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Abstract: The use of machine learning algorithms to classify complex landscapes has been revolution-
ized by the introduction of deep learning techniques, particularly in remote sensing. Convolutional
neural networks (CNNs) have shown great success in the classification of complex high-dimensional
remote sensing imagery, specifically in wetland classification. On the other hand, the state-of-the-art
natural language processing (NLP) algorithms are transformers. Although the transformers have been
studied for a few remote sensing applications, the integration of deep CNNs and transformers has not
been studied, particularly in wetland mapping. As such, in this study, we explore the potential and
possible limitations to be overcome regarding the use of a multi-model deep learning network with
the integration of a modified version of the well-known deep CNN network of VGG-16, a 3D CNN
network, and Swin transformer for complex coastal wetland classification. Moreover, we discuss the
potential and limitation of the proposed multi-model technique over several solo models, including a
random forest (RF), support vector machine (SVM), VGG-16, 3D CNN, and Swin transformer in the
pilot site of Saint John city located in New Brunswick, Canada. In terms of F-1 score, the multi-model
network obtained values of 0.87, 0.88, 0.89, 0.91, 0.93, 0.93, and 0.93 for the recognition of shrub
wetland, fen, bog, aquatic bed, coastal marsh, forested wetland, and freshwater marsh, respectively.
The results suggest that the multi-model network is superior to other solo classifiers from 3.36% to
33.35% in terms of average accuracy. Results achieved in this study suggest the high potential for
integrating and using CNN networks with the cutting-edge transformers for the classification of
complex landscapes in remote sensing.

Keywords: Swin transformer; 3D convolutional neural network; coastal wetlands; New Brunswick;
random forest; support vector machine; deep learning

1. Introduction

Wetlands are basically regions flooded or saturated by water for at least a portion of the
year, though this definition differs widely depending on the field of interest [1–3]. Wetlands
are vital for biodiversity, ecological security, and humans as they perform a variety of
functions and provide various ecosystem services [4–6]. Wetland services include climate
regulation, water filtration, flood and drought mitigation, shoreline erosion preservation,
soil protection, and wildlife habitat, among others [7–10]. Wetlands have deteriorated
and degraded considerably around the world in recent decades as a result of increased
human activity and climatic changes [11–13]. Wetland degradation has resulted in signifi-
cant ecological repercussions such as biodiversity loss, habitat fragmentation, floods, and
droughts [14–16]. Around two-thirds of the world’s wetlands have been lost or drastically
altered since the turn of the last century [17,18]. Land-use change due to the settlement
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of Europeans, development, agriculture, and associated bi-products such as re-direction
of run-off and pollution were all historical drivers of wetland loss in Canada [19]. On the
other hand, climate change has recently emerged as a serious environmental challenge that
has the potential to aggravate ongoing wetland loss and change [20,21]. Studies show how
climate change has the potential to increase the number of fires and affect the ability of
wetlands and neighboring habitats to recover from natural disasters [22,23]. On the other
hand, even though wetlands make up only 6% of worldwide land cover, wetland species
account for 24% of the world’s invasive plants [24]. Invasive species pose a severe threat
to coastal wetlands because they can develop in dense, monolithic stands, out-competing
native species and affecting the structure of wetlands [24]. A coastal wetland is an environ-
ment with a depth range between the lower subtidal zone, where sunlight can penetrate
and sustain photosynthesis by benthic plant communities, and the landward border, where
the sea’s hydrologic influence is ceded to groundwater and atmospheric processes [25,26].
These wetlands, which connect land and sea, are characterized by complicated hydrological
processes that are susceptible to degradation [27–29]. For enhancing our understanding of
ecosystem conditions and management strategies, such as biodiversity protection, habitat
assessment, and quantification of biogeochemical cycles and spatial patterns, precise and
up-to-date information on the spatial variability of wetlands is of great importance [30,31].

Wetland mapping on a large scale has long been difficult due to the high cost of
gathering data and wetland ecosystems’ extremely dynamic and remote nature [32,33].
Long-term monitoring of wetlands across Canada necessitates substantial field labor as well
as long-term human commitment and financial investment [34]. As such, data acquisition
using remote sensing methods opens unimagined possibilities for large-scale wetland
mapping [35]. Although remote sensing, like any tool, has limitations in wetland mapping
and monitoring, it has several features that make it well-suited for these tasks. For example,
remote sensing is both cost and time-effective because it eliminates the need for site visits
while also covering huge geographic areas [36]. Furthermore, remote sensing-generated
wetland maps can be updated on a frequent basis based on the temporal frequency of the
photos used for classification [37]. Another attribute of remote sensing that makes it ideal
for wetland mapping applications is its capacity to collect data from any point on the planet,
including inaccessible locations where wetlands are common. The spectral responses of
wetlands in various areas of the electromagnetic spectrum are utilized to understand their
characteristics. Given their sensitivity to various properties of wetland vegetation, previous
research reported improvement in wetland mapping by integrating multi-source remote
sensing data acquired from optical and synthetic aperture radar (SAR) sensors [7,9]. For
example, in Canada [6,26] and South Africa [9], despite the excellent results achieved from
single source optical data, a synergic methodology based on merging Sentinel-1 SAR data
and Sentinel-2 optical data proved to be more efficient for mapping of wetlands.

Another important criterion for accurate wetland classification using remote sensing
tools is the selection of an appropriate classification algorithm based on in-house supplies,
such as the presence of training data and computational power, as well as the complexity
and dimensionality of the satellite imagery to be classified. For example, algorithms such as
maximum likelihood cannot categorize multi-dimensional remote sensing data adequately.
Algorithms such as decision tree (DT) [38], random forest (RF) [39], and support vector
machines (SVM) [40] had better performance for the classification of high-dimensional
data. Despite the success of these supervised classifiers for image classification in remote
sensing, deep learning methods have received great attention for remote sensing image
classification [41–47]. In remote sensing applications, deep learning approaches, notably
the convolutional neural network (CNN), have currently outperformed classification al-
gorithms such as RF [48–51]. Instead of learning from empirical feature design, deep
learning algorithms learn from representation. Internal feature representations are learned
automatically; hence these methods are regarded as highly efficient approaches for image
classification tasks. The reason for this superiority is that, compared with shallow models
such as RF, deep learning algorithms usually find more generalized patterns in data [52,53].
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Moreover, deep learning approaches’ higher performance is also due to their ability to
include feature extraction in the optimization process [54]. CNN, a deep learning model
inspired by biological processes, is commonly used for remote sensing image classification
that has achieved high accuracy in high-dimensional and complicated situations [55–58].
CNNs have historically dominated computer vision modeling, specifically image classi-
fication. After the introduction of AlexNet [59] and its groundbreaking performance on
the ImageNet image classification task, CNN architectures have grown to become more
powerful through increased size [60], more extended connections [61], and more advanced
convolutions [62]. However, in natural language processing (NLP), transformers are now
the most widely used architecture [63]. The transformer is renowned for its use of attention
to model long-range patterns in data. It was designed for sequence modeling and transduc-
tion activities. Its enormous success in the language domain has prompted researchers to
investigate its application in computer vision. It has lately shown success on a number of
tasks, including a few remote sensing image classifications [64–67].

Despite the promising results achieved from the transformers in a few remote sensing
studies, this cutting-edge method’s capability integrated with deep CNNs has not been
investigated in wetland mapping. As such, this research aims to assess and illustrate the
transformer’s efficacy integrated with the capabilities of deep CNNs in the classification
of complex coastal wetlands. In particular, we develop a multi-model that uses three
networks of a well-known two-dimensional deep CNN of VGG-16 that uses the extracted
features of optical Sentinel-2 image, a three-dimensional CNN that utilizes normalized
backscattering coefficients of SAR Sentinel-1 imagery, and a Swin transformer that employs
a digital elevation model (DEM) generated from LiDAR point clouds. To the best of our
knowledge, the integration of transformers and CNNs has not been used and evaluated in
the remote sensing image classification, specifically for complex wetland classification.

2. Methods

Figure 1 presents the flowchart of the proposed method. As seen, Sentinel-1 and
Sentinel-2 features were collected from the Google Earth Engine (GEE) platform, while
DEM was generated from LiDAR data with the use of QGIS software and the LAS tool.
Then, the Python programming language was employed to develop the proposed multi-
model DCNN classifier. Results of the proposed classifier were then compared with Swin
transformer, 3D CNN, VGG-16, RF, and SVM classifiers. Finally, coastal wetland classified
maps were produced in QGIS software.

2.1. The Proposed Multi-Model Deep Learning Classifier

The architecture of the proposed multi-model deep learning algorithm for the classifica-
tion of coastal wetlands is presented in Figure 2. To efficiently use and integrate capabilities
and power of CNN networks with the state-of-the-art transformers, the proposed multi-
model deep learning network has three branches: a modified version of VGG-16 CNN,
a 3D CNN, and the Swin transformer. We experimentally used image patches of 4 × 4
for Sentinel-2 features with 12 bands in the VGG-16 network, image patches of 8 × 8 for
Sentinel-1 features with four bands in the 3D CNN network, and image patches of 8× 8 for
the DEM generated from the LiDAR data with one band in the Swin transformer network.
The reason behind using smaller image patch sizes is that using larger image patches would
significantly affect the linear objects of urban areas (i.e., they will lose their linear geometry).
Moreover, urban regions would be over-classified by the utilization of large image patches.

The 3D CNN network has three convolutional layers (i.e., two 3-D convolutional layers
and one 2-D convolutional layer). As seen in Figure 2, in the 3D CNN, experimentally, we
used 8 × 8 image patches of four backscattering coefficients of σ0

VV , σ0
VH , σ0

HH , and σ0
HV .

The first two 3D convolutional layers have 64 filters (8× 8× 4× 64). Then, we reshaped the
3D convolutional layer into 2D. The last layer is a 2D convolutional layer with 128 filters,
followed by a max-pooling layer that reduces the image patches into 4 × 4. On the other
hand, we experimentally used 4 × 4 image patches of 12 spectral bands and indices of
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Sentinel-2 image in the VGG-16 network. There are 13 convolutional layers in the well-
known CNN network of VGG-16, as presented in Figure 2. It is worth highlighting that to
decrease the computation cost of the VGG-16 deep CNN network, we reduced the number
of filters compared with the original VGG-16 architecture. In addition, as we are using
image patches of 4 × 4 for the input of the VGG-16 network, we are using max-pooling
layers with kernel sizes of 1 × 1. Then, the feature output of the 3D CNN and VGG-16
networks was concatenated to form image patches of 4 × 4 with 256 filters. Afterward, we
used a flatten layer of size 512, followed by two dense layers with sizes of 100 and 50.
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We used the DEM data with a patch size of 8 × 8 in the Swin transformer network. It
is worth highlighting that the first two layers of the Swin transformer model (i.e., random
crop and random flip) are data augmentation techniques. Afterward, in the patch extract
layer, from input images, image patches of 2× 2 were extracted and transformed into linear
features of size 4, resulting in an output feature of 16 × 4. Then, in the patch embedding
layer, as we used an embedding dimension of 64, the output feature was size 16 × 64. In
the embedding layer, image patches are converted (i.e., translated) into vector data to be
used in transformers. Afterward, the output vectors are passed into the Swin transformers.
Then, the output features of the Swin transformer are merged by a patch merging layer
resulting in an output feature of 4 × 128, followed by a 1-D global average pooling with
a size of 128. The final layer of the Swin transformer is a dense layer of size 50 that is
concatenated by the concatenation of the results of the other two networks of 3D CNN
and VGG-16 into a feature size of 100. The final layer of the multi-model deep learning
algorithm is a dense layer with a size of 11 using a softmax activation function. The Swin
transformer is discussed in more detail in the next section.

2.2. Study Area and Data Collection

The study area is located in Saint John city in the southcentral part of New Brunswick
province, Canada (see Figure 3). Saint John city, which is on the Bay of Fundy, has an area
of approximately 326 km2 with a population of around 71,000. The city is divided by the
south-flowing river, while the Kennebecasis River, which enters the Saint John River near
Grand Bay, runs through the east side. At the confluence of the two rivers and the Bay of
Fundy, Saint John harbor is a deep-water harbor with no ice all year. The city has a humid
continental climate.
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We used Sentinel-1, Sentinel-2, and LiDAR data to classify seven wetland classes,
including aquatic bed, bog, coastal marsh, fen, forested wetlands, freshwater marsh, and
shrub wetland. The wetland ground truth data was acquired from the 2021 wetland inven-
tory of New Brunswick (http://www.snb.ca/geonb1/e/DC/catalogue-E.asp, accessed on
6 December 2021) (see Figure 3). Wetland inventory is collected and yearly updated by the
Canadian Department of Environment and Local Government (ELG). Wetland maps are
provided by the Department of Environment and Local Government in notifying primary
users of wetlands and potential regulatory obligations for land development. To avoid
over-classification of wetlands in the pilot site, we manually extracted four additional
non-wetland classes of water, urban, grass, and crop through visual interpretation of very
high-resolution imagery of Google Earth. The number of training and test data is presented
in Table 1. It is worth highlighting that we used a stratified random sampling technique to
divide our ground truth data into 50% as training and 50% as test samples.

http://www.snb.ca/geonb1/e/DC/catalogue-E.asp
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Table 1. The number of training and test pixels for the wetland and non-wetland classes in the pilot
site of Saint John, New Brunswick, Canada.

Class Training (Pixels) Test (Pixels)

Aquatic bed 4633 4633
Bog 2737 2737

Coastal marsh 607 608
Fen 11,306 11,305

Forested wetland 23,212 23,212
Freshwater marsh 5233 5232

Shrub wetland 11,285 11,285
Water 5058 5059
Urban 8129 8129
Grass 718 717
Crop 1409 1410

The Sentinel-1 and Sentinel-2 image features, including normalized backscattering
coefficients, spectral bands, and indices (see Table 2), were created in Google Earth Engine
code editor (https://code.earthengine.google.com/, accessed on 6 December 2021). In this
study, for extracting features of Sentinel-1 and Sentinel-2 data, the median image values
between 1st June to 1st September 2020 were created utilizing the GEE code editor. It is
worth highlighting that GEE provides Sentinel-2 level-2A data that is pre-processed by
sen2cor software [68]. Although bands of Sentinel-2 image have different spatial resolutions
(10 m, 20 m, and 60 m), all bands are resampled into 10 m spatial resolutions in the GEE code
editor. On the other hand, the GEE platform provides Sentinel-1 ground range detected
(GRD) data, including σ0

VV , σ0
VH , σ0

HH , and σ0
HV that is log scaled at 10 m spatial resolution.

The provided Sentinel-1 data are pre-processed by Sentinel-1 toolbox, including thermal
noise removal, radiometric calibration, and terrain correction. To improve the classification
accuracy of wetlands in the pilot site of Saint John, we created a DEM from LiDAR data
using Las Tools (https://rapidlasso.com/lastools/, accessed on 6 December 2021) in QGIS
software. It should be noted that the DEM was resampled into 10 m to be stacked with the
Sentinel-1 and Sentinel-2 image features. It is worth highlighting that the LiDAR data had
a point density of 6 points per 1 m2.

Table 2. The normalized backscattering coefficients, spectral bands, and indices used in this study
(NDVI = normalized difference vegetation index, NDBI = normalized difference build-up index).

Data Normalized Backscattering
Coefficients/Spectral Bands Spectral Indices

Sentinel-1 σ0
VV , σ0

VH , σ0
HH , σ0

HV

Sentinel-2 B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12

NDVI = (NIR−R)
(NIR+R)

NDBI = (SWIR−NIR)
(SWIR+NIR)

2.3. Experimental Setting

In this study, we used the Adam optimizer to train our proposed multi-model deep
learning network as well as the other deep learning models, including the modified version
of the VGG-16 network, 3D CNN, and Swin transformer with a learning rate of 0.0002.
We set the maximum training iteration to 100 epochs with a batch size of 32. In the Swin
transformer, we used patch size, dropout rate, number of attention heads, embedding
dimension, number of multi-layer perceptron, and shift size of 2 × 2, 0.03, 8, 64, 256,
and 1, respectively. It is worth highlighting that for the implementation of classifiers, we
used a graphical processing unit (GPU) of NVIDIA GeForce RTX 2070, an Intel processor
(i.e., i7-10750H central processing unit (CPU) of 2.60 GHz), and a 16 GB random access
memory (RAM) operating on 64-bit Windows 11 in our experiments. All deep learning

https://code.earthengine.google.com/
https://rapidlasso.com/lastools/
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algorithms were developed in the Python TensorFlow library, while the RF and SVM
classifiers were implemented using sklearn Python library.

2.4. Evaluation Metrics

To assess the quantitative performance of the developed models, coastal wetland
classification results were evaluated in terms of average accuracy, recall, overall accuracy,
precision, and kappa index statistical metrics (Equations (1)–(6)):

Precision =
True positive

(True positive + False positive)
(1)

Recall =
True positive

(True positive + False negative)
(2)

Average Accuracy =
∑n

i=1 Recalli
n

× 100 (3)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Ovrall Accuracy =
(True positive + True Negative)

Total number of pixels
× 100 (5)

Kappa =
p0 − pe

1 − pe
, p0 =

∑ xii
N

, pe =
∑ xi+xi+

N2 (6)

where xi+ is the marginal total of row I, the total number of observations is shown by N,
and xii is observation in row i and column i.

2.5. Comparison with Other Classifiers

For the evaluation of the efficiency of the proposed multi-model deep learning algorithm,
the coastal wetland classification results were compared with several algorithms, including:

Swin Transformer—Differences between the two domains of language and vision,
including substantial variations in the scale of visual entities and the high resolution of
pixels in pictures compared with words in texts, pose challenges in adapting transformer
models from language to vision. As such, the Swin transformer introduced a hierarchical
transformer whose representation is computed with shifted windows to address these
issues [69] (see Figure 4). The shifted windowing technique improves efficiency by limiting
self-attention computation to non-overlapping local windows while allowing for cross-
window connectivity. This hierarchical architecture can predict at multiple scales and has a
linear computing complexity as image size increases. Swin transformer’s characteristics
make it suitable for a wide range of vision tasks, such as image classification.
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The shifted window partitioning strategy is successful in image classification, object
detection, and semantic segmentation as it introduces links between neighboring non-
overlapping windows in the previous layer (see Figure 5).
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Figure 5. Illustration of high efficiency of batch computation for self-attention in shifted window
partitioning [69].

Swin transformer blocks are computed consecutively using the shifting window
partitioning method as (see Equations (7)–(10)):

ẑl = WMSA(LN(zl−1)) + zl−1 (7)

zl = MLP(LN(ẑl)) + ẑl (8)

ẑl+1 = SWMSA(LN(zl)) + zl (9)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1 (10)

where ẑl and zl present the outputs of (S)W-MSA and MLP module of block l, respectively.
SW-MSA and W-MSA are multi-head self-attention modules with shifted windowing and
regular settings, respectively (for more information, refer to Liu et al. [69]).

Random Forest—In remote sensing image classification, RF [70] is an extensively used
ensemble learning method that has shown great success in high-dimensional and complex
issues [7,71–73]. Moreover, RF is also an effective feature selection technique as it reveals the
importance of each band of earth observation images. As such, RF is regarded as one of the
most used methods for accurate image classification. It is worth highlighting that the use of
highly-important features does not guarantee that this is the best combination of features
for a specific issue. For example, high-dimensional data typically has a high number of
correlated variables, which negatively impacts the feature selection process [74]. Within
complex heterogeneous landscapes with low inter-class discrimination and high intra-
class variability, supervised classification of remote sensing data using machine learning
techniques such as RF has the power to tackle drawbacks of using a single index or simple
linear regression models [75,76].

Support Vector Machine—The SVM [40] is non-parametric, unlike conventional
statistic-based parametric classification techniques. The distribution of the data set has
no influence on SVM. This is one of the benefits of SVMs over other statistical methods
such as maximum likelihood, which require data distribution to be known in advance.
SVMs, in particular, use the training data to generate an optimal hyperplane (a line in
the simplest scenario) for dividing the dataset into a discrete number of predetermined
classes [77]. It is worth mentioning that the SVM’s accuracy is mostly determined by the
variants and parameters used. It should be noted that while SVM is among the most
utilized non-parametric machine learning algorithms, its performance decreases with a
large amount of training data [78].

Convolutional Neural Network—Deep learning algorithms based on CNNs have be-
come a prominent remote sensing image classification topic in the last decade [55,56,58,79].
The input nodes for the classifier in CNN classification include a single-pixel and local sets
of adjacent pixels. The CNN learning process includes determining appropriate convolu-
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tional operations and weights for different kernels or moving windows, which enables the
network to model useful spatial contextual information at various spatial scales [80,81].
Different filters and convolutional layers extract spatial, spectral, edge, and textural infor-
mation, enabling a high degree of data generalization in CNNs. Because CNNs enable
local connection and weight sharing principle, CNN has shown great robustness and
effectiveness in spatial feature extraction of remote sensing images compared with other
deep learning techniques such as RF. The convolution, pooling, and fully connected layers
comprise a CNN architecture. The convolution layer contains two key elements: kernels
(i.e., filters) and biases. The filters are designed to extract certain information from the im-
age of interest. By decreasing the resolution of the feature map, the pooling layer provides
translation invariance. Finally, the fully connected layer uses the extracted information
from all the previous layer’s feature maps to create a classification map [82]. Based on
the weights (W) and biases (B) of the previous layers, in each layer (l) of a CNN, low-,
intermediate-, and high-level features are extracted that are updated in the next iteration
(Equations (11) and (12)):

∆ Wl (t + 1) = − xλ

r
Wl −

x
n

∂C
∂Wl

+ m ∆ Wl (t) (11)

∆ Bl (t + 1) = − x
n

∂C
∂Bl

+ m ∆ Bl (t) (12)

where n, x, and λ denote the total number of training samples, the learning rate, and a
regularization parameter. Moreover, m, t, and C are momentum, updating step, and cost
function. According to the dataset of interest, to obtain an optimal result, regularizing
parameter (λ), the learning rate (x), and momentum (m) are fine-tuned.

VGG-16 [83]—The University of Oxford’s Visual Geometry Group created this 16-layer
network with approximately 138 million parameters that were trained and evaluated on
the ImageNet dataset. The original VGG-16 model architecture is consists of 3 × 3 kernel-
sized filters that enable the network to learn more complex features by increasing the
network’s depth [84]. It is worth highlighting that to reduce the complexity of the original
VGG-16 model and reduce the computation cost, we experimentally replaced some of the
3 × 3 kernel-sized filters with 1 × 1 kernels while reducing the number of filters.

3. Results
3.1. Comparison Results on the Saint John Pilot Site

Comparison results of the complex coastal wetland classification using the developed
models are shown in Table 3. It is worth highlighting that we used image patches of
8 × 8 in the solo 3D CNN, Swin transformer, and VGG-16 networks. The proposed multi-
model deep learning network achieved the best results compared with other classifiers,
including the Swin transformer, VGG-16, 3D CNN, RF, and SVM classifiers in terms of
average accuracy, overall accuracy, and kappa index with values of 92.68%, 92.30%, and
90.65%, respectively. In terms of F-1 score, the multi-model network obtained values of
0.87, 0.88, 0.89, 0.91, 0.93, 0.93, and 0.93 for the recognition of shrub wetland, fen, bog,
aquatic bed, coastal marsh, forested wetland, and freshwater marsh, respectively. The
multi-model network outperformed the solo 3D CNN, Swin transformer, and VGG-16 in
terms of average accuracy by 8.92%, 13.93%, and 17.31%, respectively. Based on the results,
in terms of average accuracy, the Swin transformer (78.75%) network achieved slightly
better results compared with the well-known deep CNN network of VGG-16 (75.37%). On
the other hand, the RF classifier had the best performance over the solo 3D CNN, Swin
transformer, VGG-16, and SVM in terms of average accuracy by 5.56%, 10.57%, 13.95%,
and 29.99%, respectively. The results revealed the higher capability of the RF classifier over
the SVM algorithm in dealing with a noisy, complex, and high-dimensional remote sensing
environment. It is worth highlighting that the performance of the SVM classifier highly
depends on the predefined parameters and kernels. As such, in this study, we examined
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different kernel types, including linear, radial basis function (RBF), polynomial, and sigmoid.
The SVM with a polynomial kernel achieved the best results, as shown in Table 3.

Table 3. Results of the proposed multi-model compared with other classifiers in terms of aver-
age accuracy, precision, F1-score, and recall (AB = aquatic bed, BO = bog, CM = coastal marsh,
FE = fen, FM = freshwater marsh, FW = forested wetland, SB = shrub wetland, W = water, U = urban,
G = grass, C = crop, AA = average accuracy, OA = overall accuracy, and K = kappa).

Model AB BO CM FE FW FM SB W U G C AA (%) OA (%) K (%)

Multi-model 92.68 92.30 90.65
Precision 0.92 0.89 0.96 0.97 0.89 0.92 0.89 0.99 0.98 0.99 0.99

Recall 0.91 0.90 0.89 0.81 0.97 0.94 0.86 1 1 0.97 0.96
F-1 score 0.91 0.89 0.93 0.88 0.93 0.93 0.87 1 99 0.98 0.98

Swin
Transformer 78.75 79.79 75.36

Precision 0.85 0.69 0.82 0.75 0.76 0.78 0.75 0.94 0.94 0.93 0.90
Recall 0.78 0.67 0.58 0.68 0.89 0.90 0.52 0.99 0.95 0.79 0.91

F-1 score 0.81 0.68 0.68 0.72 0.82 0.83 0.62 0.97 0.94 0.85 0.91
3DCNN 83.76 85.38 82.13
Precision 0.88 0.79 0.95 0.79 0.80 0.90 0.87 0.99 0.99 0.81 0.97

Recall 0.86 0.67 0.64 0.78 0.95 0.89 0.61 0.99 0.99 0.96 0.88
F-1 score 0.87 0.73 0.77 0.78 0.87 0.90 0.72 0.99 0.99 0.88 0.92
VGG-16 75.37 81.13 76.76
Precision 0.90 0.85 0.84 0.83 0.73 0.80 0.79 0.98 0.94 0.88 0.90

Recall 0.82 0.52 0.35 0.68 0.95 0.89 0.54 1 0.94 0.74 0.88
F-1 score 0.85 0.64 0.49 0.75 0.83 0.84 0.64 0.99 0.94 0.80 0.89

RF 89.32 91.54 89.74
Precision 0.93 0.97 0.89 0.92 0.88 0.91 0.88 1 0.97 0.98 0.94

Recall 0.91 0.84 0.66 0.88 0.94 0.93 0.83 1 0.99 0.89 0.96
F-1 score 0.92 0.90 0.76 0.90 0.91 0.92 0.85 1 0.98 0.93 0.95

SVM 59.33 69.47 62.18
Precision 0.74 0.71 0 0.64 0.66 0.56 0.61 0.86 0.94 0.81 0.77

Recall 0.55 0.27 0 0.58 0.91 0.82 0.24 0.99 0.89 0.55 0.73
F-1 score 0.63 0.39 0 0.60 0.77 0.66 0.34 0.92 0.91 0.65 0.75

Overall, better results obtained by the multi-model algorithm over other solo classifiers
showed the superiority of using a model consisting of several different networks over a
single deep learning network. Each network of the multi-model algorithm extracted
different useful information from multi-data sources (i.e., Sentinel-1, Sentinel-2, and DEM),
resulting in significantly improved coastal wetland classification over a single network
deep learning model (see Table 3).

3.2. Confusion Matrices

The highest confusion between wetlands was obtained by the SVM classifier. The
SVM algorithm had issues with the correct classification of coastal marsh, bog, and shrub
wetlands (refer to Table S1 of Supplementary Materials). As discussed in the previous
sections, the inherited complexity of the Saint John environment, speckle noise of Sentinel-1
data, and the number of training data can be attributed as the reasons behind the underper-
formance of the SVM classifier over the other implemented methods. On the other hand,
the proposed multi-model deep learning algorithm achieved the least confusion between
the wetlands.

3.3. Classification Maps

Figure 6 presents the coastal wetlands classification maps using the proposed multi-
model deep learning algorithm, 3D CNN, VGG-16, Swin transformer, RF, and SVM clas-
sifiers. The proposed deep learning classifier obtained the best visual result compared
with other machine learning methods. For instance, the SVM classifier showed under-
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classification for the recognition of coastal wetland class while other methods, including
3D CNN, Swin transformer, VGG-16, and RF had over-classification of the coastal wetlands.
Moreover, for the identification of the aquatic bed wetlands, 3D CNN, VGG-16, and RF clas-
sifiers showed over-classification, as shown in Figure 6. It should be noted that systematic
stripes in Figure 6f,g that are wetlands classified by the RF and SVM algorithms are due to
the resampling technique of nearest neighbor that was used for mosaicking several patches
of high-resolution LiDAR DEM data. It is possible to remove such noises by using image
smoothing techniques such as a three by three mean filter, but we did not utilize them to
investigate the effects of such noises on the performance of patch-based (i.e., CNNs) and
pixel-based (i.e., traditional algorithms) classifiers. From Figure 6, it is clear that patch-
based classifiers that consider both spatial and spectral information are not affected by such
noises compared with pixel-based techniques that only consider spectral information.
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Figure 6. (a) The Sentinel-2 true color of the pilot site of Saint John city, (b) coastal wetland classifica-
tion maps using the proposed multi-model deep learning algorithm, (c) Swin Transformer, (d) 3D
CNN, (e) VGG-16, (f) random forest, and (g) support vector machine.
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3.4. Ablation Study

To better understand the contribution of each network of the proposed multi-model
algorithm, including the VGG-16 that uses the extracted features of Sentinel-2 data, 3D CNN
that employs the backscattering coefficients of Sentinel-1 image, and the Swin transformer
the utilizes the generated DEM from LiDAR data, we performed an ablation study. As
seen in Table 4, the VGG-16 using the Sentinel-2 features reached an average accuracy
and overall accuracy of 73.93% and 79.75%, respectively. By adding the 3D CNN network
and using Sentinel-1 features, the average accuracy, and overall accuracy significantly
improved by 17.21% and 9.62%. In addition, by adding the Swin transformer network and
the DEM data, the best visual and quantitative results were achieved. The inclusion of
the Swin transformer improved the average and overall accuracies by 1.54% and 2.93%,
respectively. Moreover, the inclusion of DEM by Swin transformer significantly improved
the visual result of the proposed deep learning classifier. For instance, over-classification of
coastal wetland and under-classification of water classes were visually improved in the
multi-model algorithm, as seen in Figure 7.

Table 4. Results of the proposed multi-model compared with other classifiers in terms of average
accuracy, precision, F1-score, and recall (AB = aquatic bed, BO = bog, CM = coastal marsh, FE = fen,
FM = freshwater marsh, FW = forested wetland, SB = shrub wetland, W = water, U = urban, G = grass,
C = crop, AA = average accuracy, OA = overall accuracy, and K = kappa).

Model AB BO CM FE FW FM SB W U G C AA (%) OA (%) K (%)

VGG-16 73.93 79.75 75.46
Precision 0.82 0.78 0.81 0.70 0.83 0.75 0.65 0.99 0.95 0.92 0.70

Recall 0.82 0.40 0.44 0.74 0.86 0.77 0.61 1 1 0.51 0.99
F-1 score 0.82 0.53 0.57 0.72 0.84 0.76 0.63 1 0.98 0.66 0.82
VGG-16 +
3DCNN 91.14 89.37 87.29

Precision 0.92 0.99 0.89 0.80 0.97 0.93 0.74 1 1 0.96 0.97
Recall 0.92 0.69 0.88 0.95 0.80 0.92 0.94 1 0.97 0.99 0.97

F-1 score 0.92 0.81 0.89 0.87 0.88 0.93 0.83 1 0.98 0.98 0.97
Multi-model 92.68 92.30 90.65

Precision 0.92 0.89 0.96 0.97 0.89 0.92 0.89 0.99 0.98 0.99 0.99
Recall 0.91 0.90 0.89 0.81 0.97 0.94 0.86 1 1 0.97 0.96

F-1 score 0.91 0.89 0.93 0.88 0.93 0.93 0.87 1 99 0.98 0.98

The inclusion of each network considerably decreased the confusion between wetland
and non-wetland classes. For instance, high confusion between bog, coastal marsh, and
shrub wetlands resulting from the VGG-16 network was significantly decreased by adding
the 3D CNN network and Sentinel-1 features (refer to Table S2 of Supplementary Materials).

3.5. Effect of Different Data Sources on Wetland Classification Accuracy

To better understand how different data sources, including backscattering features
from Sentinel-1, spectral features of Sentinel-2, and DEM generated from LiDAR data
contribute to the coastal wetland classification, we conducted several experiments with
the use of an RF classifier as seen in Table 5. Although the inclusion of SAR data did
not considerably improve the average accuracy of wetland classification, the F-1 scores of
wetlands of shrub, aquatic bed, freshwater marsh, and coastal marsh improved by 1%, 2%,
3%, and 5%, respectively. On the other hand, the use of DEM data improved the average
accuracy, overall accuracy, and kappa by 5.48%, 3.82%, and 4.69%, respectively. F-1 scores of
forested wetland, aquatic bed, fen, shrub, freshwater marsh, coastal marsh, and bog improved
by 2%, 3%, 6%, 6%, 8%, 8%, and 13%, respectively, with the inclusion of DEM data.
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Figure 7. Coastal wetland classification using: (a) Sentinel-2 true color of the study area, (b) the 
VGG-16 network (Sentinel-2 features), (c) VGG-16 and second 3D CNN networks (Sentinel-1 and 
Sentinel-2 features, respectively), and (d) the multi-model network. 
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Figure 7. Coastal wetland classification using: (a) Sentinel-2 true color of the study area, (b) the
VGG-16 network (Sentinel-2 features), (c) VGG-16 and second 3D CNN networks (Sentinel-1 and
Sentinel-2 features, respectively), and (d) the multi-model network.

Table 5. Results of the RF classifier with different data sources in terms of average accuracy, precision,
F1-score, and recall (AB = aquatic bed, BO = bog, CM = coastal marsh, FE = fen, FM = freshwater
marsh, FW = forested wetland, SB = shrub wetland, W = water, U = urban, G = grass, C = crop,
AA = average accuracy, OA = overall accuracy, K = kappa, S1 = Sentinel-1, S2 = Sentinel-2, DEM = DEM
from LiDAR data).

Model AB BO CM FE FW FM SB W U G C AA (%) OA (%) K (%)

RF-S2 83.14 87.28 84.54
Precision 0.87 0.92 0.85 0.86 0.86 0.84 0.81 1 0.95 0.95 0.90

Recall 0.86 0.70 0.50 0.83 0.93 0.78 0.76 1 0.98 0.85 0.94
F-1 score 0.87 0.80 0.63 0.84 0.89 0.81 0.78 1 0.97 0.90 0.92
RF-S1S2 83.84 87.72 85.05
Precision 0.89 0.95 0.92 0.85 0.85 0.88 0.81 1 0.96 0.97 0.91

Recall 0.89 0.65 0.54 0.83 0.94 0.80 0.76 1 0.99 0.88 0.96
F-1 score 0.89 0.77 0.68 0.84 0.89 0.84 0.79 1 0.97 0.92 0.93

RF-
S1S2DEM 89.32 91.54 89.74

Precision 0.93 0.97 0.89 0.92 0.88 0.91 0.88 1 0.97 0.98 0.94
Recall 0.91 0.84 0.66 0.88 0.94 0.93 0.83 1 0.99 0.89 0.96

F-1 score 0.92 0.90 0.76 0.90 0.91 0.92 0.85 1 0.98 0.93 0.95

Moreover, the variable importance was measured to better understand the significance
and contribution of different extracted Sentinel-1 and Sentinel-2 features. We ran the RF
classifier [52] 30 times for the spectral analysis, as shown in Figure 8. As expected, Sentinel-
2 bands and indices were more effective for classifying coastal wetlands than the Sentinel-1
backscattering features. Based on the Gini index for the prediction of the test data, the most
influential variable for coastal wetland classification was the first vegetation red edge band
(i.e., B5). In the RF classifier for attribute selection measure, typically, the Gini index [85]
is used. In contrast, the least effective variable was the second vegetation red edge band
(i.e., B6). Moreover, the most effective feature of Sentinel-1 was the σ0

HH band. The reason is
that σ0

HH is sensitive to double bounce scattering for flooded vegetation, a suitable Sentinel-
1 feature for recognizing coastal wetlands. In addition, compared with σ0

VV , the σ0
HH is less
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affected by the water roughness that is useful for the identification of non-water bodies
from water regions.
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3.6. Effect of Different Spatial Resolutions on Wetland Classification Accuracy

Effects of spatial resolution on coastal classification accuracy were investigated by the
comparison of classification results of the proposed multi-model for 10 m and
30 m spatial resolution data sources, as seen in Table 6. Based on the results, higher
10 m spatial resolution data sources outperformed the lower 10 m spatial resolution data
sources by 7.71%, 7.68%, and 9.26%, respectively, by the proposed multi-model classifier
in terms of average accuracy, overall accuracy, and kappa index. The reason can be ex-
plained by greater details and more information extracted from high-resolution images,
specifically while dealing with a complex landscape such as wetlands with a high level of
inter-class similarity.

3.7. Computation Cost

In analyzing the computation cost in terms of time, the RF classifier with 2 min training
time showed the best performance over the other implemented classifiers, including the
SVM, VGG-16, 3D CNN, Swin transformer, and the proposed multi-model network with
training times of 20, 40, 50, 60, and 90 min, respectively.
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Table 6. Results of the proposed multi-model for different spatial resolutions in terms of average
accuracy, precision, F1-score, and recall (AB = aquatic bed, BO = bog, CM = coastal marsh, FE = fen,
FM = freshwater marsh, FW = forested wetland, SB = shrub wetland, W = water, U = urban, G = grass,
C = crop, AA = average accuracy, OA = overall accuracy, K = kappa, 10 = 10 m spatial resolution, and
30 = 30 m spatial resolution).

Model AB BO CM FE FW FM SB W U G C AA (%) OA (%) K (%)

Multi-model-
10 92.68 92.30 90.65

Precision 0.92 0.89 0.96 0.97 0.89 0.92 0.89 0.99 0.98 0.99 0.99
Recall 0.91 0.90 0.89 0.81 0.97 0.94 0.86 1 1 0.97 0.96

F-1 score 0.91 0.89 0.93 0.88 0.93 0.93 0.87 1 99 0.98 0.98
Multi-model-

30 11 7 9 12 5 19 11 84.97 84.62 81.39

Precision 0.79 0.89 0.94 0.92 0.83 0.60 0.90 0.99 0.96 0.96 0.70
Recall 0.81 0.76 0.76 0.65 0.94 0.94 0.65 1 0.99 0.86 0.97

F-1 score 0.80 0.82 0.84 0.76 0.88 0.74 0.76 0.99 0.97 0.91 0.82

4. Discussion

Various research teams have conducted substantial research to improve wetland
mapping in Canada by utilizing various data sources and approaches [35,36,48,86]. For
example, Jamali et al. [87] used Sentinel-1 and Sentinel-2 data to classify five wetlands in
Newfoundland, Canada: bog, fen, marsh, swamp, and shallow water, with a high average
accuracy of 92.30% using very deep CNN networks and a generative adversarial network
(GAN). According to their research, creating synthetic samples of Sentinel-1 and Sentinel-2
data considerably improved the classification accuracy of wetland mapping. Moreover,
the synergic use of several satellite data has shown its superiority over a single satellite
sensor by various research [7,8,87]. Results achieved in this study confirm the superiority
of using different satellite data over solo Earth image data to improve the classification of a
complex landscape of coastal wetlands. For instance, the F-1 scores of forested wetland,
aquatic bed, fen, shrub, freshwater marsh, coastal marsh, and bog improved by 2%, 3%,
6%, 6%, 8%, 8%, and 13%, respectively with the utilization of DEM data in this research.
Moreover, due to the higher distinguishable backscattering coefficients of Sentinel-1 features
in wetlands and the high capability of the developed 3D CNN network in the extraction of
useful information from training image patches, the accuracy of the proposed network was
considerably improved.

On the other hand, most wetland mapping approaches in New Brunswick, as described
by LaRocque et al. [88], depend on manual interpretation of high-resolution data. In the
Saint John city study area, there is little literature on the usage of cutting-edge deep learning
technologies. Although LaRocque et al. [88] reported that using Landsat 8 OLI, ALOS-1
PALSAR, Sentinel-1, and LiDAR-derived topographic metrics, the RF classifier achieved
an overall accuracy of 97.67% in New Brunswick. Because our classifiers, the number of
training data, and satellite data are different, we cannot precisely compare their results
to this study’s acquired results. Based on the results, the proposed multi-model classifier
with average accuracy, overall accuracy, and kappa index of 92.68%, 92.30%, and 90.65%,
respectively, is highly capable of precise coastal wetland classification. As, in this study, the
DEM was generated from LiDAR data, it would be difficult to create such precise height
data for a large-scale wetland mapping. This is the main limitation of our study; however,
several studies have shown the possibility of creating accurate and high-resolution DEM
from Sentinel-1 data using the SAR interferometry technique [89,90].

As discussed in the previous sections, transformers have achieved great success in
solving NLP issues. Although they have shown high potential for a few computers vision
issues, a challenging issue in remote sensing complex landscape classification over the usual
computer vision image classification is a much higher resolution of remote sensing satellite
images. Considering that vision transformers have a complexity of O(n2) with the increase
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in the pixel resolution, we selected the Swin transformer as it has a much lower linear
complexity of O(n) with the increase in the resolution of image pixels. In other words, the
Swin transformer is much more computationally efficient than other vision transformers.
The other benefit of transformer networks is their higher generalization capability over
CNN networks. An additional advantage of transformers over CNNs is that the relationship
between different features of an image is also considered (i.e., positional encoding or
attention mechanism). However, transformers require much more training data than that
of the CNN models to reach their full image classification capability, which is a challenge
in the remote sensing field. As positional relation between a pixel and its neighboring
features is important in a DEM layer, we used a Swin transformer that considers the
positional relationship to extract useful information. This led to increases of 1.54% and
2.93% in average and overall accuracies of the proposed multi-model algorithm. Our results
show that integrating CNNs with transformers opens a new window for advancing new
technologies and methods for complex scene classification in remote sensing.

5. Conclusions

Innovative methodologies and technology for wetland mapping and monitoring are
critical because of the significant benefits that wetland functions provide to humans and
wildlife. Wetlands are among the most difficult ecosystems to classify because of their
dynamic and complicated structure, which lacks clear-cut boundaries and vegetation forms
that are similar. As such, for the preservation and monitoring of coastal wetlands in the
pilot site of Saint John city situated in New Brunswick, Canada, we explored the potential of
the integration of the state-of-the-art transformers (i.e., Swin transformer) with a modified
version of VGG-16 CNN network and a 3D CNN model. We used different data sources for
each network, including spectral bands and indices of Sentinel-2 in the VGG-16 network,
backscattering coefficients of Sentinel-1 in the 3D CNN, and a DEM generated from LiDAR
data in the Swin transformer network and compared the achieved results with several solo
CNN models as well as two shallow conventional classifiers of RF and SVM. The results
suggest that the multi-model network in terms of average accuracy significantly improved
the classification of coastal wetlands over other solo algorithms, including the RF, SVM,
Swin transformer, VGG-16, and 3D CNN from 3.36% to 33.35%. Moreover, the utilization
of multi-source data significantly increased the classification accuracy of Saint John city’s
complex landscape. For instance, the inclusion of extracted features of Sentinel-1 and DEM
increased the F-1 scores of the VGG-16 CNN network for the classification of shrub wetland,
aquatic bed, fen, freshwater marsh, and bog by 1%, 3%, 3%, 8%, and 11%, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14020359/s1, Table S1: Confusion matrices of the implemented
models including the proposed multi-model deep learning model, Swin Transformer, 3D CNN, VGG-
16, Random Forest, and Support Vector Machine; Table S2: Confusion matrices of the Multi-model,
VGG-16, and VGG-16 + 3D CNN.
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