denote the hyperspectral data of M bands as Hi(0 < i < M)
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and split it into N groups. Then the information of the jth band after dimension reduction can be
obtained by the following fusion method (0 < j < N):

Rj =

{
mean

(
H(j−1)B+1, · · · , HjB

)
i f jB ≤ M;

mean(HN−B+1, · · · , HM) i f jB > M;
(12)

Among them, B = M/N, and mean represents the calculation of each group’s band dimension
average value, and B represents the smallest integer not greater than M/N.

Then at the first stage, we processed the fused HSIs based on ATVM. Inspired by [45], we used
different λ values to perform three sets of different smoothness processing, each of which uses a fixed
σ to specific the initial maximum scale size. Through this processing based on ATVM, the multi-scale
structure information of the image was fully extracted. Next, we stacked these three featured blocks,
used SVD to perform secondary dimension reduction at the beginning of the second stage, and then
performed ITVM-based processing on each dimension using a fixed λi, where ITVM considered
global smoothing to fully strengthen the information of all classes. The output result was classified
by SVM.

Algorithm 3: The Proposed Two-Staged FE Method

1: Input: input raw image RM; regularization parameter λ1, λ2, λ3, λi; fidelity parameter µ, scale
size parameter σ; average fused number n, SVD number k;
First Stage:
2: Fn = average_ f usion

(
RM, n

)
;

3: F3n =
[
Fn

1 , Fn
2 , Fn

3
]

= ATVM(Fn, λ1, λ2, λ3, σ);
Second Stage:
4: Fk = SVD

(
F3n, k

)
;

5: for i = 1 : k
6: Ti = ITVM

(
Fk

i , µ, λi

)
; Fk

i denotes the i− th dimension o f Fk.
7: end
8: T = [T1, T2, · · · , Tk];
9: Output: Featured block T.

3. Experiments
3.1. Datasets

Our experiments used three real hyperspectral datasets: Indian Pines, Salinas, and Houston
University 2018. Their detailed parameters are given in Table 1. In addition, the three datasets also
have different characteristics. The spatial resolution and size of Indian Pines are small, but the range
of its scenes is wide; Salinas covers farmland with larger image size and very uniform distribution of
land objects; Houston University 2018 is a typical large size image, which is released by the IEEE
GRSS 2018 data fusion contest [46,47] with high spatial resolution, various classes and scattered
distribution. The full band datasets were tested, these three different datasets could fully test the
effectiveness of FE methods.

Table 1. Details of the three experimental datasets.

Datasets Indian Pines Salinas Houston University 2018

Source AVIRIS sensor AVIRIS sensor CASI 1500
Spectral Range 0.4–2.5 µm 0.4–2.5 µm 0.38–1.05 µm

Spatial Resolution 20 m 3.7 m 1 m
Class 16 16 20
Band 220 224 48

Spatial Size 145 × 145 512 × 217 601 × 2384

3.2. Experimental Setup
3.2.1. Comparison Methods

In this article, we chose some state-of-the-art methods for comparison, including:

• SVM [48]. Directly send the original datasets into SVM for classification as a basic comparison.
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• Local Covariance Matrix Representation (LCMR) [49]. This is a FE method using local covariance
matrices to characterize the spatial–spectral information.

• Random patches network (RPNet) [50]. This is an efficient deep learning-based method that
directly regards the random patches taken from the image as the convolution kernels, which
combines both shallow and deep convolutional features.

• Multi-Scale Total Variation (MSTV) [51]. This is a noise-robust method which extracts multiscale information.
• Generalized tensor regression (GTR) [52]. This is a strengthened tensorial version of the ridge re-

gression for multivariate labels which exploits the discrimination information of different modes.
• Double-Branch Dual-Attention mechanism network (DBDA) [35]. This is a deep learning

network that contains two branches, applied channel attention block and spatial attention block,
to capture considerable information on spectral and spatial features.

• Fusion of Dual Spatial Information (FDSI) [29]. This is a framework using the fusion of dual
spatial information, which includes pre-processing FE and post-processing spatial optimization.

• l0-l1HTV [31]. This is a hybrid model that takes full consideration of the local spatial–spectral
structure and yields sharper edge preservation.

• SpectralFormer [53]. This is a backbone network based on the transformer, which learns spectrally
local sequence information from neighboring bands, yielding group-wise spectral embeddings.

Among them, SVM has been implemented by LIBSVM library [44] as well as a Gaussian kernel
with five-fold cross-validation, where the penalty parameter c ranged from 10−2 to 104 and kernel
function parameter γ ranged from 10−3 to 104. In LCMR, the number of MNF principal components
L was 20, the number of local neighboring pixel K was 220, and the window size T was 25. In RPNet,
the number of patches k was 20 and the size of patches w was 21. In MSTV, the number of principal
components used, N, was 30, the band number of the dimension-reduced was 20. In GTR, rank-1
decomposition was used. In DBDA, the batch size was set as 16, and the optimizer was set to Adam
with the 0.0005 learning rate. In FDSI, the smoothing parameter λ and the fusion weight µ were set
to 1.2 and 0.5, respectively. In l0-l1HTV, the sampling ratio µ was 0.1, and the parameter λtv was 0.08.
In SpectralFormer, the mini-batch size of Adam optimizer was 64, the CAF module was selected, and
the learning rate was initialized with 5× 10−4 and decayed by multiplying a factor of 0.9 after each
one-tenth of total epochs. The various main parameters mentioned above were the default values of
the related algorithms that tend to achieve the highest performance. For more detailed settings and
explanations, please refer to the respective references.

3.2.2. Experimental Parameters
In our method, according to the description in Section 2, we mainly needed to set the following

parameters. In the first stage, the average fusion method was used to reduce the raw data dimension
to n; n tends to affect the calculation time of subsequent processing because the larger n is, the more
dimensions are retained. The regularization parameter, i.e., λ1, controls the degree of smoothness for
the image. By analyzing the smoothness of the single band image after filtering, the value ranges
of three groups of different smoothness can be deduced. The scale parameter σ specifies the initial
maximum scale size and was set as the loop condition. In the second stage, the principal component
k after SVD takes a value between 20 and 30, empirically [28]. The fidelity parameter µ for smoothing
can tolerate a large value, and the regularization parameter in ITVM met λi = 2µ, which usually
results in good convergence for image processing, according to [43]. The others, such as ε, ε2, and tol,
were all set to the default initialization values as stated in Algorithms 1 and 2. Of course, the final
determined value of the parameters depended on the performance; n was set to 15, λ1, λ2, λ3 were
set to 0.004, 0.01, 0.02, respectively, µ was set to 100, and k was set to 20. These values yielded the
best performance considering the accuracy and computing time. The analysis and discussion of these
main parameters will be given in detail in Section 4.

3.2.3. Metrics and Device
Three widely used quantitative metrics were used to evaluate the performances of all the ex-

perimental methods—average accuracy (AA) is the average of the accuracies for each class. Overall
accuracy (OA) is the accuracy of each class weighted by the proportion of test samples for that
class in the total training set. Kappa coefficient (Kappa) [54] calculates the percentage of the identi-
fied pixels corrected by the number of agreements, and is a measure of agreement normalized for
chance agreement.

Experiments of all methods were performed on a personal computer equipped with Intel i7-9750
and NVIDIA GeForce GTX 1650. The main processor base frequency of 2.60 GHz and main memory
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of 64GB ensured that all experiments were carried out easily. The software used was based on Matlab
R2018b and Jupyter Notebook with PyTorch.

3.3. Experimental Results and Discussion
3.3.1. Indian Pines

To demonstrate the performance of our proposed method, a few samples were selected as the
training set. For Indian Pines, we randomly selected only ten pixels from each class as the training
samples and the remaining labelled pixels as the test samples. The experiments of each method were
repeated ten times, and the corresponding classification results were averaged as the final value.
The results are listed in Table 2, including the training set, test set, AA, OA, Kappa, and each class’s
accuracy. In addition, Figure 2 shows the false-color composite image, the ground truth image and
the classification maps of each method in a single experiment.

Table 2. Experimental results (percentage) on Indian Pines dataset obtained by different methods.
The best results are highlighted in bold.

Class Training
Set

Test
Set SVM LCMR RPNet MSTV GTR DBDA FDSI l0-

l1HTV SpectralFormer OURS

1 10 36 14.65 99.17 90.44 94.48 100.00 100.00 97.37 90.83 70.42 96.94
2 10 1418 42.66 74.92 68.78 77.80 66.69 86.36 81.51 71.27 48.64 81.73
3 10 820 37.52 73.01 56.83 79.84 74.32 80.07 95.08 76.66 70.50 79.48
4 10 227 15.83 96.65 41.57 56.73 93.74 100.00 88.55 82.38 82.13 98.59
5 10 473 50.74 88.69 80.53 92.00 83.51 99.52 95.46 81.99 68.87 88.27
6 10 720 78.07 88.24 94.30 98.69 94.58 87.80 99.57 81.79 89.71 97.15
7 10 19 18.34 100.00 51.59 71.04 100.00 65.71 61.14 95.56 100.00 100.00
8 10 468 90.07 99.59 91.78 99.98 96.20 100.00 100.00 98.21 98.21 100.00
9 10 10 6.86 100.00 41.04 65.80 100.00 93.33 79.05 100.00 100.00 100.00
10 10 962 36.07 74.31 68.81 74.93 69.58 85.82 78.28 78.87 77.92 86.14
11 10 2445 59.45 69.21 80.49 92.13 68.62 86.84 95.81 74.15 68.54 89.87
12 10 583 20.66 81.29 47.87 73.40 80.55 96.68 63.01 66.88 76.38 92.62
13 10 195 72.95 99.29 94.52 99.29 99.28 100.00 99.38 99.33 97.71 99.59
14 10 1255 80.94 96.37 95.80 99.18 88.37 91.29 97.28 96.36 90.69 99.86
15 10 376 35.22 95.29 59.97 98.53 94.95 95.73 94.66 97.13 46.63 98.88
16 10 83 87.57 97.83 98.10 95.38 99.28 93.62 78.26 92.65 100.00 93.13

AA 43.73 89.62 72.65 85.58 88.10 91.42 87.74 86.50 80.40 93.89
OA 46.35 81.17 70.99 85.75 80.36 89.08 88.34 80.75 73.18 90.64

KAPPA 40.10 78.72 67.40 83.85 75.69 87.58 87.24 78.24 69.67 89.35

1: Alfalfa. 2: Corn-notill. 3: Corn-mintill. 4: Corn. 5: Grass-pasture. 6: Grass-trees. 7: Grass-pasture-mowed. 8:
Hay-windrowed. 9: Oats. 10: Soybean-notill. 11: Soybean-mintill. 12: Soybean-clean. 13: Wheat. 14: Woods. 15:
Buildings-Grass-Trees-Drives. 16: Stone-Steel-Towers.
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Figure 2. Indian Pines dataset. (a) False color composite image; (b) Ground truth image; (c) SVM; 
(d) LCMR; (e) RPNet; (f) MSTV; (g) GTR; (h) DBDA; (i) FDSI; (j) 𝑙-𝑙ଵHTV; (k) SpectralFormer; (l) 
Our method. Color illustrations of all classes are shown below. 

Figure 2. Indian Pines dataset. (a) False color composite image; (b) Ground truth image; (c) SVM;
(d) LCMR; (e) RPNet; (f) MSTV; (g) GTR; (h) DBDA; (i) FDSI; (j) l0-l1HTV; (k) SpectralFormer;
(l) Our method. Color illustrations of all classes are shown below.
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As can be observed, the SVM method has the worst accuracy and kappa, and its classification
map is quite noisy in the whole scene, which fully shows the importance of FE for HSI. By extracting
the spatial–spectral feature information, the LCMR method significantly improved the results when
compared to SVM. However, LCMR uses fixed-window clustering to obtain the covariance matrix
representation information, so obvious point-like noise appears in various junction areas. Similarly,
in the result classification map of GTR, there is obvious regional noise among various classes, and
the boundary region was misclassified seriously. RPNet directly takes the random patch obtained
from the image as the convolution kernel without any training, but when the samples are few in
number, the random patch pattern seems to introduce more redundant information, and the results
show obvious mixed noise in the classification map. Similarly, transformers need enough large-scale
training to obtain excellent performance [55]. Although SpectralFormer is an advanced version of
transformers for HSI, it still obtained a poor classification effect when the amount of training was
limited, and there are many misclassifications in the classification map. In the classification map of
l0-l1HTV, all kinds of edges are well divided, but there are obvious “corrosion”-like points inside the
individual classes, which may be due to the strong constraint of the l0-l1 hybrid term, resulting in
some internal pixel information being identified as noise, thus introducing misclassification.

MSTV and FDSI fully extract the spatial features of the image and focus on multi-scale and
dual fusion and optimization on the structure information, respectively, which significantly reduced
the misclassification between the class-map regions. However, the accuracy was still very low in
some classes, especially for classes with few pixels, such as Oats and Grass-pasture-mowed, because
these two methods aim to enhance structural features but weaken the feature representation of small
sample classes, which often have much fewer edges. DBDA contains two branches to capture plenty
of spectral and spatial features and yielded a great performance when the training sample was few
in number, but it still had poor classification results in fewer-pixel-class Grass-pasture-mowed. In
addition, it led to an obviously oversmoothed classification map. On the contrary, the proposed
method performed better in the classification maps and had the highest results of OA, AA, and
Kappa. A number of 14 classes in 16 had more than 86% accuracy, and 11 classes had over 90%,
of which both are the highest among all methods. Especially for small sample classes, our method
had 100% accuracy of oats and Grass-pasture-mowed. Due to the fact that the two-staged FE not
only fully excavates the spatial structure information but also smoothly strengthen the detailed
features, especially for the small sample classes, the two stages complement each other to complete
the comprehensive and discriminative FE of HSI.

In addition, the time cost of each method is listed in Table 3. It is easy to see that the proposed
method has the least time overhead.

Table 3. The computing time (seconds) of different methods for Indian Pines.

Methods SVM LCMR RPNet MSTV GTR DBDA FDSI l0-l1HTV SpectralFormer OURS

Time 4.250 10.021 2.356 3.452 4.067 105.61 7.680 159.59 331.24 1.354

3.3.2. Salinas
For Salinas, we randomly selected only five pixels from each class as the training samples, and

the remaining samples were then used for the test. All experiments were repeated ten times, and
each class’s average accuracy, AA, OA, and Kappa are reported in Table 4. The classification maps
of different methods are shown in Figure 3. As can be seen, the scenes in the Salinas are evenly
distributed, with good separability, and the metrics of each method are higher than those in Indian
Pines. Despite this, the proposed method also had the highest AA, OA, and Kappa. A number of 15 of
the 16 categories had an accuracy higher than 85%, which was the best of all methods. It fully shows
that our design enhances the features of global land cover, including not only edge information, but
also other detailed sample features. At the same time, the noise of the classification result map is
the smallest, and the classification is smooth in various junction areas, indicating that the texture
information is better preserved while the edge is fully extracted.

What’s more, the computing time of the eight considered methods for the Salinas image is
reported in Table 5. As can be observed, although SVM has the smallest time overhead in this dataset,
considering that SVM is not a FE method but a basic comparison, only the others were examined, the
proposed method is the fastest one.
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Table 4. Experimental results (%) on Salinas dataset obtained by different methods. The best results
are highlighted in bold.

Class Training
Set

Test
Set SVM LCMR RPNet MSTV GTR DBDA FDSI l0-l1HTV SpectralFormer OURS

1 5 2003 80.85 89.51 86.36 100.00 98.58 100.00 99.83 99.54 98.09 96.24
2 5 3721 95.16 97.41 97.99 99.67 92.18 97.25 100.00 98.97 94.47 99.81
3 5 1971 74.19 88.18 96.08 94.58 99.90 98.99 99.73 94.13 85.02 100.00
4 5 1389 97.16 95.36 97.83 93.74 96.68 93.91 90.04 99.57 97.82 98.54
5 5 2673 92.94 95.42 96.01 93.55 95.31 93.63 94.69 91.91 97.37 96.65
6 5 3954 100.00 98.48 99.88 99.16 99.82 99.85 100.00 95.19 99.04 99.67
7 5 3574 94.12 93.77 93.78 99.61 99.62 97.89 97.91 98.70 95.53 97.64
8 5 11,266 64.31 74.82 67.17 84.01 68.48 77.19 94.38 71.04 46.08 82.23
9 5 6198 95.45 99.08 99.08 97.29 99.99 97.46 99.37 99.74 97.04 100.00

10 5 3273 66.16 93.32 72.47 93.26 90.89 95.61 96.24 88.65 73.27 92.10
11 5 1063 61.36 94.40 85.38 96.87 98.52 88.00 73.41 94.37 88.45 99.61
12 5 1922 77.38 98.51 91.34 93.68 94.34 100.00 94.66 100.00 64.71 99.54
13 5 911 80.09 95.13 86.22 97.25 97.65 96.38 99.96 97.89 97.77 93.15
14 5 1065 67.62 96.50 88.22 90.18 90.93 97.44 94.0 94.72 89.90 99.19
15 5 7263 43.18 87.18 47.74 70.95 69.36 81.69 67.87 86.76 72.39 85.83
16 5 1802 94.68 91.18 76.56 98.67 99.13 100.00 100.00 85.37 86.23 99.91

AA 80.85 93.58 86.38 93.90 93.21 94.70 93.88 93.53 86.45 96.26
OA 74.58 88.65 80.50 89.50 87.33 90.88 90.39 89.75 79.33 93.28

KAPPA 71.96 86.93 78.39 88.33 85.94 89.82 89.35 88.65 77.16 91.84

1: Brocoli_green_weeds_1. 2: Brocoli_green_weeds_2. 3: Fallow. 4: Fallow_rough_plow. 5: Fallow_smooth.
6: Stubble. 7: Celery. 8: Grapes_untrained. 9: Soil_vinyard_develop. 10: Corn_senesced_green_weeds. 11:
Lettuce_romaine_4wk. 12: Lettuce_romaine_5wk. 13: Lettuce_romaine_6wk. 14: Lettuce_romaine_7wk. 15:
Vinyard_untrained. 16: Vinyard_vertical_trellis.
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Figure 3. Salinas dataset. (a) False color composite image; (b) Ground truth image; (c) SVM; (d) 
LCMR; (e) RPNet; (f) MSTV; (g) GTR; (h) DBDA; (i) FDSI; (j) 𝑙-𝑙ଵHTV; (k) SpectralFormer; (l) Our 
method. Color illustrations of all classes are shown below. 
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Figure 3. Salinas dataset. (a) False color composite image; (b) Ground truth image; (c) SVM;
(d) LCMR; (e) RPNet; (f) MSTV; (g) GTR; (h) DBDA; (i) FDSI; (j) l0-l1HTV; (k) SpectralFormer;
(l) Our method. Color illustrations of all classes are shown below.
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Table 5. The computing time (seconds) of different methods for Salinas.

Methods SVM LCMR RPNet MSTV GTR DBDA FDSI l0-l1HTV SpectralFormer OURS

Time 4.32 57.77 10.23 15.94 15.61 334.94 33.15 857.75 1686.43 6.45

3.3.3. Houston University 2018
The third experiment was performed on the Houston University 2018. Due to the large size

of this dataset, 100 pixels were selected for training, and the remaining were used as evaluation
samples. Similarly, each group of experiments was repeated ten times and averaged. The detailed
numbers of training and test samples and all the classification results are given in Table 6, and the
corresponding classification maps are shown in Figure 4. It can be seen that the proposed method is
also the highest in AA and Kappa. It is worth mentioning that, in the Houston dataset, the samples
of community class accounted for about 44% of the total. DBDA performed well in the community
class, so its OA was 1.33% higher than our method, but its AA was 4.8% lower than ours. Both LCMR
and ours had 11 classes with more than 90% accuracy, but the OA of LCMR was far weaker because
LCMR performed much poorer in the community class. Overall, our algorithm performed better
in more classes, which proves that our algorithm improves the discrimination ability of different
ground objects. However, our method has a poor classification effect in Road and Sidewalk, and the
performance of other approaches in these two classes was also lower than their average level. These
two classes show the characteristics of “slender and long” land cover, possibly because this feature is
easily weakened in the process of FE. How to solve this problem is a topic worth discussing.

Table 6. Experimental results (percentage) on Houston University 2018 dataset obtained by different
methods. The best results are highlighted in bold.

Class Training
Set

Test
Set SVM LCMR RPNet MSTV GTR DBDA FDSI l0-l1HTV SpectralFormer OURS

1 100 9699 80.30 87.28 68.30 61.53 91.65 83.86 52.36 83.89 97.46 84.02
2 100 32,402 85.35 84.12 85.51 88.23 54.90 85.26 83.90 73.30 84.93 79.16
3 100 584 95.60 100.00 23.74 95.71 100.00 100.00 100.00 99.77 100.00 100.00
4 100 13,488 76.84 96.95 80.43 79.30 98.11 92.88 74.79 90.31 95.25 95.39
5 100 4948 26.93 93.72 26.24 44.39 86.90 79.91 50.70 79.92 82.50 95.56
6 100 4416 42.54 99.68 61.35 93.82 100.00 98.16 60.33 99.44 95.81 100.00
7 100 166 51.37 100.00 66.94 95.54 100.00 100.00 97.24 98.39 99.40 99.04
8 100 39,662 51.62 84.73 65.14 75.01 70.51 79.38 85.76 88.70 65.15 92.76
9 100 223,584 96.24 71.56 95.72 97.79 56.52 92.51 92.04 70.50 62.30 89.39

10 100 45,710 48.33 50.96 49.63 66.27 15.29 62.43 72.83 42.56 32.20 58.33
11 100 33,902 42.62 48.63 40.70 48.93 6.40 63.06 54.39 29.07 29.52 49.31
12 100 1416 4.54 76.91 5.76 9.71 12.50 35.62 12.80 73.33 45.83 85.00
13 100 46,258 59.19 55.57 69.27 82.14 30.90 69.78 86.11 61.13 35.25 69.88
14 100 9749 42.37 94.26 72.05 82.81 97.81 83.91 77.01 96.38 84.76 98.99
15 100 6837 60.40 99.60 66.39 94.96 92.69 91.87 91.04 95.58 96.31 98.51
16 100 11,375 56.61 89.47 55.27 82.77 41.40 82.86 83.44 67.27 70.58 84.88
17 100 49 4.65 100.00 2.46 40.20 100.00 84.94 44.89 100.00 100.00 100.00
18 100 6478 23.36 90.57 33.63 66.66 85.88 86.01 67.40 69.79 75.75 81.62
19 100 5265 30.00 97.43 53.70 80.18 80.58 90.81 66.64 81.81 85.38 92.05

20 100 6724 56.75 99.90 52.86 75.35 99.52 94.55 89.55 99.01 95.17 99.85

AA 51.78 86.07 53.76 73.07 71.08 82.89 72.16 80.01 76.58 87.69
OA 62.88 72.15 67.37 80.90 52.61 83.49 80.37 68.37 59.67 82.16

KAPPA 55.86 66.00 60.80 75.90 44.88 77.13 76.19 61.57 52.19 77.27

1: Healthy grass. 2: Stressed grass. 3: Synthetic grass. 4: Evergreen trees. 5: Deciduous trees. 6: Soil. 7: Water. 8:
Residential. 9: Commercial. 10: Road. 11: Sidewalk. 12: Crosswalk. 13: Major thoroughfares. 14: Highway. 15:
Railway. 16: Paved parking lot. 17: Gravel parking lot. 18: Cars. 19: Trains. 20: Seats.

Similarly, the computing time is given in Table 7. When the amount of data increased to the
dimension such as those seen in Houston University 2018 image, the running time of each method
was significantly different. In LCMR, the calculation of the covariance matrix feature of each pixel
consumes a lot of time, and manifold-based distance metric takes up plenty of storage space. In
MSTV, the structural features require more loops, and the kernel method is also time-consuming.
GTR also requires more calculations of ridge regression. Dual fusion framework in FDSI obviously
requires more computing time because of the pre-post-processing. In l0-l1HTV, the optimization
formula of the l0-l1 regularization terms need to divide into five subproblems, which, individually,
are constrained minimization problems that require many iterate computations. As for the deep
learning method, RPNet has a simpler architecture and was less time-consuming when compared
with other networks, but it still consumes more time to calculate the convolution of random patches
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in each layer, especially for large size images. In DBDA, selecting small pieces from the original
cube data cost a considerable amount of time. SpectralFormer needs hundreds of epochs to reach a
good performance.
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Figure 4. Houston University 2018. (a) False color composite image; (b) Ground truth image;
(c) SVM; (d) LCMR; (e) RPNet; (f) MSTV; (g) GTR; (h) DBDA; (i) FDSI; (j) l0-l1HTV; (k) Spectral-
Former; (l) Our method. Color illustrations of all classes are shown below.

Table 7. The computing time (seconds) of different methods for Houston University 2018.

Methods SVM LCMR RPNet MSTV GTR DBDA FDSI l0-l1HTV SpectralFormer OURS

Time 198.08 522.71 445.60 226.44 233.04 22,202.63 722.46 2743.76 6524.85 75.71

The time cost of our method mainly comes from the processing of ATVM and ITVM. When
inputting an HSI Rr∗c∗b, r and c are spatial dimensions, and b is the spectral dimension. The time
complexity of ATVM is O(rc), and the time complexity of ITVM is O(rc/ ln rc), both of which are
less time-consuming. For comparison, the time complexity of l0-l1HTV is O(rcb + z + rc log rc), and
the calculation time was far higher than ours. Intuitively, In ATVM, the scale size parameter acting
as the loop condition can control the number of the iteration within a few. In ITVM, the large value
of the fidelity parameter can greatly reduce the number of loops. The average fusion method only
involves the average sum operation, and SVD only decomposes one matrix, therefore, both of them
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consume quite little time. Overall, our method had the shortest computing time, which improves the
real-time application of HSI. Moreover, our classification performance is the best.

4. Parameter Analysis and Discussion
4.1. First Stage

In the first stage, the parameter n was first investigated. In light of the characteristics of average
fusion, n ranged from seven to 2/M (i.e., half the spectral dimension of the image), where seven could
ensure that the stacked features can complete the SVD in the second stage, which was 3 × 7 > 20.
The other parameters were fixed, with default values as stated in 3.2. The same controlled variable
method was used in the following experiments. All three datasets were tested, and their results are
shown in Figure 5.

As can be seen, with the increase of n, the classification results show a downward trend in the
Indian Pines, but a slight increase after n is greater than 90. The decline is much smaller in Salinas
and basically unchanged in Houston University 2018, especially for AA. Although there are certain
fluctuations in the trends, two points can be determined: First, the highest accuracies of the three
datasets were all basically achieved with a small n, and secondly, the time cost increases steadily with
the increase of n, especially in Houston University 2018. Therefore, n was set to 15 for our design.
Qualitatively, when n is small, more band information is fused to make the final performance better.
The results of Houston University 2018 dataset have little change because its spectral dimension was
low, only 48, which weakens the role of average fusion. The smaller n is, the smaller the spectral
dimension that is retained, naturally reducing the subsequent processing time. Moreover, the average
fusion itself has high computational efficiency. In conclusion, the average fusion method in our
design is the beginning of efficient processing.
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In the first stage, the second type of parameters, regularization parameter λ and scale size
parameter σ, were then investigated. In the three feature blocks to be stacked, we used the same σ

value, and then we set σ from one to six to observe the changes in the classification results shown in
Figure 6.

It can be seen that according to our design, when σ increases, there are additional loops, which
expands the time overhead, and when σ is large, the classification effect decreases. When is σ = 2,
our design yielded the best classification results in the three datasets. This means that when σ is two,
ITVM in our design can efficiently extract multi-scale information, especially considering that the
three datasets had a completely different scale and spatial resolution. This shows that this parameter
in our design adapts to a wide range of data types and is robust. Moreover, when σ is small, the
loop is naturally reduced, and the calculation time was saved. But σ from one to two increased the
computing time, so setting σ to two was a trade-off for accuracy.

Regularization parameters can control the degree of smoothness, which is an important part
of the optimization model. Our design used three different sets of regularization parameters, i.e.,
λ1 = 0.004, λ2 = 0.01, λ3 = 0.02, which are the only different values that were set in the first stage.
We conducted the experiments with Indian Pines. Figure 7 gives the featured blocks which output by
ATVM under different parameters. For comparison, the smoothed block after ITVM under λi in the
second stage is also shown here.
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As can be observed, when λ1 = 0.004, the information of various land cover is clear, λ3 = 0.02,
and only obvious edges are retained. With the increase of λ, the single band images are oversmoothed
and more blurred. Therefore, we chose three typical λ values to represent three different degrees
of smoothness. Besides, it can be seen from (d), in the single-band image after ITVM in the second
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stage, that the structure feature was strengthened, and the detailed information is better preserved.
Figure 7 shows the intuitive judgment. In the ATVM, the multi-scale structure information with
different smoothness was extracted, but the information of some samples with few pixels seems to
be weakened. However, through the ITVM in the second stage, the representation of each feature
information was strengthened, which intuitively shows the effectiveness of our two-staged design.

We selected five representative values at the three smoothing degrees, with an interval of 0.001,
and the classification results are shown in Figure 8. The values we chose yielded the best results, and
they were set as the default parameters. The range of smoothing parameters is wide, so we chose
representative values of three different smoothness degrees. The experimental results show that they
have the best results in the corresponding interval. Additionally this setting can yield satisfactory
classification accuracies for different datasets, as shown in Section 3.
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4.2. Second Stage
There are two main parameters in the second stage: the number k of the principal component

after SVD and the fidelity parameter µ. Similarly, k ranged from 10 to 40 with an interval of two,
with regard to of the dimension of the stacked feature blocks being 45 in the first stage. As shown in
Figure 9, with the increase of k, the classification performance improved stably on the three datasets.
When k was larger than 20, the metrics decreased in Indian Pines, Salinas remained stable, and there
was a slight improvement in Houston University 2018. We set 20 as the default k value. Qualitatively,
When the size of the image is large, more principal components act to enhance the feature information
so that the performance will improve. Still, when the image size is too small, such as the Indian
Pines, more principal components will bring redundant information and reduce accuracy. In addition,
the time overhead is mainly concentrated in the SVD calculation, and it steadily expands with the
increase of k. In summary, SVD can effectively extract the principal component information and
reduce the subsequent calculation time, playing a key role in our design. Parameter settings show
stability in three datasets, especially for large-scale images.

The fidelity parameter µ is very tolerant of large values according to [35]. We firstly performed
experiments to verify that this conclusion is also applicable to different HSIs. In our experiments, µ

ranged from 2 to 10 with step two and grew from 10 to 150 with step 10. The classification results
of the three datasets are listed in Figure 10. When µ increased to 10, the results were significantly
improved. When µ was greater than 20, the performance improvement in the three datasets became
slow and entered the stable zone. In addition, when the value of µ was large, the performance did
not fluctuate greatly and did not show a downward trend. It can be obtained that µ can tolerate
large values in different characteristics of HSI. From the formula, the larger the value, the stricter the
constraint on the fidelity term, the more delicate the smoothing of each feature, and there will be
no oversmoothed situation. We set as the default value of the proposed method. Parameter µ is an
important parameter in the second stage. Once again, the performance in three datasets fully proves
that our design is robust and stable.

Finally, the results of sending the output feature blocks of the first and second stages directly to
the classifier are shown in Figure 11. As a comparison, the results of feeding the raw data and the
average fused data to the classifier are also listed in this Figure. This experiment demonstrated that
the two stages’ designs contributed significantly to classification performance in the three datasets.
The results here more fully prove that our two-stage design is effective. Each stage plays an important
role and greatly improves the effect.
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5. Conclusions
To improve classification performance and reduce the time cost, this article innovatively pro-

poses an efficient two-staged FE method based on TV for HSI. Based on different solutions of
anisotropic and isotropic models, it successively completed the extraction of multi-scale structure
information and detail smoothing enhancement of HSI, yielding distinguished classification perfor-
mance. In addition, this design has no complex framework nor a redundant loop, which greatly
reduces computational overhead. When compared with many state-of-the-art algorithms, our method
can significantly outperform others in classification performance and computing time, especially
achieving better results in most classes. More importantly, we give a sufficiently detailed parameter
analysis and give the reasonable value and change explanation of each parameter from algorithm
design and performance. The results show that our method has strong robustness and stability in
various datasets, which further strengthens the advantages in hyperspectral practical application.

In the future, we will try to improve the classification performance of the “slender and long”
land cover distribution. Although our default parameters are applicable to the three datasets, adaptive
selection of parameters for different datasets is still an important improvement direction. In addition,
we still have some trade-offs between time and performance, giving its parallel implementation is the
primary key, especially considering the future development of HSI towards larger size and higher res-
olution. Finally, the practical application of HSIs is always a topic of discussion, which will face more
environmental factors and noise in the future. We can use the excellent solutions and ideas for dealing
with complex noise [56,57] for traditional images and transplant it to hyperspectral applications.
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