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Abstract: The Vectorized Earth Observation Retrieval (VEOR) algorithm is a novel algorithm suited
to the efficient supervised classification of large Earth Observation (EO) datasets. VEOR addresses
shortcomings in well-established machine learning methods with an emphasis on numerical perfor-
mance. Its characteristics include (1) derivation of classification probability; (2) objective selection
of classification features that maximize Cohen’s kappa coefficient (κ) derived from iterative “leave-
one-out” cross-validation; (3) reduced sensitivity of the classification results to imbalanced classes;
(4) smoothing of the classification probability field to reduce noise/mislabeling; (5) numerically
efficient retrieval based on a pre-computed look-up vector (LUV); and (6) separate parametrization of
the algorithm for each discrete feature class (e.g., land cover). Within this study, the performance of
the VEOR classifier was compared to other commonly used machine learning algorithms: K-nearest
neighbors, support vector machines, Gaussian process, decision trees, random forest, artificial neural
networks, AdaBoost, Naive Bayes and Quadratic Discriminant Analysis. Firstly, the comparison was
performed using synthetic 2D (two-dimensional) datasets featuring different sample sizes, levels of
noise (i.e., mislabeling) and class imbalance. Secondly, the same experiments were repeated for 7D
datasets consisting of informative, redundant and insignificant features. Ultimately, the benchmark-
ing of the classifiers involved cloud discrimination using MODIS satellite spectral measurements
and a reference cloud mask derived from combined CALIOP lidar and CPR radar data. The results
revealed that the proposed VEOR algorithm accurately discriminated cloud cover using MODIS
data and accurately classified large synthetic datasets with low or moderate levels of noise and class
imbalance. On the contrary, VEOR did not feature good classification skills for significantly distorted
or for small datasets. Nevertheless, the comparisons performed proved that VEOR was within the
3–4 most accurate classifiers and that it can be applied to large Earth Observation datasets.

Keywords: Vectorized Earth Observation Retrieval (VEOR); machine learning; artificial intelligence;
classification; support vector machines; Gaussian process; random forest; artificial neural networks;
Naive Bayes

1. Introduction

The importance of image classification acquired by remote sensing sensors was rec-
ognized early on by [1] with the launch of satellites from the Landsat series. Numerous
algorithms have been developed since then to partially or fully automatize the classification
processes used in various environmental applications, such as land cover mapping [2–5],
crop type identification [6–9], wetland monitoring [10–13], water body mapping [14–17],
forestry [18–21], ice/snow cover monitoring [22,23], urban planning [24–26] and monitor-
ing of weather phenomena [27–31]. Nowadays, the abundance of remote sensing datasets
featuring multi-spectral, high-spatio-temporal-resolution imagery hinders manual image
interpretation, and necessitates an efficient machine learning method easily adaptable to a
broad suite of sensors. Furthermore, the results of image classification should be comple-
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mented by uncertainty estimates that contribute to the computation of error statistics of
consecutive (higher-level) products.

In general, image classification algorithms can be categorized as: (1) supervised and
unsupervised; (2) parametric and non-parametric; (3) hard and soft (fuzzy) classifiers;
(4) per-pixel, subpixel and per-field/per-object [32]. The supervised classifiers, as opposed
to unsupervised ones, require a training dataset composed of spectral samples labeled with
categorical classes. The labeling may originate from in situ measurements/observations,
pixels or image segments labeled by a human interpreter, or from other remote sensing
products. The parametric classifiers assume a Gaussian distribution when describing input
features (e.g., maximum likelihood, Quadratic Discriminant Analysis) that allows for the
derivation of statistical properties such as mean vector or covariance matrix describing
the distribution of input features. Non-parametric classifiers do not assume statistical
distributions and are suitable for the incorporation of ancillary (non-spectral) input features.
The “hard” classifiers assign a single class to a pixel/object, while soft/fuzzy classifiers
may assign multiple classes to a pixel/object along with the multiple corresponding
classification probabilities. Special types of classifier include the sub-pixel methods that
assume the heterogeneous spectral signature of a pixel composed of a linear or non-linear
mix of spectral signatures originating from homogeneous endmembers (e.g., land cover
classes). This is particularly true for coarse-spatial-resolution imagery and allows for the
estimation of the fractional membership of each pixel to each endmember. These types of
classifiers have strong and weak points, which were well described by [32]. Nonetheless,
a robust classifier should be accurate, self-optimizing (capable of increasing classification
accuracy by internally optimizing its hyper-parameters), numerically efficient (applicable
to large datasets), non-parametric (easily applicable and transferable) and should provide
uncertainty estimates for a generated classification.

In this article, a fast, robust, non-parametric, probabilistic Vectorized Earth Observa-
tion Retrieval (VEOR) image classifier is introduced that is capable of feature selection and
is applicable to the large multidimensional datasets frequently occurring in the remote
sensing discipline. The VEOR classifier was evaluated together with other popular ma-
chine learning algorithms: K-nearest neighbors (KNN), support vector machines (SVM),
Gaussian process (GP), decision trees (DT), random forest (RF), artificial neural networks
(ANN), AdaBoost (ADA), Naive Bayes (NB) and Quadratic Discriminant Analysis (QDA).
The comparison of the classifiers was firstly performed using two synthetic datasets: a
simplified 2D (two-dimensional) case, and a more complex 7D case for which some of the
features (dimensions) were redundant or irrelevant for the classification. The synthetic
datasets featured different sample sizes, levels of noise (i.e., mislabeling), shapes of class
separation boundaries (linear, non-linear, circular) and class imbalance in order to test the
performance of the selected classifiers under a wide range of disturbing factors. Evaluation
of algorithms by means of the synthetic data is a common practice [33–35] as it allows to
analyze, in a controlled manner, the response of a model to a particular disturbing factor
or a combination of factors. Secondly, the classifiers were inter-compared within real case
scenarios where cloudiness over water and ice/snow surfaces was discriminated using
spectral measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS).
Ultimately, the numerical performance of the classifiers was evaluated with respect to
training and retrieval processes.

The following sections of this article include: the most important challenges to the
image classification process (Section 2); a detailed description of the proposed VEOR
classifier (Section 3); brief descriptions of other selected classifiers, together with their
numerical implementations in the Python scikit-learn library (Section 4); a description of
the experimental design, including the generation of synthetic and real case datasets, as
well as the methodology of the evaluation of classifiers (Section 5); the presentation of
acquired classification results (Section 6); discussion of the results (Section 7); the final
conclusions drawn from the study (Section 8); and a list of optimal features (Appendix A).
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2. The Challenges of Image Classification

Classification of remote sensing imagery is usually applied to a large multidimensional
dataset that often consists of many cross-correlated measurements in multiple spectral
bands acquired at different times. Furthermore, the neighboring pixels within an image
time series feature spatio-temporal relationships that represent the evolution (in time and
space) of the phenomenon to be classified (e.g., land cover, cloud types). This allows for the
exploitation of additional features, apart from spectral information, such as image filters,
topology of objects, edge filters, principal components and other numerical combinations of
spectral bands [32]. However, the images within a time series are often distorted by a num-
ber of factors, such as variable illumination/acquisition geometry, anisotropy of reflectance,
atmospheric disturbances, topographic effects, geolocation shifts, temporal degradation
of imaging instrument, data gaps (e.g., missing scan lines), residual cloud/snow cover,
variable surface moisture, radio-frequency interference, thermal noise and many more.
This turns image classification into a complex problem, which may be difficult to solve
even for an intuitively simple task such as cloud detection on satellite imagery.

The classification of physical phenomena on remote sensing imagery is a complex
process that can be divided into the following steps: (1) selection of suitable remote sensing
sensor(s) featuring appropriate spatial, temporal, radiometric and spectral resolutions;
(2) selection of training samples; (3) image pre-processing; (4) feature extraction; (5) fea-
ture selection; (6) selection of suitable classification algorithm(s); (7) image classification;
(8) image post-classification (optional filtering of classification results, e.g., clustering
small groups of pixels to fulfil minimum mapping unit criteria); (9) accuracy assessment.
Steps 1–4 require expert knowledge for a particular classification problem and can be re-
garded as experimental design. Steps 5–9 can be generalized and automated to some extent
in order to facilitate the image classification process and to reduce the human workload.
There are several common challenges to supervised image classification related to sparse,
mislabeled and imbalanced datasets featuring classes that may be inseparable, and which
are discussed in the following subsections.

2.1. Training Sample Selection

Supervised image classification requires a training dataset composed of pixels fea-
turing distinct spectral signatures labeled within a single class, or more in the case of
fuzzy classifiers. The labeling might originate from the visual interpretation of the imagery
to be classified or from other referential datasets derived from more sensitive sensors
or observed/measured in situ. The visual image interpretation is usually performed by
geographic information system (GIS) software and it involves manual delineation and
labeling of polygons covering homogeneous areas. The usage of other referential remote
sensing datasets often requires spatio-temporal collocation between two sensors by means
of interpolation or nearest neighbor matching. Both labeling approaches should follow
common rules to produce the optimal training dataset:

1. The reference dataset should be large enough to populate the feature space with infor-
mation sufficient to correctly infer labels for new test cases that have not appeared
in the training dataset. This implies that the new samples should be very similar to
the ones used for classifier training. Such a situation occurs only rarely for simple
classification tasks based on a few features. The multi-temporal and multi-spectral
remote sensing imagery composed of heterogeneous pixels with mixed classes re-
quires an enormous training dataset to represent all of the potential relationships
between the features. The training datasets are usually affected by sampling issues
related to an uneven distribution of in situ observations due to limited accessibility
(e.g., remote areas, swamps, high mountains), temporal and spatial constraints while
collocating different data sources and the subjective selection of training polygons.
Consequently, a training dataset may be sparse and under-represented. Therefore,
a robust image classifier should be able to generalize available a priori information
to unseen cases without overfitting the training dataset. The overfitting implies that
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a classifier matches the training dataset too well (including noisy cases instead of
only the “true” signal). On the contrary, underfitting implies that a classifier performs
poorly on the training data, presumably due to crude assumptions or incorrectly
selected hyper-parameters or classification features.

2. The training dataset should feature low spatial and temporal autocorrelation in order
to maximize information within the feature space and to objectively assess the quality
of the generated classification. If pixels are highly correlated, then their spectral
signatures are mostly redundant. Consequently, a classifier has little information to
learn from and to generalize to new test cases. Such a situation often occurs in the
case of visual image interpretation, where an operator marks a few large polygons
covering the same class. Even though a large number of pixels are selected, very
limited spectral information is actually used to train a classifier. Moreover, if a
subset of those pixels is used for the evaluation of classification quality, then the
derived statistics are inflated and unreliable. Thus, as suggested by [36], the most
robust solution to this problem is a random selection of pixels forming training and
validation datasets. Furthermore, it is advantageous to temporarily decouple both
datasets so that the training dataset is acquired at a different time (e.g., a different
year) than the validation dataset.

3. The reference dataset should reflect the same proportion of classes as the one occurring
in the classified image. This is especially important for Bayesian classifiers, which rely
on the a priori probability of class occurrence [37]. Similar conclusions were reported
by [36] in the case of decision tree algorithms.

4. The reference data should be of high quality, with as few mislabeled pixels as possible.
This obvious statement is difficult to implement in reality, where the reference data
may originate from: (1) other classification products featuring their own uncertainty;
(2) in situ observations altered by instrumental malfunction or typographical errors;
(3) crowdsourcing data featuring many subjective observations; and (4) poorly delin-
eated training polygons. Furthermore, in the case of low-resolution imagery covering
a heterogeneous landscape, pixels are usually composed of mixed classes, which
ultimately have to be classified into a single class. Alternatively, some sub-pixel
classification techniques [38–40] can be applied to infer the fractional proportion of
classes within such pixels. Nevertheless, from the perspective of an image classi-
fier, the mislabeled pixels introduce noise, which has to be dissected from the true
spectral signature associated with a certain class. A limited number of studies have
elaborated on the sensitivity of the image classifiers to mislabeled input data. In [34],
it is found that the random forest algorithm is less sensitive to class mislabeling
than support vector machines (SVMs) thanks to the bootstrap and random split
operations incorporated into the random forest method. The robust multi-class Ad-
aBoost (Rob_MulAda) classifier [41] was proposed to overcome the class overfitting
problem of the standard AdaBoost algorithm, where there are mislabeled noisy train-
ing datasets. In [42], the Naive Bayes classifier was found to be less sensitive to
class mislabeling as compared to the decision tree classifier [43], IBk instance-based
learner [44] and the Sequential Minimal Optimization (SMO) support vector machine
classifier [45]. Recently, in [46], a novel CMR-NLD method has been proposed to filter
out the mislabeled samples by the thresholding of a covariance matrix calculated be-
tween sample dimensions. Ultimately, it has to be emphasized that a reliable training
dataset is a prerequisite for the high accuracy of supervised image classification. Thus,
it is advisable to perform data screening prior to classification instead of relying on a
classifier to cope with noise in the input data.

2.2. Feature Selection

Classification of remote sensing imagery is based on a set of features that might be
spectrally redundant or irrelevant from the perspective of class recognition. Moreover,
the spectral variability of the Earth’s surface further complicates the classification process.
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In this respect, certain image features might be important only over certain kinds of land
cover. For instance, visible spectral channels are useful for the detection of bright clouds
over a dark water surface but are ineffective over a bright ice surface. This implies that
it might be advantageous to separately select image features for some discrete classes
(e.g., land cover or soil types). The selection of an optimal feature subset from the input
feature vector leads to dimensionality reduction and consequently to: (1) improvement in
classification accuracy; (2) lower computational demand; and (3) better understanding of
the relationship between features and classification results [47]. Many techniques for feature
selection have been developed and these can be grouped essentially into three approaches.
The first one, called filtering, involves the ranking of the input features with respect to
the output class according to some correlation, dependency or distance metrics [48]—
for example, correlation coefficient, mutual information, symmetric uncertainty (SU),
information distance or Fisher score. The second approach involves validation with
the bootstrap of a machine learning algorithm trained against different subsets of input
features. Consequently, the quality metrics of derived classifications are used to rank each
subset of input features in order to select the optimal one. Such a technique depends on
the numerical robustness of a classifier iteratively applied within a wrapper algorithm,
and usually it is applicable to a limited number of feature combinations. For large sets of
features, the number of possible subsets is enormous and computationally too demanding,
which turns feature selection into a so-called NP (non-deterministic polynomial-time)
hardness problem [49]. The subsets of features can be derived either through forward
selection or through backward elimination. Within forward selection, the variables are
progressively added to form larger subsets, while, on the contrary, within the backward
elimination technique, the least promising features are removed from a larger feature
subset. From the perspective of numerical performance, it is argued that forward selection
algorithms are less computationally demanding, whereas backward elimination techniques
are more accurate [48]. The third approach towards feature selection involves methods
embedded within a classifier training process. An example of such a technique could be
Optimal Brain Damage (OBD), used for node pruning within neural network classifiers [50].
Ultimately, the filter and wrapper feature selection techniques can be combined in order
to firstly reduce the number of features by means of the selection technique, and then to
apply the wrapper method. Other approaches [51] incorporate variations of the Principal
Component Analysis (PCA) to decompose an initial set of features into new orthogonal
features, which are further used for classification. Nonetheless, reduction of the feature
vector improves class separability and classification accuracy and this has been reported
by numerous studies [52–54].

2.3. Imbalanced Distribution of Classes

This common classification problem is related to an imbalanced class distribution,
where one class occurs more frequently than other(s). Consequently, different classifiers
tend to overestimate the frequency of the dominant class. This improves some of the
classification quality statistics (e.g., accuracy) but leads to a severe misclassification of
the rare classes. This may turn the classification task based on input features into a class
assignment based on a priori information about class frequency distribution. To mitigate
this problem, two approaches are possible. The first is to balance the training dataset by
oversampling the rare classes or undersampling the prevalent classes. Some more sophisti-
cated methods, such as the Synthetic Minority Oversampling Technique (SMOTE) [55], may
be used to combine both sampling techniques. The second approach to the class imbalance
problem involves different corrections applied to classifiers, such as cost-sensitive learning
to more severely penalize the misclassification of rare classes. This can be implemented
by the utilization of specific quality measures during classifier optimization, such as the
Hansen–Kuipers Skill score [56], F-score [57], G-mean [58], the area under the Receiver
Operating Characteristics (ROC) curve [59], Cohen kappa coefficient [60] and average mu-
tual information [61], which are less sensitive to the class imbalance problem as opposed
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to overall classification accuracy. Comprehensive reviews of the deficiencies of common
classification algorithms in the presence of the imbalanced distribution of classes were
reported by [41,62,63]. In this section, only the most important aspects related to the class
imbalance problem are discussed.

In the case of the KNN classifier, it is quite intuitive that the neighborhood of a pixel
within a feature space more likely consists of a prevalent class than infrequent classes. Thus,
infrequent classes are more likely to be incorrectly classified. This effect can be partially
diminished by balancing the class distribution within the training dataset. In the case of
the decision tree classifier, an imbalanced training dataset results in many tests (branches
within the trees) to separate infrequent classes from prevalent classes. Usually, too few
tests are implemented to correctly delineate small classes or they are removed during
the tree pruning procedure due to not being significant. Some solutions to this problem
involve adjustment of the scores generated by each test [64] or the involvement of more
advanced tree pruning techniques [65]. SVM classifiers are also reported to be sensitive
to the class imbalance problem [66]. In such a case, the class-separating hyperplanes
become more skewed towards the prevalent class as the number of support vectors is
higher for this class. Consequently, the nearest neighborhood of a test sample (especially
when it is located near the separating hyperplane) is likely to be dominated by the support
vectors of the dominant class, which may lead to a misclassification of the infrequent
class. To overcome this problem, [66] proposed the class boundary alignment algorithm,
which adjusts the class boundary either by transforming the kernel function, where the
training data can be represented in a vector space, or by modifying the kernel matrix
when the data do not have vector space representation. For the neural network algorithm,
the imbalanced distribution of classes alters the weights of connections between neurons
during the iterative optimization of a network. Consequently, the classification error
decreases for the prevalent class and at the same time increases for the infrequent classes.
One of the potential solutions to this problem involves undersampling the prevalent
class by eliminating highly correlated cases [67]. In the case of the Naive Bayes classifier,
the imbalanced training dataset may lead to an overfitting of the learned parameters [68]
and to poor classification performance.

2.4. Classifier Numerical Performance

The numerical performance of classifiers expressed in terms of fast processing time
and low RAM (random-access memory) usage is becoming a problem for the classification
of the multi/hyperspectral remote sensing imagery featuring petabytes of data volume per
year. In this respect, an accurate but slow classifier may not be applicable or its application
may require significant financial resources and may not be easy to reprocess. Therefore,
the aspect of numerical efficiency should be considered while selecting a classifier for a
large remote sensing dataset.

The numerical performance may differ significantly between classifier training and
retrieval processes and as such should be evaluated separately. Classifier (re)training is
performed rarely with an updated/corrected training dataset or after the improvement
of a classifier (i.e., a new version). This implies that algorithm training may be computa-
tionally expensive in order to generate the best classification model. On the contrary, the
classifier retrieval time should be as limited as possible in order to classify a large set of
images. Ultimately, it has to be emphasized that the numerical performance of a classifier
depends not only on the algorithm itself, but also on its implementation within a partic-
ular programming language (which may feature its own numerical limitations) and the
hardware employed. Consequently, it might be difficult to objectively assess the numerical
performance of several classifiers implemented in different programming languages and
compiled with different (more/less aggressive) compiler flags used within the process of
building computer software.
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3. The Vectorized Earth Observation Retrieval Classifier

The Vectorized Earth Observation Retrieval (VEOR) classifier stems from the Proba-
bilistic Cloud Mask (PCM) algorithm proposed by [69], which was further reimplemented
for the detection of low stratiform clouds [70]. Following this, the VEOR prototype was
used for the derivation of cloud climatology over Central Europe from Advanced Very
High Resolution Radiometer (AVHRR) imagery [71]. Its usability was also assessed for
the generation of the EUMETSAT Satellite Application Facility on Climate Monitoring
(CM SAF) climate data records [72]. Ultimately, the VEOR methodology was improved
within the current study, especially concerning classification accuracy, self-optimization
and numerical performance. There are two common concepts behind all of these algorithm
versions. The first is related to the computation of the multidimensional classification
probability histogram, which is flattened to a vector form during algorithm training (this is
the origin of the vectorized adjective in the VEOR name), and the second concept is related
to the computation of an index that assigns a unique identifier (ID) to each element in the
flattened probability vector. The vector with ID is generated by placing values of input
classification features transformed to 8-bit integers on consecutive bit ranges, within a
64-bit integer, by means of bitwise operators (bitwise_shift and bitwise_or). This second
vector is analogous to the quality flag products usually associated with Earth observation
(EO) products (e.g., MYD35 cloud mask), where different ancillary information is provided.
Thus, after VEOR training, two look-up vectors (LUV) are derived: one with a classification
probability and the second with sorted ID. The classification of new input data involves
the computation of a new ID vector that is itself located within the sorted LUV by means
of a fast binary search algorithm [73] in order to retrieve the classification probability.
Comprehensive explanation of the VEOR algorithm for a simplified two-dimensional (2D)
synthetic dataset is provided in the following subsections.

3.1. Derivation of Look-Up Vectors (LUV)

The simplified derivation of LUV for the 2D case, with binary labels and two artificial
features, is presented in Figures 1 and 2. Red points indicate label 1, and blue points label
0. The gray lines denote percentiles of feature values ranging from 0 to 100% with 10%
intervals forming an irregular grid, where the probability Px for a cell x (Equation (1)) is
computed as a ratio between the number of samples labeled with 1 (red points) and the
total number of samples N within cell x (red + blue points).

Px =
∑N

i=1 ci

N
(1)

where:
Px—classification probability within cell x;
N—number of samples within cell x;
ci—binary label of a sample within cell x.
However, if there is a significant imbalance between the number of red and blue

points, the computed probability is biased towards the more frequent class. Therefore,
the initial probability is recomputed after class balancing in which every class is oversam-
pled relative to the total number of samples; this effectively doubles the initial number of
samples. The oversampling is performed while randomly assuming the initial probability
distribution of each class within each cell of the percentile grid. Incorporation of per-
centiles as the grid coordinates instead of varying magnitudes of features (corresponding
to different physical units) suppresses the need for feature scaling. Within the standard
VEOR implementation, the grid is composed of 254 percentiles ranging from 0 to 100,
which normalize values for each feature to 28 (8-bit) integers. Further, this allows for
the computation of a unique ID for each cell consisting of 8-bit values stacked together
(by means of bitwise_or and bitwise_left_shift operators for little-endian machines) on
consecutive bit ranges within a 64-bit value. Consequently, the VEOR can analyze up to
eight features with 256 degrees of freedom each. The percentile grid significantly reduces
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the number of samples relative to the number of cells, which gives great flexibility in terms
of the size of the training sample and the incorporation of new samples. This feature of
the VEOR algorithm is especially important for frequently updated training datasets that
require frequent adjustment of LUV with classification probabilities.
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Figure 1. The derivation of classification probability for two clearly separable classes. The gray grid
denotes the 0%, 10%, 20%, 30%, . . . , 90%, 100% percentiles for each feature.
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Figure 2. The derivation of classification probability for two weakly separable classes. The gray grid
denotes the 0%, 10%, 20%, 30%, . . . , 90%, 100% percentiles for each feature.

3.2. Feature Selection

The percentile grid should include features with strong classification skills. This mini-
mizes the number of cells with the mixed classes, as depicted in Figure 1. On the contrary,
if the features have weak classification skills, many grid cells contain mixed classes and the
derived probability field is not decisive, as depicted in Figure 2. In order to determine the
optimal feature subset, VEOR applies an iterative forward selection procedure (see Figure 3
and Algorithm A2 in Appendix B) where the features are progressively added whenever
the kappa score is improved. Forward selection starts with a single feature for which the
percentile grid is simply a 1D histogram with classification probabilities. Then, for each
grid cell (i.e., histogram bin), the K-nearest cells and Euclidean distances dk are determined
using a fast cKDTree nearest neighbor search method [74]. The selected K-nearest cells
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are used to reconstruct the classification probability P′x for cell x (Equation (2)). This is
achieved by dividing two sums weighted by inverse Euclidean distances between cell
coordinates expressed as percentile numbers (8-bit values). The first sum is computed as
the weighted total number of samples labeled with 1 within the K cells. The second sum is
the weighted total number of samples Nk within the K cells. The reconstructed probability
value describes each sample within cell x and is ultimately rounded to a reconstructed
binary label c′i for all samples within cell x.

P′x =
∑K

k=1
1
dk

∑Nk
i=1 ci

∑K
k=1

1
dk

Nk
(2)

where:
P′x—reconstructed probability value for cell x;
K—number of nearest neighbouring cells in the vicinity of cell x;
dk—Euclidean distance between cell k and cell x expressed as a percentile number;
Nk—number of samples within cell k;
ci—binary label of a sample within cell k.
This allows for the computation of a confusion matrix between the original c and

reconstructed c′ binary labels, and consequently for a derivation of the kappa score for a
particular feature or combination of features.

The next parameter to be optimized is the number of nearest neighbors (K) used
to reconstruct the probability value. The higher the K, the smoother the reconstructed
classification probability field, which, on the one hand, reduces the impact of mislabeled
samples (i.e., reduces noise effects), but, on the other, decreases the accuracy of correctly
labeled data. Optimal K is derived iteratively for each feature combination by repeating the
probability reconstruction procedure with increasing even numbers K ∈ {2, 4, 6, . . .}. It was
found that, for small odd K values, asymmetry is introduced around the class separation
border. In particular, if K = 3 and the main cell is exactly at the class separation border, then
two cells from one class and only one cell from the other class are used for reconstruction
of the probability value. This obviously introduces bias into the reconstructed value.
The optimal K number is derived whenever adding more neighbors starts to decrease the
kappa score.

After the kappa score is computed for all single features, then the feature with the
highest kappa is selected, and within the following iterations, features are added to it.
After the best two-feature subset is selected, single features are added again, and so on.
Whenever adding new features does not bring any improvement to the kappa value,
the forward feature selection procedure converges and the feature subset with the highest
class separability skills is returned. The sequence in which the optimal features are selected
further corresponds to the 8-bit positions within the 64-bit ID value. Features derived at the
beginning of the forward feature selection procedure occupy more significant bit ranges
than features derived later. Furthermore, VEOR ranks not only the separation skill of single
features but also the separation skill of feature combinations, which greatly facilitates the
understanding of the acquired classification results.

The last part of the VEOR algorithm training involves the oversampling and com-
paction of the LUV derived for the optimal feature subset. Firstly, oversampling involves
reconstruction of the classification probability using the optimal K-nearest grid cell number
for the user-defined number (default 106) of random cells located around the grid cells
filled with samples within an Euclidean distance selected from the normal distribution with
the user-defined scale (default 10). Secondly, the oversampling involves reconstruction of
the classification probability using the 5D kernel around each grid cell filled with samples,
where D is the number of dimensions (features). Consequently, classification probability is
predicted for grid cells not populated with samples during algorithm training (marked in
white in Figures 1 and 2). This is achieved by means of the inverse distance interpolation
between the grid cells populated with data, which essentially extrapolates a classification
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probability to grid cells without any data. Such a prediction of classification probability
within a multidimensional percentile grid is performed only once, which significantly
increases the numerical performance of the VEOR classification.

Ultimately, compaction of LUV involves the removal of entries that are redundant
from the perspective of a binary search algorithm. The LUV with ID is sorted, and therefore
if several consecutive ID have exactly the same classification probability (which happens
often if the classes are clearly separable), then only the IDs at the sequence edges are
required for the binary search algorithm. This procedure reduces the number of entries
within LUV several times, which further reduces the computational effort of the VEOR
classification process.

Figure 3. The VEOR algorithm workflow.
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3.3. Inclusion of Discrete Features

The features discussed so far with respect to VEOR training were of the continuous
type, which allows for the computation of Euclidean distances and percentiles. In the case
of discrete/categorical features (e.g., land cover), VEOR training is performed separately
for each discrete class, which results in several separate LUV. Further, the integer labels
describing classes are placed on the most significant bit ranges within each 64-bit ID value.
This, in turn, allows the combination of all of the LUV using a bitwise_or operator, as each
LUV with ID occupies a different bit range within the merged LUV. Obviously, several
discrete features can be placed on the most significant bit ranges, giving great flexibility for
the adjustment of VEOR settings to a wide range of environmental conditions. In any case,
the limiting factor is the 64-bit value of the ID, which should encompass both continuous
and discrete features.

3.4. Classification of New Data

The classification of new samples by means of the VEOR algorithm only requires
the extraction of probability values from LUV using a fast binary search technique. This
search algorithm is based on the partitioning of sorted data without derivation of distance
metrics at all. In the worst-case scenario, this reduces the computation time to O(log N)
operations, where N is the number of LUV entries. In order to extract values from LUV,
the input features have to first be transformed to an 8-bit integer using binary search
within the percentiles derived during VEOR training. Further 8-bit values are stacked
into 64-bit values by means of bitwise operations. The derived 64-bit values are located
within the LUV with sorted ID by means of the binary search technique. This results
in a vector of indexes (positions), which is finally used to extract values from the LUV
with the classification probabilities derived during algorithm training (see Figure 3 and
Algorithm A1 in Appendix B).

4. Description of Selected Classifiers Implemented in the Python Scikit-Learn Library

The VEOR classifier proposed for this study was evaluated together with ten ma-
chine learning algorithms implemented within the Python scikit-learn (former sklearn)
library [75] version 0.24.2, released in April 2021 (Table 1).

Table 1. The list of scikit-learn classification routines used for benchmarking with the VEOR algorithm.

Algorithm Module/Routine

Multi-layer perceptron classifier that optimizes
the log-loss function using the limited memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
gradient descent algorithm [76,77]

sklearn.neural_network/MLPClassifier

K-nearest neighbor classifier [78] sklearn.neighbors/KneighborsClassifier

Support vector classification with a linear
kernel [79] sklearn.svm/LinearSVC

Support vector classification with a Radial
Basis Function (RBF) kernel [79] sklearn.svm/SVC

Gaussian process classification (GPC) based on
the Laplace approximation [80]

sklearn.gaussian_process/
GaussianProcessClassifier

Decision tree classifier [43] sklearn.tree/DecisionTreeClassifier

Random forest classifier [81] sklearn.ensemble/RandomForestClassifier

AdaBoost-SAMME classifier [82,83] sklearn.ensemble/AdaBoostClassifier

Gaussian Naive Bayes classifier [84] sklearn.naive_bayes/GaussianNB

Quadratic Discriminant Analysis [85] sklearn.discriminant_analysis/
QuadraticDiscriminantAnalysis
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The scikit-learn library is very well established within the machine learning com-
munity (developed for >10 years). However, it has to be emphasized that the numerical
implementation of some classifiers might still be suboptimal or erroneous. Moreover, this
library makes external calls to other libraries implemented in Python (i.e., Numpy version
1.21.1) or C (i.e., BLAS version 3.7.1), which adds another source of potential software bugs.
Nevertheless, debugging of the scikit-learn classification routines is beyond the scope of
this work and the library was used as it was. Besides classifiers, the scikit-learn library
comes with a set of routines used within this study for (1) generation of synthetic datasets,
(2) computation of classification performance metrics, (3) data pre-processing and stan-
dardization, (4) hyper-parameter optimization, (5) feature selection and (6) visualization of
classifiers’ performance (plot_classifier_comparison.py). In the following subsections, a
short summary of each classifier is given in order to facilitate further understanding and
interpretation of the results.

4.1. Nearest Neighbor Classifier

The nearest neighbor algorithm [78] categorizes a sample based on a simple majority
vote taken from a subset of adjacent training samples located in the multidimensional
feature space. Subset selection can be performed based on the number of samples (KNN:
K-nearest neighbor method) or the radius around the analyzed sample. Moreover, majority
voting may take into account various distance metrics to privilege samples located closer
to the analyzed sample. The main drawback of the nearest neighbor classifier is related
to the handling of the entire training dataset in order to classify a single sample and to
the computational overhead of the extensive search. On the positive side, the classifier is
robust and accurate for relatively small data samples.

4.2. Decision Tree (DT) Classifier

A decision tree [43] is a suite of non-parametric multi-stage learning methods that
break down a complex decision-making process into a collection of simpler decisions.
At each stage (a tree node), the algorithm partitions an input training dataset (a tree root),
by means of simple thresholding tests, into smaller data subsets, forming consecutive
branches of a decision tree. These tests are constructed statistically in a variety of ways to
increase the homogeneity of the resulting subgroups. At the last stage within a branch (a
tree leaf), the residual data subset is assigned to one of the final classification labels. Usually,
the tree grows until all of the training observations are correctly classified (i.e., classification
accuracy = 100%). This leads to overfitting of the decision tree and results in a poor
classification of samples unseen in the training dataset. Thus, the ultimate step of a DT
classifier should involve tree pruning to remove sections of a tree with limited classification
significance and to improve its predictive skills. Approaches towards the construction
of a DT can be categorized into three groups: (1) univariate (decisions at a single stage
made using a single feature), (2) multivariate (decisions at a single stage made using
multiple features), (3) hybrid (fusion of univariate and multivariate trees within a single
tree). The process of tree building can be optimized within the DecisionTreeClassifier
routine by means of several hyper-parameters that control the number of leaves, tree depth,
minimum number of points to split a node or a criterion of splitting. The advantages of
a DT classifier are related to: (1) direct interpretation of a classification result depicted
as a graph, and (2) handling of numeric and categorical variables featuring non-linear
relationships with the classes. On the downside, DT have a tendency to overfit training
data and do not perform well for high-dimensional data [86].

4.3. Random Forest (RF) Classifier

The random forest method [81] is an ensemble (bagged) predictor composed of a set of
classifications generated by the DT algorithm, called the Classification and Regression Tree
(CART). The classifier is trained against randomly sampled (with replacement) data subsets
using randomly selected features from a feature vector. For each DT, an input dataset is
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split into training (referred to as in-bag samples) and validation subsets (referred to as
out-of-bag samples) using a 67/33% proportion. This allows for internal cross-validation
of derived classification and computation of goodness-of-fit statistics called an out-of-bag
(OOB) error, defined as an error rate (number of misclassifications divided by the total
number of cases). Decision trees are not pruned and the final classification is computed by
majority voting across results acquired from all of the generated trees. The main benefit
of the RF classifier over the DT method is insensitivity to overfitting and to some level of
noise in a training dataset. On the negative side, RF classifiers may be computationally
expensive in the case of large training datasets.

4.4. AdaBoost Classifier

The AdaBoost classifier, known as Adaptive Boosting [82], is conceptually similar to
the RF algorithm in the way that it combines many weak learners (such as DT classifiers)
to develop a strong predictor. Contrary to the RF method, where DTs are generated
independently/parallelly, AdaBoost constructs a forest of DTs sequentially based on the
classification skills of previous DTs. In fact, DT learners within the AdaBoost classifier are
called “stumps”, simply because they have one node and two leaves. The stumps alone may
feature predictive skills only slightly better than a random guess, but a group of stumps,
with each one progressively learning from the misclassified cases of its predecessor, “boosts”
the final classification accuracy. In practice, initially, AdaBoost assigns equal weights to all
training samples and selects the first decision stump with the highest classification skill
expressed by a logistic loss function. Further, the weights of the misclassified samples
from the first stump are increased so the second stump is more focused on those samples.
This procedure ends whenever all of the samples are correctly classified or the maximum
number of stumps has been reached. Ultimately, for each sample, the predictive skills of
positive stumps (with a “yes” label) and negative stumps (with a “no” label) are summed
up separately, and the final label is assigned according to a larger sum. AdaBoost is suited
for imbalanced datasets as it is insensitive to overfitting but underperforms for noisy
datasets [41].

4.5. Support Vector Machine (SVM) Classifier

SVMs [79] are supervised learning algorithms that construct an optimal hyperplane
or a set of hyperplanes to linearly discriminate two groups of samples. The optimal
hyperplane maximizes a distance between two planes (referred to as support vectors) that
are a part of the convex hulls (margins) of those groups in a feature space. SVM learning is
an iterative procedure to select a classifier featuring the optimal hyperplane that minimizes
misclassifications. If samples are incorrectly labeled in a training dataset and consequently
fall onto the wrong side of a hyperplane, then they are down-weighted to reduce their
influence. In the case of a non-linear relationship between classes and samples in the
feature space, these samples are projected by means of kernel techniques to a (usually)
higher-dimensional space where the separation of classes becomes linear. The choice of
optimal type (e.g., linear, Radial Basis Function (RBF), etc.) and the parameters of a kernel
greatly influence the classification quality. SVMs perform a multi-class classification by
fitting binary sub-classifiers to each class and selecting the one that occurs in the most cases.
From a numerical perspective, optimization of SVMs is a quadratic problem not suitable
for large datasets. The advantage of this method is related to reliable classification results
in the case of sparse and noisy training datasets [87].

4.6. Artificial Neural Network (ANN) Classifier

ANNs [76,77] are a collection of machine learning algorithms inspired by the decision-
making processes occurring in a human brain. ANNs consist of many interconnected
artificial neurons (also called nodes) forming a network called the perceptron, composed
of one or more layers of neurons. An artificial neuron is a thresholding processing unit
that generates a response (binary or continuous) if a weighted sum of inputs from other
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neurons exceeds a certain activation level (threshold value). The weights determine the
connection strength between neurons, which may express an excitatory (positive) or in-
hibitory (negative) connection. Through supervised learning techniques, the weights
are iteratively adjusted to minimize log-loss cost function. The layers of neurons can be
consecutively connected, forming a feed-forward network, or can be arranged in loops
(reversely connected), forming a recurrent network. The neurons can be divided into three
types: input units, which receive data from outside the neural network; output units,
which send data out of the neural network; and hidden units, whose input and output
signals remain within the neural network. The distributed structure of an ANN allows for
massive computational parallelization provided by modern GPU (graphical processing
unit) processors. Optimal parametrization of an ANN might be difficult; however, once
achieved the algorithm provides results superior to other machine learning methods for
large datasets. The main disadvantage of an ANN is the “black box” nature of the derived
optimal network configuration, which is not human-interpretable. Consequently, it is
difficult to track and justify why a particular output was generated by the algorithm.

4.7. Gaussian Process (GP) Classifier

GP is a stochastic model used within the machine learning discipline for classifica-
tion and regression analyses [80]. GP can be considered an infinite collection of random
variables that feature multivariate Gaussian (normal) distributions for any finite subset of
this collection. The random variables are described by an infinite set of functions, which
are further constrained by means of observations to derive posterior distributions over
functions. In this way, GP does not make any assumptions about the parameters of the
function featuring a “best-fit” to observed values, but instead, a priori, it places directly
on the space of functions. The closer to training samples a new sample is within this
space, the higher probability that the retrieved value will be correct. GP allows for the
quantification of this probability. It is characterized by its mean and covariance func-
tions, which facilitate analytical manipulations due to the simple mathematical solutions
originating from the properties of a multivariate Gaussian distribution. The mean and
covariance functions have to be selected a priori, which may be difficult for a small noisy
training dataset. In such a case, the mean function is often set to zero for the sake of
numerical convenience, since it is always possible to center a data distribution around zero.
Derivation of an appropriate covariance function is more problematic since it is defined
in terms of hyper-parameters, which have to be inferred by the GP itself. The definition
of hyper-parameters allows for the incorporation of expert knowledge, e.g., about the
smoothness or periodicity of the modeled phenomenon. The main advantages of the GP
method are related to the derivation of classification probability and to the incorporation
of a priori knowledge about the classified phenomena. The main disadvantage of GP is
the computational complexity, which quickly scales up with the number of samples; thus,
sparse approximation techniques are required for large training datasets.

4.8. Naive Bayes Classifier

Bayesian theory (formulated by Thomas Bayes in 1763) describes the a posteriori
probability of an event as a function of conditional probabilities and the a priori probabilities
of other events. From the perspective of an image classification, the a posteriori probability
is defined as the likelihood of occurrence of a certain class given a certain feature vector
(e.g., spectral bands). The conditional probabilities are the likelihoods of occurrence of a
particular feature vector for a particular class. The a priori probabilities are the overall
likelihood of occurrence of a particular class and the overall likelihood of occurrence of
a particular feature vector. Conditional probabilities induce many correlations between
features and as such are numerically expensive to derive for a large feature vector with
many degrees of freedom. The solution to this problem assumes an independence of
features and is the foundation of the Naive Bayes method. Such a simplification allows
for the reduction of a multidimensional probability density matrix to one-dimensional
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density estimation. Although independence of features is a weak assumption, in practice,
the Naive Bayes method was found to be robust, especially for large training datasets
with many features. The performance of the Naive Bayes classifier under the violated
independence assumption was studied by [88], where it was proven that the classification
results are unaffected if the dependencies between features are distributed evenly between
the classes or if the dependencies cancel each other out. The main advantages of the Naive
Bayes method are related to the quantification of classification uncertainty and numerical
efficiency for large datasets. The main disadvantages are related to the assumption of
independent features and to the “zero frequency problem”, where one of the conditional
probabilities is zero and consequently the entire a posteriori probability equals zero. In such
a case, a Laplace smoothing technique can be used that involves adding a single row (one
count) while computing conditional probabilities. This solution eliminates the “zero
frequency problem” without any significant influence on the classification results.

4.9. Quadratic Discriminant Analysis (QDA) Classifier

The QDA classifier [85] defines discriminant function(s) that separate(s) classes that
are supposed to feature Gaussian (normal) probability density distributions characterized
by mean values and covariance matrices. The discriminant function(s) determines points
within the feature space where probability density estimates for each class are equal (i.e., the
classification likelihood is 50%/50%). The Gaussian parameters for each class are derived
from a training dataset using the maximum likelihood (ML) method, which is convenient
for small, under-represented classes. A simplified version of the QDA called the Linear
Discriminant Analysis (LDA) assumes that the covariance matrices for each class are equal,
which results in linear discriminant functions. Nevertheless, both classifiers require that
the number of samples is larger than the number of features. The advantages of QDA
and LDA are related to their simplicity and accurate classification in the case of classes
that feature Gaussian probability distributions. If this assumption is not met, then the
classification results might be poor.

5. Experimental Design

The presented experiments aimed at evaluating the performance of the selected
classifiers using synthetic datasets featuring various characteristics/malformations that are
challenging from the perspective of class separation, as well as real cases involving cloud
discrimination using MODIS spectral measurements. All of the datasets were labeled with
a binary categorical variable. Datasets labeled with several classes were not considered,
as every multiclass classification can be divided into several binary classifications and
combined again using the majority voting scheme. Lastly, the numerical performance of
the classifiers was evaluated. The following subsections provide methodological details
about these experiments.

5.1. Generation of Synthetic Datasets

Synthetic datasets with binary labels, generated by the scikit-learn library, were di-
vided into three simplified two-dimensional (2D) cases and one complex seven-dimensional
(7D) case. Further, within each case, the dataset was (re)generated for a varying number
of samples (100, 250, 500, 1000), with different fractions of mislabeled samples referred to
as noise level (10%, 20%, 30%), and with different proportions of class balance (30%/70%,
40%/60%, 50%/50%). Each synthetic dataset was split into training and validation datasets
according to the 70%/30% proportion. The datasets were grouped into three categories
with respect to classification difficulty:

1. easy—perfectly balanced with 10% noise;
2. moderate—40%/60% class imbalance with 20% noise;
3. difficult—30%/70% class imbalance with 30% noise.

For the generation of the 2D cases, the following scikit-learn routines were used:
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1. linear dataset—adapted from the “classifier comparison” script with a linear boundary
between groups;

2. moons dataset—adapted from the routine “make_moons” from the “sklearn.datasets”
module with a non-linear boundary between groups;

3. circles dataset—adapted from the routine “make_circles” from the “sklearn.datasets”
module with one group forming a ring surrounding another.

For the generation of the 7D case, the “make_classification” routine from the
“sklearn.datasets” module was used with the following settings: seven features, three
informative features, two redundant features, two irrelevant features, one cluster per class
and two classes (binary labeling). The informative features consist of Gaussian clusters
each located around the vertices of a hypercube. For each cluster, informative features
are drawn independently from N(0, 1) and then randomly linearly combined within each
cluster in order to add covariance. The clusters are then placed on the vertices of the
hypercube. Redundant features are random linear combinations of the informative features
and irrelevant features are merely random samples from the univariate “normal” (Gaussian)
distribution. The “make_classification” routine was adapted from [89], where it was used to
generate the non-linear “Madelon” dataset used during the Neural Information Processing
Systems (NIPS) workshop on feature extraction in 2003. The parameters describing the
synthetic datasets are given in Table 2.

Table 2. Parameters describing synthetic datasets used for the evaluation of selected classifiers.

number of features 2, 7

number of samples 100, 250, 500, 1000

fraction of mislabeled samples (in %) 10, 20, 30

class imbalance (in %) 30/70, 40/60, 50/50

5.2. Real Case Datasets

The real case datasets were composed of spectral measurements from the MODIS
sensor mounted aboard the AQUA satellite, which were spatially and temporally collocated
with the reference cloud mask originating from the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) lidar data acquired by the CALIPSO satellite, as well as the Cloud
Profiling Radar (CPR) data acquired by the CloudSat satellite. The AQUA, CALIPSO and
CloudSat platforms followed each other closely as part of the A-Train satellite constellation,
crossing the equator in an ascending (northbound) direction at approximately 1:30 p.m.
local solar time. CloudSat and CALIPSO lagged AQUA by 1 to 2 min and were separated
from each other by 10 to 15 s [90]. This allowed for constant spatio-temporal collocations
of AQUA’s MODIS measurements with CALIPSO’s CALIOP and CloudSat’s 94 GHz CPR
vertical profiles in order to jointly analyze the rapidly changing cloud cover. In this respect,
the 2B-GEOPROF-LIDAR product version R05 [90] used in this study includes a number of
hydrometeor layers in the vertical column of the CloudSat profile. To separate cloud layers,
at least 960 m of hydrometeor free space, as defined by either radar or lidar, must be present.
The cloud layers detected by the lidar are computed from the 5 km horizontally averaged
Vertical Feature Mask product featuring a native resolution of 333 m. The horizontally
averaged product was found to be in best agreement with the MODIS AQUA (MYD35)
cloud mask product [90]. Within this study, the reference binary cloud mask used for
the training and validation of selected classifiers was generated assuming cloud cover
whenever at least one cloud layer was detected either by the CALIOP or CPR instruments.

Along with the 2B-GEOPROF-LIDAR, the MODIS-AUX product [91] is generated,
which consists of the Collection 6 AQUA MODIS products that overlap and surround each
CPR footprint, namely (1) radiance (MYD02_1KM_L1B product), (2) cloud mask (MYD35_L2
product) and (3) geodetic 1-kilometer resolution latitude and longitude (MYD03). Within the
MODIS-AUX product, all MODIS datasets are collocated with the CPR ray using the
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great-circle nearest neighbor scheme, forming a 3-pixel across-track by 5-pixel along-track
spatial subset overlapping each CPR footprint. The maximum allowed collocation distance
between a MODIS 1 km pixel and a CPR footprint was set to 0.95 km. As the A-Train
constellation satellites follow each other along very similar orbits, most of the colloca-
tions are close to the nadir view (mean MODIS satellite zenith angle 15.15◦ +/− 2.84◦).
Consequently, the dataset used to train classifiers featured very little angular variability
across-track and, in this respect, it was not representative.

Within the presented study, the 2B-GEOPROF-LIDAR and the MODIS-AUX products
were further matched by selecting a pixel from the 3-pixel across-track by 5-pixel along-
track spatial subset of MODIS products with the smallest distance to the corresponding
CPR footprint. Spectral reflectances, brightness temperatures and Sun/sensor geometries
derived from the embedded MYD02_1KM_L1B product were used as explanatory variables
for the training of selected classifiers and the retrieval of classifications. All explanatory
variables were standardized (centered around the mean value with a unit standard devia-
tion) in order to improve the reliability of distance computation required by some classifiers
(e.g., KNN, SVM). For the sake of comparison, the MODIS cloud mask was also derived
from the embedded MYD35 product and transformed to a binary mask assuming that
“confident clear” and “probably clear” pixels are cloud-free whereas “confident cloudy”
and “probably cloudy” pixels are filled with clouds. The 2B-GEOPROF-LIDAR and the
MODIS-AUX products were split into two independent, temporally decoupled validation
and training datasets acquired in 2006 and in 2007, respectively. The analyzed time period
was selected due to the earliest possible joint operation time of the AQUA (launched in
2002), CALIPSO (launched in 2006) and CloudSat (launched together with CALIPSO)
satellites. At that time, the instruments had experienced very small degradations apart
from the MODIS AQUA 1.6 µm channel. The full list of spectral and ancillary features used
by the classifiers is presented in Table 3.

The MODIS collocations with CALIOP and CPR were divided into two real cases.
The first simple one consisted of daytime data (Sun zenith angle < 85◦) over water, away
from sun glint areas and excluding polar regions (60◦–90◦ latitudes). The second, more
difficult case consisted of daytime data (Sun zenith angle < 85◦) over ice/snow. Information
about sun glint areas as well as the land/water and snow masks was extracted from the
MYD35 product. Each real case dataset was randomly subsampled into 100,000 training
samples and 30,000 validation (hold-out) samples.

Table 3. Spectral and angular features used for cloud discrimination over water surfaces using
MODIS imagery.

Abbreviation Full Name

B1_645nm Band 1 reflectance at 645 nm

B2_858nm Band 2 reflectance at 858 nm

B3_469nm Band 3 reflectance at 469 nm

B4_555nm Band 4 reflectance at 555 nm

B5_1240nm Band 5 reflectance at 1.240 µm

B7_2130nm Band 7 reflectance at 2.130 µm

B17_905nm Band 17 reflectance at 905 nm

B18_936nm Band 18 reflectance at 936 nm

B19_940nm Band 19 reflectance at 940 nm

B26_1375nm Band 26 reflectance at 1.375 µm

B20_3750nm Band 20 brightness temperature at 3.750 µm

B27_6715nm Band 27 brightness temperature at 6.715 µm
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Table 3. Cont.

Abbreviation Full Name

B28_7325nm Band 28 brightness temperature at 7.325 µm

B29_8550nm Band 29 brightness temperature at 8.550 µm

B30_9730nm Band 30 brightness temperature at 9.730 µm

B31_11030nm Band 31 brightness temperature at 11.030 µm

B32_12020nm Band 32 brightness temperature at 12.020 µm

B33_13335nm Band 33 brightness temperature at 13.335 µm

B34_13635nm Band 34 brightness temperature at 13.635 µm

B35_13935nm Band 35 brightness temperature at 13.935 µm

B36_14235nm Band 36 brightness temperature at 14.235 µm

B1_645nm_B2_858nm_ratio Reflectance ratio between Bands 1 and 2

B31_11030nm_B20_3750nm_diff Brightness temperature difference between Bands 31 and 20

B32_12020nm_B20_3750nm_diff Brightness temperature difference between Bands 32 and 20

B31_11030nm_B32_12020nm_diff Brightness temperature difference between Bands 31 and 32

B28_7325nm_B31_11030nm_diff Brightness temperature difference between Bands 28 and 31

B29_8550nm_B31_11030nm_diff Brightness temperature difference between Bands 29 and 31

B29_8550nm_B28_7325nm_diff Brightness temperature difference between Bands 29 and 28

sunz Sun zenith angle

satz Satellite zenith angle

suna Sun azimuth angle

sata Satellite azimuth angle

razi Relative azimuth angle

scat Scattering angle

NDVI
Normalized Difference Vegetation Index
NDVI = B2_858nm−B1_645nm

B2_858nm+B1_645nm

5.3. Optimization of Classifiers: Forward Feature Selection and Hyper-Parameter Tuning

The classifiers implemented within the scikit-learn library come within a set of default
hyper-parameters that should perform well for a wide range of datasets. Nevertheless,
this flexibility comes at the price of suboptimal accuracy, which can be further improved
by the tuning of hyper-parameters. In this respect, the scikit-learn library version 0.24.2
offers a suite of useful routines, amongst which the HalvingGridSearchCV routine from
the sklearn.model_selection module was used within this study. This routine starts by
evaluating all combinations of hyper-parameters with a small amount of resources and
iteratively selects the best ones, using more and more resources. The term “resources”
typically denotes a number of training samples, but it can also be an arbitrary numeric
parameter such as a number of trees in a random forest. The optimal combination of
hyper-parameters maximizes some classification quality metric (Cohen’s kappa score in
this study), which is derived internally by the HalvingGridSearchCV routine, which divides
the input samples into the training and held-out samples. It has to be emphasized that
the input samples used for the forward feature selection and hyper-parameter tuning
consisted of training datasets generated within the experiments with the 2D datasets and
MODIS data. The optimal set of hyper-parameters varies for different combinations of
input features. Therefore, feature selection was performed, prior to the hyper-parameter
tuning, by means of the SequentialFeatureSelector routine from the sklearn.feature_selection
module. This routine performs forward feature selection using 5-fold cross-validation,
which maximizes some classification quality metric (Cohen’s kappa score in this study).
The feature selection procedure was performed only for the real case datasets (summary of
the selected features is given in Appendix A). Within the experiments with synthetic 7D
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datasets with redundant and irrelevant features, the feature selection was not performed
on purpose, in order to evaluate the ability of the classifiers to deal with such situations.
On the contrary, the hyper-parameter tuning was always performed—separately for every
classification process.

5.4. Evaluation of Classifiers

The selected classifiers were assessed in the same consistent way across experiments,
using accuracy (ACC) and Cohen’s kappa (κ) scores to measure the agreement between
classified and reference data. The ACC score, defined as the fraction of correctly labeled
samples, is widely used; however, it is difficult to interpret for imbalanced datasets (see
Section 2.3). In such a case, Cohen’s kappa score [60] is more robust as it takes into account
the possibility of agreement occurring by chance. Its values range from −1 to 1, where
1 is perfect agreement between predicted and reference labels, 0 denotes (dis)agreement
that would be obtained by a completely random classifier, whereas negative values denote
(dis)agreement that is worse than random. The formula for Cohen’s kappa score is given
by Equation (3).

κ =
Po − Pe

1− Pe
(3)

where:
Po—empirical probability of agreement between predicted and reference labels (same

as ACC);
Pe—hypothetical probability of agreement between randomly assigned and refer-

ence labels.
The randomly generated synthetic datasets introduced stochastic variations of derived

classification quality metrics. Therefore, the experiments with the synthetic datasets were
repeated 30 times for each combination of three variables: number of samples, class
imbalance and noise level. In the case of the daytime cloud detection over water surfaces
using the MODIS/CALIPSO/CPR collocations, the analysis was run once with the training
dataset collected in 2007 and the validation dataset from 2006.

Ultimately, the numerical performance of the classifiers in terms of the execution times
of the training and retrieval processes separately was investigated. The machine used for
this analysis was based on the AMD EPYC 7401 24-Core Processor with 256 GB RAM,
running the Ubuntu version 18.04.5 operating system with a Python 3.9.6 environment
containing the NumPy version 1.21.1, Scipy version 1.7.14. and scikit-learn version 0.24.2
libraries. For the sake of comparability, the multicore/hyper-threading support for the se-
lected classifiers (including the VEOR) was deactivated in order to measure the single-core
numerical performance. For this analysis, the linear synthetic dataset with an increasing
number of samples (102, 103, 104, 105, 106) was used, and each analysis was repeated five
times to generate mean execution times. In the case of the Gaussian process classifier,
training of more than 104 samples was computationally too expensive and the execution
times for those datasets were not measured.

6. Results
6.1. Classification of Synthetic 2D Datasets

Initially, the evaluation of the selected algorithms involved a binary classification of
three types of randomly generated synthetic datasets composed of two features separated
by linear, non-linear and circular borders (see rows in Figure 4), which were further
grouped according to a classification in terms of difficulty: easy, moderate and difficult (see
Section 5.1). An exemplary experiment with an easy dataset is presented in Figure 4, where
blue points are labeled with 0 and red with 1. Circles denote training points and triangles
denote validation points, which were split according to a 70%/30% proportion, respectively.
In the background, the classification probability or decision function, scaled to a 0–1 range
for SVM, is presented for every sample within the 2D grid. The accuracy (ACC) and kappa
(κ) values are also reported, although they are not conclusive due to the randomness of
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synthetic datasets, which introduces great variability between algorithms, especially for
datasets with a low number of samples (see standard deviation whiskers in Figure 5).
Nevertheless, some interesting conclusions can be drawn regarding the inability of some
classifiers to fit the samples. In this respect, it is not surprising that linear SVM is unable to
fit datasets with non-linear and circular borders. However, it is more interesting that the
Naive Bayes classifier is unable to fit the simplest linear dataset, most likely because, in this
case, the feature independence assumption is strongly violated. Likewise, for the moons
dataset, the RBF SVM, Naive Bayes and QDA classifiers performed poorly, but the same
methods performed well for the circles dataset (presumably the most difficult to classify).
The classification probability/scaled decision function presented in the background of
Figure 4 reveals interesting patterns. Algorithms based on data partitioning, such as VEOR,
decision tree, random forest and AdaBoost, produced jagged results, whereas algorithms
that model/fit the probability field (i.e., SVM, Gaussian process, neural net, Naive Bayes,
QDA) produce smoother results. A quantitative analysis of the classification results for the
linear, moons and circles datasets, grouped together according to classification difficulty
(see Section 5.1), is presented in Figure 5. The general pattern apparent from this analysis
reveals that the number of samples is directly proportional to the classification accuracy and
inversely proportional to the variability of derived classification metrics. This is particularly
noticeable for the VEOR algorithm, where a small training dataset leads to a low number
of samples within the percentile grid and consequently to variable classification probability
estimates that are difficult to reconstruct by the KNN weighted average. The same applies
to noisy training datasets, where the reconstruction of probability is challenging even for a
large number of nearest neighbors, resulting in significant probability smoothing. In such a
case, the algorithms that model/fit to the classification probability field, such as RBF SVM,
Gaussian process and neural net, perform best. On the contrary, the linear SVM, decision
tree and Naive Bayes classifiers seem to be the least accurate and they do not “learn” much
from the larger training datasets (see the median line marked on the boxes in Figure 5).
This implies that if the assumptions behind these algorithms are violated (e.g., linearity,
feature independence), they will not improve the classification skills given more training
samples. Ultimately, it has to be emphasized that the experiment with the 2D datasets was
an idealized case where only two important/meaningful features were used. In reality,
the classification is usually based on more features, including some irrelevant or redundant
ones. This aspect was investigated in the experiment with the 7D dataset, described in the
next subsection.

6.2. Classification of Synthetic 7D Datasets

The experiment with the synthetic 7D datasets was performed analogously to the
evaluation of the 2D datasets, apart from the feature vector, which consisted of three in-
formative/meaningful features, two redundant features and two irrelevant features. No
feature selection was applied during the optimization of classifiers within this experi-
ment in order to test the sensitivity of each method to irrelevant and redundant features.
Evaluation of the classifiers’ performance used for the 7D dataset (Figure 6) revealed a
similar pattern to the experiment with the 2D datasets, except for the linear SVM and Naive
Bayes classifiers, which performed well this time. The least accurate was the decision
tree classifier, which is very sensitive to the irrelevant and noisy information that forms
spurious branches within a tree structure. This in turn deteriorates the ability of a classifier
to generalize to new/unseen cases. Thus, a tree pruning procedure should be applied,
which was optimized within this study by means of the ccp_alpha hyper-parameter that
controls the Minimal Cost-Complexity Pruning method [43]. Surprisingly, for a small
number of points, the random forest classifier performed better than the AdaBoost method,
which is supposed to incorporate the decision tree classifications more efficiently than the
former algorithm. Across selected classifiers, the VEOR algorithm performed well for the
easy and moderate datasets, while, for the difficult datasets, the classification accuracy was
slightly worse than other methods.
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Figure 5. Summary of experiments with combined synthetic linear, moons and circles 2D datasets grouped according to classification difficulty. Easy datasets feature
10% of mislabeled samples and a 50%/50% class balance; moderate datasets feature 20% of mislabeled samples and a 40%/60% class imbalance; difficult datasets
feature 30% of mislabeled samples and a 30%/70% class imbalance. Each experiment was repeated 30 times with randomly generated data.
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Figure 6. Summary of experiments with 7D datasets grouped according to classification difficulty. Easy datasets feature 10% of mislabeled samples and a 50%/50%
class balance; moderate datasets feature 20% of mislabeled samples and a 40%/60% class imbalance; difficult datasets feature 30% of mislabeled samples and a
30%/70% class imbalance. Each experiment was repeated 30 times with randomly generated data.
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6.3. Cloud Detection Using Daytime MODIS Spectral Measurements and a Reference Cloud Mask
Derived from Combined CALIOP and CPR Data
6.3.1. Cloud Detection over Water Surfaces

Within the real case experiment involving cloud discrimination using MODIS satellite
spectral measurements (Figure 7), the reference quality metrics (ACC = 0.879, κ = 0.723)
for the selected classifiers were derived from the Collection 6 AQUA MODIS cloud mask
product (MYD35). In this respect, it has to be emphasized that the MYD35 product is glob-
ally applicable for all satellite zenith angles, whereas the classifiers selected are applicable
close to the satellite nadir (due to an unrepresentative training dataset). Despite this fact,
the decision tree classifier produced inferior results to the MYD35 product (ACC = 0.840,
κ = 0.627), whereas all other methods with optimized hyper-parameters generated very
similar and accurate classifications. As compared to the VEOR algorithm (ACC = 0.888,
κ = 0.748), the Naive Bayes (ACC = 0.880, κ = 0.734), Gaussian process (ACC = 0.882,
κ = 0.736), QDA (ACC = 0.883, κ = 0.736), nearest neighbor (ACC = 0.884, κ = 0.738),
linear SVM (ACC = 0.885, κ = 0.739) and RBF SVM (ACC = 0.886, κ = 0.745) classifiers
were slightly less accurate, while the random forest (ACC = 0.889, κ = 0.747), neural net
(ACC = 0.890, κ = 0.752) and AdaBoost (ACC = 0.891, κ = 0.753) classifiers were slightly
more accurate. It could be noticed that many classifiers discriminated cloud cover over
water surfaces with almost the same classification quality metrics. This may indicate that
several methods reached almost maximum classification accuracy given the radiometric
sensitivity of the MODIS instrument and the collocation inaccuracies with the CALIOP
and CPR sensors.

Regardless of the very similar classification results, the forward feature selection proce-
dure applied to each classifier resulted in different optimal combinations of input features
over water surfaces (see Appendix A). In this respect, the VEOR algorithm selected four
optimal features ordered according to decreasing importance: B18_936nm, B32_12020nm,
sunz, B30_9730nm (for abbreviations, see Table 3). The first two features (the most im-
portant) were also selected by the nearest neighbor, neural net, decision tree and random
forest classifiers, while linear SVM, Naive Bayes and QDA did not select even one of them.
Other features that were often selected were: B29_8550nm_B31_11030nm_diff (6 times),
B29_8550nm_B31_11030nm_diff (3 times), B29_8550nm_B31_11030nm_diff (3 times), NDVI
(3 times). All of the algorithms apart from the linear SVM required some angular feature,
but the type of this information varied significantly. The Sun zenith angle was required
only by the VEOR algorithm. The Sun azimuth angle was optimal for the nearest neighbor,
decision tree and Naive Bayes classifiers. The scattering angle was selected by the neural
network, random forest, AdaBoost, Naive Bayes and QDA algorithms, while the relative
azimuth angle was required by the RBF SVM and Gaussian process classifiers. The satellite
zenith angle was not selected by any method because collocations of the CALIPSO and
CPR profiles with the AQUA MODIS radiometer were only available close to the satellite
nadir. The inconsistency in the selected angular features is not easily explainable as it
is a combination of physics and data sampling. Based on the VEOR output, the angular
information itself is a weak classification feature for cloud discrimination and it slightly im-
proves the overall accuracy over water surfaces close to the satellite nadir. Thus, in the case
of the stochastic classifiers, different features (including angular ones) might be selected
between consecutive algorithm runs with the same input data.

Cloud discrimination over water surfaces during daytime is a fairly simple classi-
fication task. Therefore, to fully evaluate the performance of the selected classifiers, an
analogous experiment over snow/ice surfaces was performed (see next subsection).
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Figure 7. Comparison of classifier performance for cloud discrimination over water surfaces using
MODIS spectral measurements collocated with the CALIOP/CPR reference cloud mask. MYD35
denotes AQUA MODIS collection 6 cloud mask product.

6.3.2. Cloud Detection over Ice/Snow Surfaces

Cloud discrimination over ice/snow surfaces during daytime is more challenging
than over water surfaces due to the low optical and thermal contrasts between the surface
and clouds (see Section 2.2). This is particularly apparent in the case of the MYD35 product
(Figure 8), which, over ice/snow, is 21% less accurate than over water (ACC = 0.671 vs.
ACC = 0.881), and the Cohens’ kappa is 56% lower (ACC = 0.727, κ = 0.317). Amongst the
selected classifiers, only the Naive Bayes method produced worse results than the MYD35
product (ACC = 0.659, κ = 0.296). As compared to the VEOR algorithm (ACC = 0.809,
κ = 0.611), the QDA (ACC = 0.742, κ = 0.467) and decision tree (ACC = 0.764, κ = 0.526)
methods were less accurate, the nearest neighbor (ACC = 0.809, κ = 0.614) and linear SVM
(ACC = 0.808, κ = 0.613) classifiers were equally accurate, while the AdaBoost (ACC = 0.816,
κ = 0.629), random forest (ACC = 0.818, κ = 0.632), Gaussian process (ACC = 0.822, κ = 0.639),
RBF SVM (ACC = 0.886, κ = 0.745) and neural net (ACC = 0.890, κ = 0.752) algorithms were
more accurate. Regarding the optimal feature combination for cloud discrimination over
ice/snow (see Appendix A), the internal VEOR feature selection procedure selected the fol-
lowing features (ordered by decreasing significance): B7_2130nm, B18_936nm, B26_1375nm,
B3_469nm. In this respect, MODIS reflectance at 2130 nm was selected by all of the classi-
fiers apart from the Naive Bayes classifier, while the reflectance at 936 nm was selected by
the nearest neighbor, neural network, RBF SVM, random forest and AdaBoost methods.
Other features that were often selected were: B29_8550nm_B28_7325nm_diff (5 times),
B27_6715nm (4 times), B32_12020nm (3 times), B28_7325nm (3 times). As opposed to the
cloud discrimination over water surfaces, only the linear SVM classifier required angular
information (i.e., Sun zenith angle) to discriminate cloud cover over ice/snow surfaces.
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Figure 8. Comparison of classifier performance for cloud discrimination over ice/snow surfaces using
MODIS spectral measurements collocated with the CALIOP/CPR reference cloud mask. MYD35
denotes AQUA MODIS collection 6 cloud mask product.

6.4. Numerical Performance Evaluation

The evaluation of numerical performance revealed great differences between the
single-core computational requirements of the selected classifiers. The most demanding
from the perspective of classifier training is the Gaussian process algorithm, which was not
able to be applied for 2D datasets with more than 105 samples; thus, only results for 102,
103, 104 are reported in Figure 9. However, the retrieval time for this classifier is in the order
of tens of seconds for a dataset with 106 samples (Figure 10), which might be applicable to
moderate-resolution imagery. Another numerically expensive algorithm is the RBF SVM,
which takes hours for training and tens of minutes to classify a dataset with 106 samples.
Thus, this method might be applicable for the classification of a single image. On the
contrary, the linear SVM classifier is numerically robust, with a retrieval time a few orders of
magnitude faster than other techniques. Interestingly, the RBF SVM routine can be executed
with a linear kernel (instead of the RBF kernel), which is supposed to be conceptually the
same as the linear SVM method. However, due to the different libraries used by these two
routines (liblinear vs. libsvm), the reduction in processing time is from hours to seconds
for algorithm training, and from minutes to milliseconds for classification retrieval. Thus,
it has to be emphasized again that the presented results depend heavily on scikit-learn
implementation, and for other machine learning libraries, the numerical performance of
selected classifiers may differ significantly. The least numerically demanding methods
for both training and retrieval are the Naive Bayes and QDA algorithms. Other methods,
such as random forest, neural net and AdaBoost, which provided accurate classification
results (see Figures 5–7), are also numerically efficient, which might be the reason for their
popularity amongst the machine learning community.

The processing time for the VEOR classifier scales efficiently with the number of
samples due to the utilization of the fast cKDTree method, which performs worse than a
“brute-force” search for a small number of samples but is very robust for large datasets.
The largest improvement in processing time for the VEOR algorithm over the nearest
neighbor classifier (which also involves searching) is noticeable for classification retrieval.
This is due to the utilization of a fast binary search algorithm applied over a vector with
sorted ID. Consequently, almost two orders of magnitude of speed improvement are gained
over the cKDTree method, which additionally requires the computation of distance metrics
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in multiple dimensions. Finally, it has to be stated that the reported relationships between
the processing times of the selected classifiers may change with other datasets featuring
more dimensions, more noise or different class separability. Thus, the presented results are
more qualitative than quantitative and could provide a general idea about the numerical
performance of the selected classifiers implemented in the scikit-learn library version 0.24.2.
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Figure 9. Comparison of single-core algorithm training processing times for selected classifiers.
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Figure 10. Comparison of single-core algorithm classification processing times for selected classifiers.

7. Discussion

The experiments with the classification of synthetic and satellite datasets revealed
that the VEOR algorithm provides similar or better classification results compared with
other widely used machine learning algorithms with fine-tuned hyper-parameters and
optimized input features. In this respect, it performed among the top 3–5 most accurate al-
gorithms for synthetic datasets with low and moderate levels of noise and class imbalance,
as well as for cloud detection using MODIS/CALIOP/CPR collocations. For small, noisy
(30% of mislabeling) and imbalanced (30%/70%) datasets, the VEOR provided moderate
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results comparable to the random forest classifier. This is due to the fact that a significantly
disturbed classification probability field is difficult to reconstruct by means of a simple
inverse distance weighted average, and thus has to be modeled. Therefore, the classifiers
that involve more advanced modeling approaches, such as SVM or Gaussian process,
perform better for such datasets but at the price of large computational costs. Nevertheless,
classification of an extensive volume of remote sensing data requires a method that is both
numerically efficient and accurate. Such a combination is reached by the neural network
classifier, which provides accurate classification results, but its internal configuration is dif-
ficult to interpret. In this respect, the VEOR method ranks single features and combinations
of features according to Cohen’s kappa score. This greatly facilitates the understanding of
the feature selection process.

Conceptually simple methods such as nearest neighbor, Naive Bayes or QDA do not fit
well with all datasets, especially with multispectral MODIS measurements over ice/snow
surfaces. Interestingly, for some difficult synthetic datasets, these methods perform well
in comparison to the most robust classifiers. This may indicate that if some assumptions
behind such methods are met (e.g., Gaussian distribution describing each class and/or
linear separability of classes), then they are able to provide accurate classification results
with great numerical efficiency. Another type of classifier is the so-called “weak learners”,
such as the decision tree algorithm, which generally do not feature good classification
skills (see Figures 5–8) but are extremely fast and simple to apply. Therefore, they can
be executed multiple or hundreds of times with different settings and their stochastic
results can be further post-processed to derive an accurate ensemble classifier such as the
random forest or AdaBoost. The latter algorithms were found to be robust especially for
the classification of multispectral MODIS data and synthetic datasets with a low level of
noise and small class imbalance. The reiteration of a stochastic classifier several times
with the same input data increases the representability of the classification results, as some
initial settings within an algorithm optimization are set by a random guess. Consequently,
without repetition, the stochastic classifiers (e.g., decision tree) may provide significantly
different results for the same input data. Another source of algorithm instability may be
caused by a convergence problem when an iterative algorithm optimization procedure fails
due to an unrealistic assumption (e.g., linearity in the case of the linear SVM) or a small
number of iterations. Apart from the classifier itself, an additional source of variability in
the performed experiments originates from the stochastic wrapper procedures to optimize
the hyper-parameters (HalvingGridSearchCV—scikit-learn library routine) and to select the
most optimal features (SequentialFeatureSelector—scikit-learn library routine). Therefore,
it has to be noted that the presented evaluation results and ranking of the classifiers are
prone to small changes related to the random state/random seed of the pseudo-random
number generator embedded within the scikit-learn library.

Application of a classifier to large EO datasets requires numerical efficiency, especially
concerning the retrieval processing time. In this respect, the classification of a 2D dataset
composed of 106 samples took longest for the RBF SVM method (1668 s), while, for the
linear SVM, it took the shortest time (0.002 s). The main reason for this drastic reduction in
processing time originates from the different libraries, and not from algorithm differences
per se (retrieval time for the SVM routine with linear instead of an RBF kernel also took
several minutes). This implies that before rejecting a classifier due to numerical inefficiency,
it is advisable to test its different implementations (if possible). The VEOR implemen-
tation in the Python programming language appeared to be numerically robust due to
the implementation of the fast cKDTree algorithm for finding the nearest cells within the
percentile grid and a binary search algorithm to extract the classification probabilities from
the LUV. Thus, the VEOR retrieval is one of the fastest amongst the selected classifiers and
therefore can be applied to extremely large EO datasets. On the contrary, the scikit-learn
implementation of the RBF SVM and Gaussian process classifiers is not suitable for the
processing of large datasets. The analyses performed revealed that there is no single clas-
sifier that would outperform all the other methods for all analyzed datasets. However,
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a few algorithms performed well in almost all cases. In this respect, the neural network
method accurately classified synthetic datasets, which were significantly disturbed by
noise and class imbalance. It also discriminated cloud cover over water surfaces using
MODIS spectral measurements well, with accuracy comparable to the random forest and
AdaBoost methods, which provided the best results in this case (∼1% better than the
MYD35 product). However, more noticeable differences were revealed by the experiment
with a daytime cloud discrimination over ice/snow, where the neural network classifier
performed the best—17% more accurate than the MYD35 product and 0.5% better than
the second best RBF SVM classifier (Figure 8). Almost all classifiers, apart from the Naive
Bayes, outperformed the MYD35 collection 6 product over snow, which implies that there
is still great potential for improvement of the MODIS cloud mask product. However, it
has to be again strongly emphasized that the acquired results refer only to low satellite
zenith angles as the AQUA MODIS collocations with the CALIOP and CPR profiles are
only available close to the satellite nadir. This is also a reason that the satellite zenith angle
was not selected either by the VEOR or by the SequentialFeatureSelector routine applied
to other classifiers (see Appendix A). In this respect, there is interesting inconsistency in
combinations of the MODIS spectral and angular features optimized for every classifier,
especially for the relatively easy experiment with the daytime cloud discrimination over
water surfaces, where almost all of the classifiers performed almost equally well. This may
indicate that several combinations of spectral and angular features may lead to the same
optimal results. On the other hand, within a more difficult experiment with the daytime
cloud discrimination over ice/snow, the performance of the evaluated classifiers varied
more significantly along with the combinations of selected features. This may imply that
the feature selection procedure may produce incorrect results if the classification skills of
the classifier being optimized are low (see results of the Naive Bayes classifier in Figure 8
and the corresponding optimal feature combination listed in Appendix A). Nevertheless,
the experiments conducted within this study and the extensive literature [47,48] lead to the
conclusion that the feature selection significantly improves the classification results.

Ultimately, it has to be stated that the VEOR classifier performed well for datasets
with many samples, including the experiment with MODIS data, where it proved that the
combination of four features allows for more accurate (by ∼1% over water surfaces and by
∼14% over ice/snow) cloud discrimination than the MYD35 product. The feature selection
procedure implemented in VEOR reports Cohen’s kappa coefficient for every analyzed
combination of features. This is computationally feasible due to the simple reconstruction
of the classification probability field by means of the weighted inverse distance K-nearest
neighbor average. Nevertheless, such a solution is not accurate for small datasets, especially
with significant noise and class imbalance. However, the premise for VEOR development
was the derivation of an accurate probabilistic classification for large EO datasets requiring
some methodological simplifications. Several experiments conducted within this study
have proven that the VEOR classifier is an interesting alternative to common machine
learning techniques.

8. Conclusions

The main objective of this work was to evaluate the performance of the novel self-
optimizing probabilistic Vectorized Earth Observation Retrieval (VEOR) classifier with
respect to common machine learning algorithms with fine-tuned hyper-parameters and
optimized input features. This was achieved within a series of experiments with synthetic
datasets, as well as with daytime cloud discrimination using AQUA MODIS spectral mea-
surements and a reference cloud mask derived from combined CALIOP lidar and CPR
radar data. The classification results proved that the VEOR method is able to accurately clas-
sify large datasets commonly occurring within various Earth Observation (EO) disciplines.
However, it is not suitable for small and noisy datasets due to the imprecise reconstruction
of the multidimensional classification probability field by means of a weighted inverse
distance average when the number of samples is limited. Nevertheless, comparison with
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other classifiers revealed that the VEOR algorithm is within the 3–5 most robust techniques
for large (i.e., >=1000 samples) synthetic datasets with low or moderate levels of noise and
class imbalance. More importantly, it performed well for the daytime cloud masking over
water surfaces using MODIS spectral measurements (ACC = 0.888, κ = 0.748), where it was
better than the reference MODIS cloud mask collection 6 product (ACC = 0.881, κ = 0.727),
but slightly worse than the random forest (ACC = 0.889, κ = 0.747), neural net (ACC = 0.890,
κ = 0.752) and AdaBoost (ACC = 0.891, κ = 0.753) classifiers. An analogous experiment
over ice/snow revealed that the VEOR algorithm is again more accurate (ACC = 0.809,
κ = 0.611) than the MODIS cloud mask (ACC = 0.671, κ = 0.317) and less accurate than
the AdaBoost (ACC = 0.816, κ = 0.629), random forest (ACC = 0.818, κ = 0.632), Gaus-
sian process (ACC = 0.822, κ = 0.639), RBF SVM (ACC = 0.886, κ = 0.745) and neural net
(ACC = 0.890, κ = 0.752) classifiers. Interestingly, the forward feature selection method
applied to each classifier resulted in a wide range of optimal combinations of features.
This is particularly surprising for the daytime cloud discrimination over water surfaces,
where different combinations of input features led to almost the same results. Within a
more difficult experiment with daytime cloud discrimination over ice/snow, the feature
selection was not effective for classifiers featuring limited classification skills over ice/snow
(i.e., Naive Bayes method). Finally, it has to be emphasized that the acquired results refer
only to low satellite zenith angles as the AQUA MODIS collocations with the CALIOP and
CPR profiles are only available close to the satellite nadir.

The performed experiments revealed that the decision tree, linear SVM and Naive
Bayes produced variable results for the synthetic datasets, provided that some internal
assumptions were met or not. The Gaussian process and RBF SVM (based on the libsvm
library) classifiers were found to be accurate even for small datasets with a significant noise
level. However, their complexity and current implementation within the scikit-learn library
do not allow for their application to large EO datasets. Ultimately, the VEOR algorithm
features some unique characteristics amongst analyzed classifiers, such as:

• numerically efficient probabilistic classification of large, multidimensional datasets;
• an internal feature selection method that allows the minimal feature subset required

for optimal classification results to be identified;
• the ranking of classification skills for analyzed feature combinations according to

Cohen’s kappa coefficient;
• intuitive interpretation of derived optimal algorithm settings (including selected

features);
• easily expandable LUV whenever new data have to be added to a training dataset.

These characteristics, supported by the analytical results in this study, lead to the
final conclusion that the VEOR classifier is an interesting alternative to existing machine
learning methods, especially in terms of the classification of large multidimensional EO
datasets. Further development of the VEOR algorithm will involve adaptive reconstruc-
tion of the multidimensional classification probability field, where the number of nearest
neighboring cells K (see Equation (2)) will not be constant for all cells, but it will be further
optimized to a specific location within the probability field. Moreover, a more sophisticated
inverse distant weighting scheme used within the reconstruction of the multidimensional
classification probability field will be proposed. These adaptations should further improve
the accuracy of the VEOR classifier and increase its competitiveness with other machine
learning algorithms.
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Appendix A

Table A1. Optimized features by means of a forward selection method for the experiments with
MODIS cloud screening over water and snow.

Classifier MODIS Water MODIS Snow

VEOR B18_936nm, B32_12020nm, sunz, B30_9730nm B7_2130nm, B18_936nm, B26_1375nm, B3_469nm

Multi-layer perceptron scat, B18_936nm, B32_12020nm,
B29_8550nm_B31_11030nm_diff B7_2130nm, B18_936nm, B27_6715nm, B32_12020nm

K-nearest neighbor classifier suna, B18_936nm, B26_1375nm, B32_12020nm B7_2130nm, B18_936nm, B28_7325nm,
B29_8550nm_B28_7325nm_diff

Support vector classification with
a linear kernel

B7_2130nm, B33_13335nm, NDVI,
B29_8550nm_B31_11030nm_diff

sunz, B7_2130nm, B29_8550nm_B31_11030nm_diff,
B29_8550nm_B28_7325nm_diff

Support vector classification with
a Radial Basis Function (RBF)
kernel

razi, B18_936nm, B31_11030nm_B20_3750nm_diff,
B29_8550nm_B31_11030nm_diff B7_2130nm, B18_936nm, B27_6715nm, B33_13335nm

Gaussian process classification razi, B18_936nm, B29_8550nm_B31_11030nm_diff,
B29_8550nm_B28_7325nm_diff B3_469nm, B7_2130nm, B19_940nm, B27_6715nm

Decision tree classifier suna, B18_936nm, B32_12020nm,
B31_11030nm_B20_3750nm_diff

B7_2130nm, B19_940nm, B31_11030nm,
B29_8550nm_B28_7325nm_diff

Random forest classifier scat, B18_936nm, B26_1375nm,
B32_12020nm_B20_3750nm_diff B7_2130nm, B18_936nm, B20_3750nm, B28_7325nm

AdaBoost-SAMME classifier scat, B18_936nm, B26_1375nm,
B31_11030nm_B20_3750nm_diff

B7_2130nm, B18_936nm, B27_6715nm,
B28_7325nm_B31_11030nm_diff

Gaussian Naive Bayes classifier suna, scat, NDVI, B29_8550nm_B31_11030nm_diff
B5_1240nm, B28_7325nm,
B32_12020nm_B20_3750nm_diff,
B29_8550nm_B28_7325nm_diff

Quadratic Discriminant Analysis scat, B27_6715nm, NDVI,
B29_8550nm_B31_11030nm_diff

B7_2130nm, B32_12020nm_B20_3750nm_diff,
B28_7325nm_B31_11030nm_diff,
B29_8550nm_B28_7325nm_diff
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Appendix B

Algorithm A1: Pseudocode for the VEOR classification

1 Function Standardize (input feature vectors):
Data: input feature vectors with training samples
Result: standardized feature vectors to 8 bit representation

2 for feature vector in input feature vectors do
3 declare empty percentile vector;
4 for percentile in {0, 0.5%, 1%, 1.5%, . . . , 100%} do
5 derive percentile value for a feature vector;
6 append percentile value to a percentile vector;
7 end
8 derive standardized feature vector with integer vector indices by locating a

feature vector within a percentile vector using a binary search algorithm;
9 end

10 return standardized feature vectors to 8 bit representation;
11 end

Data: optimal feature combination
Data: look-up vectors LUVID and LUVprob for optimal feature combination
Data: standardized feature vectors using Standardize ()
Result: classification probabilities for input feature vectors

12 declare empty IDs vector;
13 declare i = 0;
14 for standardized feature vector in optimal standardized feature vectors do
15 bitwise_shift standardized feature vector by i× 8 bits;
16 bitwise_or shifted standardized feature vector with IDs vector;
17 i=i+1;
18 end
19 derive index vector by locating IDs vector within the sorted LUVID vector using a

binary search algorithm;
20 use the derived index vector to extract classification probabilities from the LUVprob

vector;
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Algorithm A2: Pseudocode for the VEOR classifier training
Data: standardized optimal feature vectors using Standardize ()
Data: vector with training binary labels
Result: LUV with IDs and LUV with classification probabilities derived for optimal

feature combination

1 declare initial number of features N = 1;
2 while Cohen’s kappa improved do
3 for N standardized feature vector(s) in standardized feature vectors do
4 declare empty IDs vector;
5 declare i = 0;
6 for standardized feature vector in N standardized feature vector(s) do
7 bitwise_shift standardized feature vector by i× 8 bits;
8 bitwise_or shifted standardized feature vector with IDs vector;
9 i = i + 1;

10 end
11 sort ascending IDs and apply the same sorting to binary training labels;
12 declare empty vector for initial classification probabilities P;
13 for ID in IDs vector do
14 select training binary labels where IDs = ID;
15 average selected binary labels to derive initial classification probability;
16 append initial classification probability to a vector P;
17 end
18 balance classes within training binary labels and IDs vectors assuming the

P probability distribution;
19 declare empty vector for initial classification probabilities Pb;
20 declare empty LUVIDs vector for IDs;
21 for ID in balanced IDs vector do
22 select balanced binary labels where balanced IDs = ID;
23 average selected balanced binary labels to derive Pbx probability;
24 append Pbx probability to a Pb vector;
25 append ID to a LUVIDs vector;
26 end
27 declare initial number of neighbors K=2;
28 while Cohen’s kappa improved do
29 declare empty vector for reconstructed classification probabilities P′;
30 for ID in LUVIDs do
31 select K nearest IDs to the ID value using cKDTree KNN method;
32 reconstruct P′x using the IDW interpolation between K nearest Pb

probabilities;
33 append reconstructed probability P′x to the P′ vector;
34 end
35 compute Cohen’s kappa between Round (P′) and Round (P);
36 K = K + 2;
37 end
38 N = N + 1;
39 end
40 end
41 oversample the optimal LUVs to IDs values unseen in the training feature vectors;
42 save optimal LUVIDs, LUVprob and optimal feature combination;
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