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Abstract: Landslide susceptibility mapping (LSM) is a useful tool to estimate the probability of
landslide occurrence, providing a scientific basis for natural hazards prevention, land use planning,
and economic development in landslide-prone areas. To date, a large number of machine learning
methods have been applied to LSM, and recently the advanced convolutional neural network (CNN)
has been gradually adopted to enhance the prediction accuracy of LSM. The objective of this study is
to introduce a CNN-based model in LSM and systematically compare its overall performance with
the conventional machine learning models of random forest, logistic regression, and support vector
machine. Herein, we selected Zhangzha Town in Sichuan Province, China, and Lantau Island in
Hong Kong, China, as the study areas. Each landslide inventory and corresponding predisposing
factors were stacked to form spatial datasets for LSM. The receiver operating characteristic analysis,
area under the curve (AUC), and several statistical metrics, such as accuracy, root mean square error,
Kappa coefficient, sensitivity, and specificity, were used to evaluate the performance of the models.
Finally, the trained models were calculated, and the landslide susceptibility zones were mapped.
Results suggest that both CNN and conventional machine learning-based models have a satisfactory
performance. The CNN-based model exhibits an excellent prediction capability and achieves the
highest performance but also significantly reduces the salt-of-pepper effect, which indicates its great
potential for application to LSM.

Keywords: landslide susceptibility mapping; convolutional neural network; machine learning; GIS;
Jiuzhaigou region; Lantau Island

1. Introduction

Landslides are one of the most serious hazards and are driven by geomorphology, ge-
ology, hydrology, and human activities [1]. Heavy rainfall, earthquake, and anthropogenic
activities can directly trigger catastrophic landslides. A review by Rawshan et al. [2] men-
tioned that more intense landslides would happen under the background of the increasingly
extreme weather events associated with climate change. When a large landslide occurs,
substantial casualties and infrastructure destruction can be caused. The prediction and
management of landslides are thus necessary to prevent and mitigate the losses caused
by such a hazard. However, due to the lack of reliable precursory data, it is generally
difficult to predict landslides in real-time at a good precision, i.e., forecasting their time,
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place, and magnitude. Another method similar to the landslide prediction is susceptibility
mapping, which predicts “where” landslides are more likely to occur in the future [1].
“Susceptibility” means the likelihood of landslide occurrence in a targeted region on the
basis of local conditions and predisposing factors [3]. Different from landslide prediction,
landslide susceptibility mapping (LSM) is commonly considered as the first stage in hazard
management and can provide a scientific guideline for further disaster management, as
it calculates the probability of landslide occurrence and identifies the landslide zone of a
specific area.

The association between landslides and their environmental factors is the basis of
susceptibility mapping. Previous LSM related studies have summarized some environ-
mental factors contributing to landslides, covering topography, land use and land cover
(LULC), precipitation, etc. For example, the typical factor of vegetation cover has been
proved to affect the slope stability, as its contribution of increasing slope material cohesion
and reducing pore water pressures by transpiration [4,5]; slope aspect exerts impact on
the direction of the rainfall and sunshine accumulation, which indirectly contributes to
the slope stability [6]. Moreover, the rock properties of the land surface are responsible for
the spatial distribution characteristics of landslides, especially the rock hardness. The rock
hardness inversely correlates with slope failure. An area where the rock hardness is strong
is not susceptible to landslides [7]. Therefore, we can adopt various methods to mine the
hidden pattern between landslide instances and corresponding environmental factors, and
then leverage this to predict susceptibility accurately.

Over the past years, various methods have been proposed and applied for dealing with
LSM, including qualitative and quantitative methods. Qualitative methods are knowledge-
driven based methods that are dependent on the experience of a geomorphologist [8,9].
Quantitative methods are gradually replacing these methods. Generally, quantitative
methods can be further divided into physical-based approaches and data-driven methods.
The former needs to comprehensively consider the conditions of geotechnical soils and
rocks around the landslides [10]. The development of GIS technology, statistical algorithms,
and machine learning has introduced various powerful data-driven methods for LSM.
Among them, the widely used models for LSM include, but are not limited to, analytical
hierarchy process [11,12], weight of evidence [13,14], discriminant analyses [15,16], naïve
Bayes (NB) [17,18], frequency ratio [19,20], index of entropy [21,22], and multivariate
regression [23]. In particular, some of the popular machine learning based-models such
as random forest (RF), logistic regression (LR), artificial neural networks (ANN), and
support vector machines (SVM) are widely used and have achieved satisfactory results in
LSM [24–27]. In addition, hybrid models integrated by statistical learning algorithms and
machine learning provide more options for LSM. These models include, but are not limited
to, ANN-fuzzy, fuzzy weight of evidence, EBF-fuzzy logic, adaptive neuro-fuzzy inference
system, and rotation forest [22,28].

More recently, in addition to the abovementioned methods, the convolutional neural
network (CNN)-based model has been applied to LSM [29–34]. As a powerful deep learning
technique, CNN has shown excellent performance in image classification and identification.
The attractive capability of CNN is that it can automatically extract robust and general
features from convolutional layers and pooling layers without excessive parameters [35].
As LSM is essentially a binary problem that mines the relationship between landslide
predisposing factors and landslides from the dataset and classifies the corresponding pixels,
CNN could also be appropriate for LSM. To the best of our knowledge, according to the
dimension of data representation, the current implementation of CNN-based models in
the LSM-related literature can be divided into two categories: (1) converting landslide
predisposing factors into 1D or 2D datasets to fit the need of the CNN and (2) using
3D datasets for LSM. The 1D or 2D data represents the environmental information of
landslide locations and do not exploit the spatial information, while 3D data contain the
information of the landslides and their surroundings [34]. A detailed comparison study of
these techniques can be found in [33].
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However, the literature review shows that previous research focused on comparing
machine learning and statistical methods, while only a few studies have attempted to
compare the CNN with conventional machine learning methods [36–39]. To fill the gap, it is
necessary to investigate these techniques and make a quantitative-systematic comparison.
Comparative study is a common research form in LSM literature, which is designed to
explore and compare the different models to realize reliable modeling results [40,41]. In light
of this, it is considered meaningful to make a comparative study of CNN and conventional
machine learning methods, two types of models with different data organization structures.
To best of our knowledge, this work is the first to propose a detailed comparative study on
the application of the CNN-based model and conventional machine learning methods in
LSM, which could provide an effective guide for researchers studying the susceptibility
assessment of natural disasters.

The objective of this study is to introduce a CNN-based model in LSM and system-
atically compare its overall performance with the conventional machine learning models
of random forest, logistic regression, and support vector machine in two typical study
areas constrained by the external environment (earthquakes and rainfalls). This work also
compares in detail these two types of models in terms of the dataset preparation and model
effectiveness. More specifically, three typical machine learning models, i.e., random forest,
logistic regression, and support vector machine, are selected as the pairwise comparison.
These three models have been proven to have good performance in LSM. Two landslide
inventories containing earthquake-triggered landslides and rainfall-induced landslides
are fed into the conventional machine learning models in terms of matrix form and fed
into a CNN-based model in terms of three-dimension (3D) tensors. A series of indices,
including the receiver operating characteristic (ROC), root mean square error (RMSE),
accuracy, and Kappa coefficients, are used to perform the model evaluation on the training
and testing sets.

2. Study Areas and Data
2.1. Study Areas

There are many triggering factors that contribute to landslide occurrences, such as
heavy rainfalls, earthquakes, and anthropogenic activities. Of these, heavy rainfalls and
earthquakes are common disasters around the world. In this work, we selected two typical
areas, Zhangzha Town and Lantau Island, as study areas that suffer from a catastrophe
earthquake and heavy rainfall, respectively.

Zhangzha Town is in Jiuzhaigou county on the eastern edge of the Tibetan Plateau,
located in Sichuan Province, southwest China, shown in Figure 1a. This area covers
approximately 1353 km2 spanning 103◦38′E and 104◦40′E, and 32◦54′N and 33◦24′N. Two
major geomorphic units, the Tibetan Plateau and the Sichuan Basin, transitioned here and
formed a typical valley zone with large undulations and steep slopes. About half of the
study area has a slope degree > 30.58◦. The majority lithological units are Triassic (40%)
and Carboniferous (38%). The tectonic activity has led to frequent earthquakes here. A total
of 49 earthquakes with Mw > 5.0 have occurred around the region in the last 100 years [42].
The latest one was the 8 August 2017 Mw 6.5 Jiuzhaigou Earthquake, triggering a large
number of co-seismic landslides. These landslides caused severe damage to the natural
landscape and disruption to the local traffic.

Lantau Island is the largest outlying island located at the southwest of Hong Kong
SAR, covering an area of around 147 km2. As shown in Figure 1b, the undulating and steep
terrain occupies most of the area of the island, while there is a small amount of flat ground
along the coastline, which makes the majority of the area exposed to certain landslide risks.
Meanwhile, Lantau Island enjoys a subtropical monsoon climate that is warm and dry in
winter and hot and humid in summer, accompanied by high annual average precipitation,
frequent high-intensity storms, and typhoons [43]. Under the combined influence of
topography and climate, Lantau Island is thus a landslide-prone area, attracting researchers’
attention. Moreover, the HK international Airport and Disneyland Resort on Lantau Island
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accept tourists from all over the world every year, which has aroused the concern of the
authorities for landslide hazard prevention.

Figure 1. Location of the study areas: (a) Zhangzha Town and (b) Lantau Island.

2.2. Landslide Inventories

Landslide inventory is fundamental to the research of landslide susceptibility. A
complete landslide inventory map (LIM) records the location, size, and distribution of
landslides, which can serve as basic data for further landslide studies.

Tian et al. [44] established a co-seismic landslide inventory around the epicenter of
the 2017 Jiuzhaigou earthquake. In their work, a series of high-resolution images before
and after the earthquake close to the seismic origin time, including the pre-seismic images
on the Google Earth (GE) platform and 0.5 m resolution Geoeye-1 post-seismic images,
were chosen for visual interpretation. Combined with the field investigation, a total of
4834 landslides were identified, dominated by small size rockfalls and debris flow. In these
landslides, the largest, smallest, and average area are approximately 236,336.2 m2, 7.7 m2,
and 1993.2 m2, respectively. In this work, considering the image resolution and the research
purpose, we selected 710 locations from the original landslide inventory. In addition, to en-
sure that the distribution pattern of the selected landslides was consistent with the original
inventory, we used the Subset tool in ArcMap to establish a sub-landslide inventory.

The Geotechnical Engineering Office (GEO), the government of Hong Kong, has
established a landslide inventory called the “Enhanced Natural Terrain Landslide Inventory
(ENTLI)” that records landslides that occurred from 1974 to 2018. This inventory, compiled
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by visual interpretation, includes almost all the landslides that have occurred in HK. In this
work, we selected only the 2492 landslides that occurred on Lantau Island in 2008 as the
training inventory without considering the time variation, thus keeping consistent with
Zhangzha Town in terms of the time dimension.

Note that all landslide locations in the two inventories were converted into raster data
with a grid size of 30 × 30 m using the nearest neighbor resampling method. Subsequently,
we divided each landslide inventory into two groups, including training (70%) and testing
(30%) data for the construction and testing of the landslide susceptibility model, respec-
tively. As the landslide susceptibility assessment is a binary classification problem that
needs positive and negative samples, non-landslide locations with the same proportion as
landslide data were randomly selected to balance the landslide inventory.

2.3. Landslide Predisposing Factors

The occurrence of landslides is closely related to the combination of various factors,
including topography, geology, and other environmental indexes. A proper combination of
predisposing factors can make the model more competitive [45]. Because of the complexity
of landslides and the diversity of triggering sources, the predisposing factors should be
chosen based on the circumstances of the specific area.

In study area of Zhangzha Town, 13 landslide predisposing factors, namely peak
ground acceleration (PGA), topographic wetness index (TWI), distance to rivers, distance to
roads, distance to faults, normalized difference vegetation index (NDVI), land use, lithology,
elevation, slope, aspect, topographic ruggedness index (TRI), and yearly precipitation, were
chosen for landslide susceptibility modeling. Table 1 outlines the data source.

Table 1. Information of predisposing factors for modeling Zhangzha Town’s landslide susceptibility.

Predisposing Factors Data Type Source Resolution

Elevation

Raster
Derived from the ASTER Global DEM

(http://earthexplorer.usgs.gov) acquired from the
USGS (accessed on 6 November 2021)

30 × 30 m
Slope aspect

Slope angle

TRI

TWI

Distance to roads Lines OpenStreetMap (https://www.openstreetmap.org/)
(accessed on 6 November 2021) -

Land use
Raster

Derived from the Sentinel-2A on the Google
Earth Engine 10 × 10 m

NDVI

PGA Polygon
Downloaded from the USGS

(https://earthquake.usgs.gov) (accessed on
6 November 2021)

-

Distance to rivers
Lines Derived from the geological map supported by the

China Geological Survey 1:500,000Distance to faults

Lithology Polygon

Yearly precipitation Raster
PDIR-Now satellite precipitation product

(http://chrsdata.eng.uci.edu/) (accessed on
6 November 2021)

4 × 4 km

PGA is an important indicator of the relationship between co-seismic landslide density
and the earthquake and is also a necessary factor in landslide susceptibility mapping [46].
In this study, the PGA data were adapted from USGS (https://earthquake.usgs.gov/)
(accessed on 6 November 2021), ranging from 0.12 to 0.26 g and classified into five groups:
<0.08, 0.08–0.16, 0.16–0.20, 0.20–0.24, and 0.21–0.26 (Figure 2a). In LSM, TWI is also a
frequently-used factor derived from the digital elevation model (DEM) that quantifies

http://earthexplorer.usgs.gov
https://www.openstreetmap.org/
https://earthquake.usgs.gov
http://chrsdata.eng.uci.edu/
https://earthquake.usgs.gov/


Remote Sens. 2022, 14, 321 6 of 31

topographic control on hydrological processes [47]. As shown in Figure 2b, the TWI
used in this work was divided into five categories, with the values of <5.19, 5.19–6.57,
6.57–8.29, 8.29–10.81, 10.81–15.21, and >15.21. The stability of a slope around a river will be
significantly affected by the fluctuation of water in the river [48,49]. The roads can affect
the spread and size of landslides. Therefore, the distances to rivers and roads derived
from a topographical map are considered as predisposing factors (Figure 2c,d). Note that
the buffer distance of roads and rivers was determined based on the characteristic of the
study area. NDVI is a crucial factor concerned with slope stability, especially in mountain
areas. Figure 2e shows that the NDVI is divided into five categories, with values ranging
from −0.41 to 0.80. Land use is another common factor contributing to landslides. Using
the supervised classification method of the SVM classifier on the Google Earth Engine
(GEE), the land use was classified into six categories, namely water, construction land, bare
land, dense forests, sparse forests, grass land, and others (Figure 2f). In this study, NDVI
and land use were derived from the pre-seismic Sentinel-2 data on the GEE. Geological
factors play a significant role in landslide susceptibility, including lithology and distance
to faults. The original lithology and faults from a geological map were provided by local
authorities with a 1:500,000 scale. The lithology of the study area mainly contains five
groups, including Triassic (T1, T2, T3), Carboniferous (C), Quaternary (Q, Qh), Devonian
(D), and Permian (P, P2) (Figure 2g). The distance to the faults was generated using a
Buffer tool and natural ruptures (Jenks) in ArcMap, which was classified into 0–1992 m,
1992–4276 m, 4276–6795 m, 6495–9665 m, and 9665–14936 m (Figure 2h). Morphological
factors including elevation, slope angle, slope aspect, and TRI were derived from the ASTER
Global Digital Elevation Model (Figure 2i–l). Precipitation data with the raw resolution
0.04◦ × 0.04◦ were downloaded from the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time
(PDIR-Now), developed by the Center for Hydrometeorology and Remote Sensing (CHRS)
at the University of California, Irvine (UCI).

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Maps showing landslide predisposing factors used in Zhangzha Town: (a) PGA, (b) TWI,
(c) distance to rivers, (d) distance to roads, (e) NDVI, (f) land use, (g) lithology, (h) distance to faults,
(i) elevation, (j) slope angle, (k) slope aspect, (l) TRI, and (m) yearly precipitation.

For modeling the landslide susceptibility of Lantau Island, ten predisposing factors
including elevation, slope aspect, slope angle, TRI, TWI, NDVI, distance to faults, lithology,
land use, and yearly precipitation were prepared. The maps of these landslide predisposing
factors and more details are provided in Figure A1, Appendix A.

All predisposing factors of Zhangzha Town and Lantau Island were converted into
raster data with a grid size of 30× 30 m, in accordance with the available landslide inventory.

3. Methodology

In the present study, modeling and mapping landslide susceptibility in Zhangzha
Town and Lantau Island involve four principal parts: (1) landslide factors selection using
information gain ratio (IGR), (2) integrating the landslide inventory and predisposing
factors to establish tensor datasets for the CNN-based model and vector datasets for
conventional machine learning methods, (3) landslide susceptibility modeling, (4) assessing
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the predictive capability of models, and (5) mapping the landslide susceptibility of the
study areas. A flowchart is shown in Figure 3.

Figure 3. Flowchart of this work.

The reason why the CNN module was selected for modeling the landslide susceptibil-
ity is that it is capable of capturing high level-features from the data effectively and it can
derive other deep learning techniques. Moreover, three typical machine learning models,
i.e., random forest, logistic regression, and support vector machine, were selected as the
pairwise comparison because these models have been proven to have good performance
in LSM.

3.1. Information Gain Ratio

The importance of predisposing factors is associated with their contribution to land-
slide occurrence. Factors combination that significantly affects the predictability of the
susceptibility model is worth discussion. In this work, we used the information gain
ratio (IGR) method to quantify the factors’ importance and select optimal combinations
before modeling. The IGR values of each factor were calculated via the Weka ver. 3.8.5, an
open-source software. The high IGR value of a factor indicates a high prediction ability for
modeling and vice versa [50].

Assuming that the training data D consists of n samples (landslide points), and can
be divided into the class Ci (landslide, non-landslide), then the information entropy of the
dataset which is split by class Ci can be calculated as

Ent(D) = −∑2
i=1

n(Ci , D)
|D| log2

n(Ci , D)
|D| (1)

The amount of information gain D1, D2 · · ·Dm, split from D regarding the predispos-
ing factor P, is estimated as

In f oGain(D, P) = Ent(D) −∑m
j=1

Dj
|D|Ent

(
Dj
)

(2)

However, the second term of the formula will be a smaller value as the number
of factor attribute categories increases, which may reduce the accuracy of the selection.
Thus, the information gain ratio was used to estimate the predictive ability of a certain
predisposing factor and can be written as

In f oramtiongainratio(D, P) = InfoGain(D,P)
SplitEnt(D,P) (3)
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where SplitEnt quantifies the potential information generated by dividing the training data
into m subsets as follows [9]:

SplitEnt(D, P) = −∑m
j=1
|Dj|
|D| log2

|Dj|
|D| (4)

3.2. Establishment of Spatial Datasets

Having the landslide inventory and predisposing factors, the next step is to format
and integrate these data into datasets for further modeling. As shown in Figure 4a, all
layers of landslide predisposing factors were stacked together to form a tensor with the size
of n × w × h, where n, w, and h represent the number of predisposing factors, the length,
and the width of the entire study area, respectively. Then, the specific pixel corresponding
to each landslide location was obtained by overlaying the landslide inventory with the
factor tensor. Note that the grid size of all the factor layers and the landslide inventory
should be the same to ensure that they can be pixel-by-pixel. As mentioned earlier, the grid
size of all raster data in this study was 30 × 30 m. However, the factor tensor had different
numerical ranges for each dimension. For instance, the slope aspect in Zhangzha Town
was divided into nine groups, while PGA was divided into six groups. Therefore, it was
essential to normalize each dimension of the factor tensor to improve the machine learning
algorithm’s convergent speed and accuracy [51].

Figure 4. Schematic diagram of the spatial datasets generation process: (a) Stacking the original
datasets, (b) preparing the tensor dataset for CNN-based model, and (c) the matrix dataset for
conventional machine learning methods.

Figure 4b shows the landslide and non-landslide locations extracted from the factor
tensor used in the deep learning model. The cell corresponding to each landslide location is
taken as the center and then expanded into a raster with a size of s × s (this is the window
size, and the tuning curves of the parameter are provided in Figure A2, Appendix A). Each
cell is assigned a value that contains the data of all the factor layers. In this way, more
environmental information around the landslides can be considered for further modeling
as opposed to just using one grid [34]. Similarly, the raster of non-landslide location is
extracted from the tensor data. The size of the raster used for learning should be set
according to specific demands. In this study, the size of the landslide and non-landslide
raster was 21× 21 in Zhangzha Town and 31× 31 in Lantau Island using the trial-and-error
approach. A total of i × 2 (i represents the number of landslides) training and testing
tensors with n dimensions extracted from the landslide inventory were generated. Table 2
summarizes the CNN datasets we produced. In this work, the GDAL, a python package
(ver. 2.3.2), was adopted to read the raster of each predisposing factor as an editable
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array. These data were then stacked and expanded via the Numpy package to feed the
CNN-based model.

Table 2. Number of pixels in the dataset of the CNN-based model.

Training Set Testing Set

Landslide pixels Non-landslide pixels Landslide pixels Non-landslide pixels
i × 2 × s × s × 70% i × 2 × s × s × 70% i × 2 × s × s × 30% i × 2 × s × s × 30%

Figure 4c is the diagram of dataset production for the conventional machine learning
method. The cell corresponding to each landslide location is extracted from all factor
layers and converted to a one-dimensional array with n elements. With the addition of
non-landslide sites and the label column, we finally obtain a matrix with a size of all
samples × n for learning. The whole process of generating the matrix data was imple-
mented in ArcMap 10.6.

3.3. Convolutional Neural Network (CNN)

The convolutional neural network is perhaps the most popular and widely used deep
learning algorithm, composed of three key components: convolutional, down-sampling,
and fully connected layers [52]. As the key of CNN, convolutional layers contain multiple
convolution kernels that extract finer feature information from the previous layer. Mean-
while, the shared weights strategy in the convolution layer allows the entire network to
be trained with fewer parameters than the fully connected network. The down-sampling
layer, known as the pooling layer, is leveraged to reduce the size of the feature information
as well as to improve the overfitting resistance of the model in the face of different data.
The fully connected layer actually acts as a classifier with the same structure as that of the
conventional fully connected network. The input of the fully connected layer is the high
dimensional features extracted by convolution and pooling operations. Various extended
CNN architectures have been proposed and applied in many fields using these basic layers.

As we know, not all landslide predisposing factors contain the same information.
That is, the contribution of each predisposing factor to landslide occurrence is different.
However, the basic CNN framework assumes that different bands contribute equally. Thus,
we added a lightweight channel attention module, namely the squeeze-and-excitation
network (SENet), into the pure CNN model. The SENet is capable of calculating the
importance of each channel (i.e., landslide predisposing factors) automatically and then,
based on the importance, enhancing the important features that are more meaningful to the
landslide modeling [53]. The SENet is an embedded network that mainly contains global
average pooling, a fully connected layer, as shown in Figure 5, and it can be expressed
as follows:

Z = 1
H×W

H
∑

i=1

W
∑

j=1
uc(i, j) (5)

S = Fex(Z, W) = σ(g(Z, W)) = σ(W2ReLU(W1Z)) (6)

Z̃ = Fscale(Zc, Sc) = Sc·Zc (7)

where Z is the result of the global average pooling operator that converts all factors channel
into a 1 × C vector, S is the weighted vector, W1 ∈ R(C/r)×C, W2 ∈ RC×(C/r), r is the scaling
parameters, and σ and g represent the Sigmoid and the ReLU function, respectively. Finally,
the Z̃ constrained by the attention mechanism can be obtained by the Z times the inputted
data. Note that the embedding of the SENet does not alter the size of each tensor in the
pure network and just results in a small extra cost.
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Figure 5. The architecture of the CNN-based landslide susceptibility model.

In landslide susceptibility mapping, the tensor dataset carrying information on all
predisposing factors is input to the convolutional layer. A series of features related to the
landslide event is extracted by the convolution operation. Moreover, the pooling layer
after the convolutional layer can filter the redundant information. Then, the previous
features match the label of input data in the fully connected layer. In the training process,
the parameters of CNN are constantly updated with the backpropagation algorithm until
an acceptable training accuracy is reached. In this study, the architecture of CNN was
designed as shown in Figure 5.

One limitation of the CNN-based model is the setting of its parameters, which takes
more time than the conventional machine learning methods. In addition, its code is more
complex because of the introduction of the pixel window. Considering the above lim-
itations, the computational efficiency of the CNN-based model is thus lower than that
of the conventional machine learning methods. On the other hand, the salt-of-pepper
effect that exists in the prediction results could be the limitation of the conventional ma-
chine learning methods. A detailed analysis concerning these limitations can be found in
Section 5.2 and Section 5.4.

3.4. Conventional Machine Learning Methods
3.4.1. Random Forest

Random forest (RF) is a popular machine learning method introduced by Breiman [54].
It is an ensemble algorithm that generates multiple decision trees with different classifica-
tion capabilities to learn input data using the bootstrap sampling strategy. The classification
is achieved by voting among all the independent decision trees in RF. Different from the
single decision tree, the input data of each tree in RF are randomly selected from all input
datasets. Each node is split using the subset of predictive features (i.e., landslide predispos-
ing factors) that are randomly selected [55]. In such a way, RF increases diversity among
the decision trees and improves the capability to handle the redundant data (over-fitting
resistance). Thus, RF is a useful method for mining the useful but hidden association
between features and targets within large amounts of data [28].

3.4.2. Logistics Regression

Logistic regression (LR), a generalized linear model, is widely used in mapping
landslide susceptibility. In this study, the dependent variable of LR was a binary variable
that represented the presence or absence of a landslide (1 means landslide and 0 means
non-landslide), and the independent variables were the 12 landslide predisposing factors.
The goal of LR is to describe the relationship between binary-coded landslide locations
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and the various landslide predisposing factors and estimate the probability of landslide
occurrence. The general expression of LR is as follows:

z = b0 + b1x1 + b2x2 + b3x3 + · · ·+bnxn (8)

p = 1
1+e−z (9)

where x1, x2, . . . , xn are the landslide predisposing factors, b0 is the intercept of the model,
parameters b1, b2, . . . , bn are the regression coefficients that must be determined, and p is
the probability of landslide occurrence.

In a regression model, the term multicollinearity implies that a perfect linear rela-
tionship exists among more than two variables, causing estimates of the model to not be
uniquely computed [50]. There is thus a need to implement multicollinearity diagnosis
before modeling. The variance inflation factor (VIF) and tolerances methods are commonly
used to quantify the multicollinearity among predisposing factors in landslide studies.
When the VIF is greater than 10 or the tolerance is smaller than 0.1, there is potential
multicollinearity in the datasets [9]. In this work, the abovementioned two indicators of
the corresponding landslide datasets in the two study areas are within the expected range,
thus implying no potential multicollinearity among landslide predisposing factors.

3.4.3. Support Vector Machine

As a machine learning method based on a structural risk minimization (SRM) strategy,
support vector machine (SVM) have been widely used in various classification and regres-
sion processes. For the classification of this tool, similar to other algorithms, a boundary
needs to be found to delineate the data space. The SVM algorithm achieves the goal of
classification by finding a hyperplane with the maximum distance from the classes [56].

Given a training dataset D(xi, yi) with n samples, where xi ∈ Rn and the labels
yi ∈ {1,−1}, a separating hyperplane is defined as

w · x + b = 0 (10)

where w is the coefficient vector that determines the direction of the hyperplane, and b is
generally referred to as the bias. Parameters w and b affect the hyperplane synthetically.
The optimization of w and b can be considered as a quadratic programming problem:

min
||w ||2

2
+ C

l

∑
i=1

ξi (11)

s. t. yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 (12)

where C is the penalty, ξi is the slack factor used for the soft-margin classifier, and l
is the number of support vectors. The optimal hyperplane is determined after solving
the optimization problem with the Lagrange multiplier ai. The classification function is
expressed as

f (x) = sgn
(

l
∑

i=1
aiyixi + b

)
(13)

For nonlinear classification, it is common to use nonlinear kernels to map data in a
high-dimensional feature space and then classify it using a separating hyperplane. By
introducing kernel functions, Equation (13) becomes

f (x) = sgn
(

l
∑

i=1
aiyiK(xi · x) + b

)
(14)

In this study, the radial basis kernel was chosen to be the kernel function K(xi · x) as

K(xi · x) = exp
(
−γ||xi − x ||2

)
(15)
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3.5. Generation of Landslide Susceptibility Maps

According to previous studies, there are two main approaches to generate landslide
susceptibility maps (LSM). One is first to calculate the susceptibility values of random points
in the study area and then perform inverse distance weighted (IDW) spatial interpolation,
which is an effective method to assign values to the entire area using limited points. Then,
the landslide susceptibility values are classified into various risk levels using the natural
breaking method. Another approach is to calculate the susceptibility values of all pixels of
the study area and then classify the values into five risk levels: very low, low, moderate,
high, and very high [16]. The choice between random point-based and pixel-based methods
is driven primarily by the considerations of study area size and computer performance.
An LSM generated by these methods can reflect the distribution of potential landslide
hazards with corresponding probability. However, the pixel-based LSM may require more
computer resources and code to implement when the study area is large. In this study,
the pixel-based method was used to generate landslide susceptibility maps. The GDAL
transformed each pixel assigned the predicted value into the raster data with the same
coordinate system and spatial resolution as the actual study area.

3.6. Model Performance Evaluation

This study overlaps landslide locations with the landslide susceptibility map for
model evaluation. The receiver operating characteristic (ROC) curve is considered an
effective metric for assessing the performance of predictive models, specially developed for
classification. A ROC curve is a graph with two axes corresponding to “1-specificity” and
“sensitivity”. Specificity is the proportion of landslide pixels that are correctly predicted as
landslides, Sensitivity is the proportion of non-landslide pixels that are correctly predicted
as non-landslide [55]. The area under the curve of ROC indicated by the value of area under
the curve (AUC) [57] is another index to test the model performance. The AUC values are
between 0.5 and 1. A larger value of AUC generally indicates that the corresponding model
can achieve a better performance. In detail, the AUC value can be divided into four levels:
poor (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), and excellent (0.9–1) [58].

Furthermore, several statistical indices, including the root mean square error (RMSE),
accuracy, and Kappa index, are adopted for model validation. Generally, a landslide sus-
ceptibility model with a lower RMSE value means that it performs better in predicting
landslide occurrence. A full description of the Kappa index can be found in the litera-
ture [59]. Following are the mathematical expressions of these indices. All metrics were
calculated using the metrics class of the Sklearn package:

RMSE = Sqrt
(

1
m ∑n

i=1

(
ypred. − yact.

)2
)

(16)

Accuracy = TP+TN
TP+TN+FP+FN (17)

Sensitivity = TP
TP+FN (18)

Specificity = TN
TN+FP (19)

Kappa =
Pobs−Pexp

1−Pexp
(20)

Pobs =
TP + TN

TS
(21)

Pexp = (TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)
TS (22)

Note: Accuracy, sensitivity, and specificity can be derived from the confusion matrix,
which is a table presenting the percentages of false positive (FP), false negative (FN), true
positive (TP), and true negative (TN) observations [60]. In RMSE, ypred. and yact. represent
the predictive and actual values, respectively. In Kappa, TS is the total number of landslide
samples in the study area.
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4. Results
4.1. Selection of Predisposing Factors

Figure 6 shows the contribution to the landslides of each factor calculated by the
information gain ratio (IGR), which was generated by OriginPro 2021. It can be seen
that, in the area of Zhangzha Town, the PGA has the highest IGR values of 0.092, while
the factors of TWI, yearly precipitation, and slope aspect are less than 0.01, indicating
that the weight of these factors is somewhat small. These results reflect the background
characteristics of the selected landslide inventory, that is, all samples in the inventory of
Zhangzha Town are earthquake-triggered landslides. In return, it could also confirm the
accuracy of the prepared data. Interestingly, the weight of yearly precipitation is much less
than that of PGA. One explanation for this could be that the strong earthquake ground
motion is magnified under the complex topography of Zhangzha Town, exerting a negative
impact on the hillslope stability, and this impact is much more significant than that of
rainfall [61,62].

Figure 6. The results of factors analysis of the IGR method for (a) Zhangzha Town and (b) Lantau Island.

Different from the IGR results of Zhangzha Town, the top three factors of Lantau
Island are lithology, TRI, and yearly precipitation. The yearly precipitation becomes a
governing factor among all factors, while the weight of elevation and related topographic
factors are slightly reduced. As described in Section 2.1, Lantau Island suffers from a high
annual precipitation, frequent high-intensity storms, and typhoons, thus resulting in the
high weight of rainfall.

In addition, the difference in the contribution of factors to landslides between Zhangzha
Town and Lantau Island allows us to analyze the generalization ability of the
susceptibility models.

4.2. Construction of Models

For the construction of CNN, hyperparameter tuning is the fundamental step to obtain
an expected model with high predictability. In this study, the related hyperparameters,
including convolutional kernel size, pooling size, loss function, optimizer, epoch, batch size,
learning rate, and activation function, were determined using five-fold cross-validation.
In terms of the RF, LR, and SVM models, the GridSearchCV method was adopted for
parameter tuning [63].

In the training process, the CNN operation on the dataset is as follows: the tensor
datasets containing comprehensive environmental information are first fed into two con-
volutional layers and two down-sampling layers for convolution and pooling operations,
generating high-level feature maps, then the feature map is flattened into the fully con-
nected layer and matched to the landslide label. Finally, the entire model can learn the
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pattern of landslide attribution and the surrounding environment. In terms of conventional
machine learning methods, the process is to input the landslide factor vector (representing
predisposing factors and training samples) into the model and match the landslide label
for training.

Figure 7 shows the training process of the CNN-based model, which can be used as
an indicator to determine whether the model converges or not. Intuitively, we hold the
idea that the training is completed when the loss of model converges (i.e., no significant
fluctuations along loss and accuracy curves). It can be observed that, in the area of Zhangzha
Town, the model loss shows a large fluctuation before 25 epochs and stabilizes around
epoch 35 over time. In terms of the model of the Lantau Island area, its training curves tend
to level off from epoch 65. These results demonstrate that the constructed model converged
after learning the hidden pattern between predisposing factors and landslides.

Figure 7. Training curves of the CNN-based model in (a) Zhangzha Town and (b) Lantau Island.

We used the register forward hook function of PyTorch to obtain the outputs of each
layer and then visualized it using the matplotlib package. Figure 8 shows the feature extrac-
tion process of the CNN-based landslide susceptibility model trained on Zhangzha Town.
It can be observed that the selected predisposing factors were fed into the network, and
then the high-level features were extracted layer by layer through different convolutional
operations. Finally, these high-level features reflect the contributions to landslide occur-
rence gathered at the output layers to generate the probability map of landslide occurrence.
That is to say, the trained CNN-based model can leverage all the landslide predisposing
factors simultaneously to map the landslide susceptibility.

The neural network and machine learning methods were performed under the Python
environment, outside of the GIS software. The CNN and conventional machine learning
models were developed by PyTorch 1.9.0 and Sklearn 1.0.1, respectively. The hardware
environment of this study was a personal computer with a 6 GB graphic card GTX1660Ti, a
2.6 GHz Intel®Core™ i7-9750H CPU, and 16 GB of RAM.

4.3. Model Comparison

To quantify the robustness and generalization ability of the susceptibility models,
we compared each model’s performance on two typical landslide inventories, including
earthquake-triggered and rainfall-induced landslides, based on the testing dataset, AUC,
and statistic measures. The results are shown in Figure 9 and Table 3. The ROC curves were
drawn by OriginPro based on the outputs gained from the metrics function in PyTorch. It
can be seen that, in the area of Zhangzha Town, the AUC values vary from 84.65% to 91.23%,
and the CNN-based model achieves the highest values (91.23%), followed by RF (89.92%),
LR (85.59%), and SVM (84.65%). Notably, the AUC value of the CNN-based model is 6.58%
higher than that of SVM. The CNN model has the highest probability of correctly predicting
the non-landslide pixels (specificity = 0.86), whereas the RF has the highest probability of
correctly predicting landslide pixels as landslides. The Kappa coefficient varies from 0.53
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to 0.67, satisfying the strength of agreement given the magnitude proposed by Landis and
Koch et al. [64]: 0.4–0.6 and 0.6–1 are moderate and almost perfect, respectively.

Figure 8. The feature extraction process of the CNN-based landslide susceptibility model of
Zhangzha Town.

Figure 9. ROC curves of different models on the testing dataset for (a) Zhangzha Town and
(b) Lantau Island.

For Lantau Island, the CNN-based model has the highest AUC value (92.70%), fol-
lowed by RF (90.79%), LR (86.45%), and SVM (86.24%). A similar pattern is also observed
in terms of accuracy, RMSE, Kappa, sensitivity, and specificity, which indicates a reasonable
agreement between the predicted landslides and the real ones.

Overall, the CNN-based model shows a better performance than the three conventional
machine learning (ML) models in predicting the landslide susceptibility of the two selected
areas. Furthermore, the AUC and statistical measures of the RF model are close to those
of the CNN-based model, and the predictive ability of the SVM and LR is significantly
similar. All of these susceptibility models achieved an acceptable performance, and the
CNN-based model outperformed the other three ML models with the help of its excellent
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feature extraction predictive ability in the study areas of Zhangzha Town and Lantau Island.

Table 3. Model evaluation and comparison on the testing datasets.

Study Areas Metrics
Landslide Susceptibility Models

CNN RF LR SVM

Zhangzha Town

ACC 0.83 * 0.82 0.78 0.76
RMSE 0.41 * 0.42 0.47 0.49
Kappa 0.67 * 0.64 0.56 0.53

Sensitivity 0.81 0.85 * 0.83 0.80
Specificity 0.86 * 0.80 0.73 0.73

Lantau Island

ACC 0.86 * 0.84 0.79 0.79
RMSE 0.38 * 0.41 0.46 0.46
Kappa 0.72 * 0.67 0.58 0.58

Sensitivity 0.85 0.86 * 0.80 0.79
Specificity 0.87 * 0.81 0.78 0.79

* denotes the best result.

4.4. Landslide Susceptibility Mapping

This study used the CNN, RF, LR, and SVM models to generate the landslide suscepti-
bility maps for Zhangzha Town and Lantau Island (Figures 10 and 11). All pixels in the
study area were fed into these trained models for calculating the landslide susceptibility
index (LSI). Then, the LSI was divided into five susceptibility levels, namely very low
(VLS), low (LS), moderate (MS), high (HS), and very high (VHS), using the natural break
approach in ArcMap10.6. The landslide susceptibility zones that indicate the ratio of each
susceptibility level to the whole study area were used to analyze the landslide susceptibility
maps qualitatively.

In the CNN-based model predicted landslide susceptibility map of the Zhangzha
Town, it was observed that the VHS area was relatively concentrated with 13% of the
study area, mainly distributed in the middle and northeast, and most landslide points
accurately fall into it. A similar spatial distribution of the VHS area was observed in the two
conventional ML method models, whereas the VHS and LS areas were lower than those of
the CNN-based models, with more than 50% of the area calculated as three susceptibility
levels ranging from low to high, as shown in Figures 10 and 12a.

Figure 11 shows the landslide susceptibility map of Lantau Island. It can be observed
that the western region of Lantau Island with steep terrain is MS to VHS, while the eastern
region is mostly VLS to LS. Additionally, as in the results for Zhangzha Town, a similar
tendency regarding the total area of VHS and VLS can be noticed, i.e., the CNN-based
model (79%) is significantly higher than RF (55%), SVM (50%), and LR (48%). A landslide
susceptibility zone of Lantau Island is shown in Figure 12b.
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Figure 10. Landslide susceptibility maps of Zhangzha Town using (a) convolutional neural network,
(b) random forest, (c) logistic regression, and (d) support vector machine.
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Figure 11. Landslide susceptibility maps of Lantau Island using (a) convolutional neural network,
(b) random forest, (c) logistic regression, and (d) support vector machine.

Figure 12. Landslide susceptibility zones for (a) Zhangzha Town and (b) Lantau Island.

5. Discussion

Landslide susceptibility mapping (LSM) is a useful tool in predicting the spatial
distribution of landslide occurrence. Over the past decades, LSM has gradually evolved
from early qualitative analysis to data-driven quantitative methods. The development of
machine learning methods in conjunction with the increase of Earth observation data allows
us to effectively mine the hidden pattern between landslides and their predisposing factors,
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which is the basis for susceptibility assessment. Recently, the convolutional neural network
(CNN), an effective feature extractor, has been gradually applied to deal with the LSM
problem. Compared with the conventional machine learning methods, the CNN-based
LSM model is different in many aspects, especially the organization form of the training
data and the spatial expression of the predicted results. Taking Zhangzha Town and Lantau
Island as the study areas, the present work compares in detail the differences between
the CNN-based model and conventional machine learning models in terms of dataset
preparation and model effectiveness. To the best of our knowledge, this work is the first
to comprehensively compare these two types of landslide susceptibility models, which
adds extra value to the literature of LSM or other natural disasters, such as floods and soil
erosion. In this subsection, we further discuss the applicability of the CNN-based model
from three perspectives: (1) modeling, (2) result analysis, and (3) limitations.

5.1. Model Parameter Analysis

Exploring the effects of hyperparameters on the accuracy of landslide susceptibility
modeling could allow us to understand the optimization process better to expand the
application to future research. In this subsection, four important hyperparameters of
the CNN model, the neurons in the hidden layer, batch size, activation function, and
optimizer (i.e., the optimization algorithm), are selected for discussion. Note that when
we analyze a specific parameter, the others were set to their optimal values as obtained
by cross-validation, which ensures that the independent effect of the hyperparameter
is captured.

Figure 13 shows the impact of the number of hidden layer neurons on the AUC value
of the validation dataset. It can be observed that the CNN model of Zhangzha Town
reached the highest AUC values when the neuron number was 700, and the worst result
with the number of 200. In terms of batch size, a series of batch size from 16 to 256 with the
power-of-two step were selected for comparison. The results are presented in Figure 13b,
indicating the optimal batch size is 30 and the lowest AUC is associated with a batch size
of 64. As can be observed from Figure 13a,b, the best activation function and optimizer for
modeling are the ReLU and AdaGrad, respectively.

Moreover, the mean deviation (M.D.) of AUC values of each hyperparameter was
calculated to measure its sensitivity to the modeling result. The higher M.D. of a hyperpa-
rameter is, the more sensitivity it has to the prediction accuracy. The activation function
has the highest M.D. (3.77%), followed by the optimizer (1.24%), batch size (1.19%), and
neurons in the hidden layer (0.57%). In the same way, the conclusion that the M.D. of the
optimizer is the highest in the CNN model of Lantau Island was obtained. In light of these
results, much more attention should be paid to the tuning of the activation function and the
optimizer when constructing the CNN-based landslide susceptibility model in Zhangzha
Town and Lantau Island.

Figure 13. Cont.
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Figure 13. Area under the curve (AUC) values of CNN-based model on testing dataset under different
hyperparameters: (a) the neurons in the hidden layer, (b) the batch size, (c) the activation function,
and (d) the optimizer.

5.2. Computational Efficiency

In recent years, machine learning methods have received extensive attention in LSM.
In this paper, CNN was applied to generate the LSM, and the comparative analysis results
show that the CNN model achieves a more satisfactory performance than conventional
machine learning methods. The performance of models is a vital issue as well as the goal
of LSM. Nevertheless, the computational efficiency also needs to be considered. In the
experiment, we found that although there is a GPU to accelerate the computation, the
CNN-based model consumes much more time than conventional machine learning models
in both the training and prediction phases. Accordingly, the performance of conventional
machine learning methods is acceptable when considering computational efficiency. On
the other hand, the CNN-based approach used in this study extends the LSM from the
point-based processing to the image-based processing with a greater potential operating
space in terms of the model construction. Compared to conventional machine learning
methods, the deep learning approach can be more flexible in changing the network and
dataset structure to suit the specific condition. For instance, Fang et al. [65] integrated
CNN with three conventional machine learning classifiers to assess landslide susceptibility.
The features extracted from the convolutional layers were input into the conventional
machine learning classifiers and obtained satisfactory results; Yang et al. [30] proposed a
hybrid CNN-based landslide susceptibility model for synchronously capturing the spatial
information and the correlated features among the environmental variables. Therefore, the
decision to use the CNN method or conventional machine learning methods needs to be
determined according to the specific conditions such as experimental equipment, model
performance, and disaster emergency degree.

5.3. Reliability Analysis of the Modeling Results

In this work, the performance of the CNN-based model that trained on two study areas
is higher than that of the corresponding three benchmark models. However, the ultimate
goal of susceptibility mapping is to provide scientific and practical advice on disaster
reduction for the civil protection department, rather than simply improving the modeling
accuracy. The time cost is a significant issue in disaster prevention and management, which
is also suitable in LSM [66]. Note that this time cost refers to the time it takes to determine
the target area based on the predicted results, not the modeling time. An ideal landslide
susceptibility model is capable of predicting the extreme values of very low and very high
susceptibility areas accurately [67].

Figure 14a,b shows the distribution of all sample points in different probability in-
tervals. It can be observed that most of the landslide points and random points (i.e.,
non-landslide points) are distributed at both ends of the probability interval, and the CNN-
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based model shows higher sensitivity to the very high and low susceptibility level (i.e.,
the probability of landslide occurrence is ~1 or ~0). Specifically, the CNN-based model
that was trained on Zhangzha Town has the highest percentage of landslides (95%) in the
range of the top 20% of the landslide probability, followed by RF (73%) and SVM (57%).
On the contrary, most non-landslide points fall in the interval with a lower occurrence
probability. Similar distribution curves of Lantau Island can be observed in Figure 14c,d.
These results demonstrate that the CNN-based model could better identify the very high
and very low susceptibility areas, which reasonably allows decision-makers to focus on
prevention targets in a disaster perspective view.

Figure 14. The distribution curves of the landslide and non-landslide points under different occur-
rence probabilities: (a,b) refer to the Zhangzha Town, and the (c,d) refer to the Lantau Island.

Additionally, sensitivity and specificity are two indicators used to quantify the per-
formance of the models for correctly predicting landslides or non-landslide areas. In this
work, these two indicators of the CNN-based model are in the satisfactory range and more
balanced as compared to the conventional ML models. All this considered, we can assume
that the prediction results of the CNN-based model are reliable and more in line with the
view of landslide risk management.

5.4. Analysis of the Salt-and-Pepper Effect in LSM

The salt-and-pepper effect often appears in image segmentation and classification. The
reason for this effect is that single pixels with different values cannot form homogeneous
areas [68]. Nevertheless, none of the previous studies analyzed the presence of the salt-
and-pepper effect in landslide susceptibility maps. The salt-and-pepper in the image
segmentation may make the results difficult to distinguish, which for LSM means that
this effect may destroy the coherence of the susceptibility assessment in the study area
and is not conducive to the subsequent hazards management. Therefore, it is necessary to
eliminate the impact of the salt-and-pepper effect in LSM.

Figure 15 shows the landslide susceptibility maps of different models for the same
region, demonstrating that the CNN-based model significantly reduces the salt-and-pepper
effect compared with the conventional machine learning-based models. A similar result can
be observed in Figure A3, Appendix A. The reason for this should be the difference in the
establishment of the datasets. As stated in Section 3.2, the training data of the conventional
machine learning model consists of single points and the corresponding predisposing
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factors. However, the CNN training data is expanded with the help of the pixel window,
where more pixels are given class labels, and more knowledge is learned by the model,
thus creating more homogeneous areas. Therefore, the CNN-based model is more suitable
for LSM when considering the salt-and-pepper effect.

Figure 15. Local magnification of Figure 10 (a–d): landslide susceptibility maps using (a) convolu-
tional neural network, (b) random forest, (c) logistic regression, and (d) support vector machine.

5.5. Limitations and Future Research

The results from the CNN-based model trained on the earthquake-triggered and
rainfall-induced landslide datasets show that it has the advantages of high prediction
ability on testing datasets and achieved the desired accuracy. However, the scale of the case
study areas, the limitation of this paper, should be acknowledged. In the case of landslide
risk management, the susceptibility assessment is usually conducted at the county level or
above. In this study, only a local area of Jiuzhaigou County and an outlying island in Hong
Kong were selected as the study areas, and the scale of these two areas is slightly small.
As described in Section 5.2, the CNN-based model takes longer to model and predict than
conventional machine learning methods; thus, its application to a larger target area may
need a trade-off between time efficiency and performance. Therefore, further research of
larger-scale areas is required to explore the robustness and reliability of the CNN-based
landslide susceptibility model. Another limitation of this study is that the DTM of Lantau
Island with a 5 × 5 m grid was resampled to 30 × 30 m for keeping the resolution of all
factors consistent, which may have resulted in the loss of some spatial information.

In addition, the framework of landslide susceptibility assessment based on the CNN
model can also be applied to landslide polygon recognition in theory. It is worth studying
the exact boundary between the two landslide risk reduction techniques.

6. Conclusions

This work compared and analyzed the performance of the CNN-based model and
conventional ML models for landslide susceptibility mapping (LSM) in two typical areas,
Zhangzha Town and Lantau Island, as study areas that suffer from catastrophe earthquakes
and heavy rainfall, respectively. The results demonstrate that the CNN-based model
achieved a superior performance over the conventional RF, LR, and SVM models. Moreover,
we presented a detailed guide for generating the training datasets for deep learning model-
based susceptibility modeling. The following conclusions can be drawn:
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1. Among four landslide susceptibility models (i.e., CNN, RF, LR, and SVM), the CNN-
based model exhibits the best predictive capability for LSM on the testing datasets.

2. Different from the datasets of conventional ML methods, the 3D dataset allows more
spatial information to be considered and learned by CNN-based models. The LSM
generated by the CNN-based model is not only sensitive to the high-risk landslide
zone but also significantly reduces the salt-and-pepper effect, which guarantees the
consistency of susceptibility assessment.

3. Although the CNN-based model achieved significant results, it consumed more time
than conventional ML models in both the training and prediction phase. When
assessing landslide susceptibility for large areas, time efficiency is an issue that must
be considered. Therefore, the choice of the LSM model should be a trade-off between
time efficiency and performance.

4. The results of the LSM would assist in disaster management and policy making
in the Jiuzhaigou region. Also, this study adds value to the literature of landslide
susceptibility mapping through a comparative study of CNN-based and conventional
ML models.

Additionally, we only used the typical models and network architecture and did
not combine engineering geology analysis methods into the model. In future research, a
sophisticated and specific CNN architecture should be designed for dealing with the LSM,
which may lead to better performance.
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Abbreviations

LSM landslide susceptibility mapping
CNN convolutional neural network
ML machine learning
AUC area under the curve
LULC land use and land cover
GIS geographic information system
RF random forest
ANN artificial neural network
SVM support vector machine
1/2/3D 1/2/3 dimension
GEE Google Earth Engine
IGR information gain ratio
SENet squeeze-and-excitation network
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ReLU rectified linear unit
SRM structure risk minimization
IDW inverse distance weighted
ROC receiver operating characteristic
RMSE root mean square error
LSI landslide susceptibility index
M.D. mean deviation
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Figure A1. Maps showing landslide predisposing factors in Lantau Island: (a) elevation, (b) slope
aspect, (c) slope angle, (d) TRI, (e) TWI, (f) NDVI, (g) land use, (h) distance to faults, (i) lithology, and
(j) yearly precipitation.

Figure A2. AUC variation of the CNN-based model with different window size.
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Figure A3. Local magnification of Figure 11 (a–d).

Table A1. Information of predisposing factors for modeling the Zhangzha Town landslide susceptibility.

Predisposing Factors Data Type Source Resolution

Elevation

Raster Esri China (HK) 30 × 30 m

Slope aspect

Slope angle

TRI

TWI

NDVI Raster Derived from Sentinel-2A on the Google Earth Engine 10 × 10 m

Land use Raster
Derived from the GLC_FCS30 datasets
(https://doi.org/10.5194/essd-13-2753-2021)
(accessed on 6 November 2021)

30 × 30 m

Distance to faults Lines Derived from the geological map supported by the Civil
Engineering and Development Department, HKSAR 1:100,000

Lithology Polygon

Yearly precipitation Raster PDIR-Now satellite precipitation product 4 × 4 km

Table A2. Information of the lithology in Lantau Island.

Symbol Geological Age Main Lithology

KG Cretaceous Granitic rocks
JG Jurassic Granitic rocks
JS Jurassic Sandstone, siltstone, and mudstone
JT Jurassic Tuff and lava
KT Cretaceous Tuff and lava
QS Quaternary Superficial deposits (silt, sand, and gravel)
RE - Fill

https://doi.org/10.5194/essd-13-2753-2021
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