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Abstract: Monitoring the extent of plateau forests has drawn much attention from governments
given the fact that the plateau forests play a key role in global carbon circulation. Despite the
recent advances in the remote-sensing applications of satellite imagery over large regions, accurate
mapping of plateau forest remains challenging due to limited ground truth information and high
uncertainties in their spatial distribution. In this paper, we aim to generate a better segmentation map
for plateau forests using high-resolution satellite imagery with limited ground-truth data. We present
the first 2 m spatial resolution large-scale plateau forest dataset of Sanjiangyuan National Nature
Reserve, including 38,708 plateau forest imagery samples and 1187 handmade accurate plateau forest
ground truth masks. We then propose an few-shot learning method for mapping plateau forests.
The proposed method is conducted in two stages, including unsupervised feature extraction by
leveraging domain knowledge, and model fine-tuning using limited ground truth data. The proposed
few-shot learning method reached an F1-score of 84.23%, and outperformed the state-of-the-art
object segmentation methods. The result proves the proposed few-shot learning model could help
large-scale plateau forest monitoring. The dataset proposed in this paper will soon be available online
for the public.

Keywords: large-scale plateau forest mapping; Sanjiangyuan National Nature Reserve; high
resolution satellite imagery; ZY-3; few-shot learning

1. Introduction

A plateau forest plays an important role in high altitude area carbon circulation and is
therefore an important natural solution for mitigating global climate change [1]. Monitoring
a plateau forest is able to help us better understand climate change influences at local,
regional and global levels [2], and thus has drawn a lot of attention from governments and
companies. Among all plateau forest areas in the world, Sanjiangyuan National Nature
Reserve located in China has the highest altitude and the richest plateau forest communities,
with a total area of 390,000 km2 [3].

High-resolution satellite imagery has recently become available for large-scale high-
altitude plateau forest monitoring [4]. On the one hand, many object detection studies
driven by satellite data are utilizing threshold-based vegetation indices [5], such as the
normalized difference vegetation index (NDVI) first proposed in the 1990s [6] and ratio
vegetation index (RVI) [7]. Many studies have been focusing on improving the threshold-
based indices in recent decades. Wang et al. proposed a surface vegetation detection
and trend analysis method based on Moderate-resolution Imaging Spectroradiometer
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normalized difference vegetation index (MODIS NDVI) and a digital elevation model
(DEM) [8]. Hasegawa et al. proposed an improved NDVI method, called the normalized
hotspot-signature vegetation index (NHVI), which could better estimate the quantitative
of leaf area index (LAI) [9]. Chen et al. designed an improved NDVI-based land cover
updating method by downscaling the NDVI based on a NDVI linear mixing growth
model [10]. Gim et al. improved the change detection method based on NDVI of the
Advanced Very High-Resolution Radiometers (AVHRRs) data [11]. Furthermore, regarding
the forest mapping task, Martinuzzi et al. utilized the combined NDVI information to
validate the status of tropical dry forest habitats; the combined NDVI information is
generated from Landsat, topographic information, and high-resolution Ikonos imagery [12].
Singh et al. proposed an improved NDVI-based proxy leaf-fall indicator to analyse the
rainfall sensitivity of deciduousness among the central Indian forests [13]. However, the
reflectance characteristics depend on the surrounding environment in different regions,
resulting in high dependence of the research regions [14]. On the other hand, the use of
vegetation indices could lead to a similar representation between grass, forest and bush,
thus the forest monitoring mission is a challenging task [15]. Also, a forest located in
a different region could show different characteristics such as distribution density and
different spectral characteristics among months and years, which require further study
and research.

Traditional machine learning-based object detection method such as SVM [16], and
random forest [17] have also been used in satellite data analysis. Bruzzone et al. proposed
an transductive SVM method for satellite imagery based on the idea of semi-supervised
classification [18]. Pal et al. designed a multi-class SVM model for multispectral and hyper-
spectral data classification [19]. Zheng et al. proposed a multiscale mapped least-squares
support vector machine (LS-SVM) model for the panchromatic sharpening of the multi-
spectral bands task [20]. Chi et al. improved the SVM based on alternative implementation
technique, and applied the model on small size training data task [21]. Gislason et al. pro-
posed an improved random forest model for multisource satellite data [22]. Canovas-Garcia
et al. improved the random forest method toward remote sensing data classification task
by overcoming the statistical dependence problems [23]. Moreover, Hayes et al. proposed
a random forest structure for high-resolution satellite imagery classification, including
forest detection for willow and aspen [24]. These models can learn vegetation patterns
from multi-spectral data, but are limited in extracting complex non-linear relationships to
distinguish between forests and their surrounding land covers [25,26].

Recently, there has been growing interest in using deep learning models such as
fully convolutional neural networks (FCNN) [27] and UNET [28] for image segmentation.
Jia et al. proposed a spatial context-aware network for land cover detection using remote-
sensing imagery [29]. Pelletier et al. introduced a temporal convolutional neural network
for satellite imagery classification [30]. Waldner et al. proposed a convolutional neural
network structure for field boundary extraction within remote-sensing imagery [31]. Omer
et al. introduced an artificial neural network-based tree mapping approach for endangered
tree species monitoring, using WorldView-2 data [32]. The concept of a receptive field intro-
duced by these models has significantly improved the deep learning structure performance
by capturing the spatial relationship between each single pixel and its neighborhood [33]
and non-linear relationships from multi-spectral data to land covers [34].

However, accurate mapping of the extent of plateau forest still remains challenging
for several reasons [35]. Firstly, training machine learning models, especially deep learning
models, commonly requires a large amount of ground-truth labeled information corre-
sponding to the data [36,37]. However, in situ natural plateau forest distribution data are
rarely available due to the heavy needs of manpower and material resources [38]. Secondly,
traditional forest mapping methods cannot precisely map natural plateau forest due to
the heterogeneous nature of its spatial distribution and the variability of its surrounding
environments [39]. For example, Figure 1 shows three typical forest communities located
in the Sanjiangyuan Nature Reserve. The image visualization is generated using ZY-3
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satellite imagery, based on the red, green and blue band within the satellite data [40]. We
can easily observe that forests in different regions have different densities, and they are
also surrounded with many different types of land cover such as natural river, wetland,
and mountain. Moreover, due to the limited quantity of the ground-truth data toward
plateau forest over different spatial regions, it becomes even more difficult to capture the
heterogeneous nature of plateau forests [41–43].

Figure 1. Different types of forest community located in Sanjiangyuan National Nature Re-
serve: (a) high-density forest community, (b) medium-density forest community, (c) low-density
forest community.

In this paper, we develop an few-shot learning based method for mapping plateau
forests using limited ground-truth data. We first build a ZY-3 satellite imagery-based large-
scale plateau forest dataset for Sanjiangyuan National Nature Reserve, with 38,708 image
samples and 1187 manually delineated plateau forest labels. This is the first 2 m spatial
resolution plateau forest mapping dataset in the region of Sanjiangyuan National Nature
Reserve. Then we propose a few-shot plateau forest mapping method. In particular, we first
pre-train the deep learning model using auxiliary domain knowledge in an unsupervised
fashion. The idea is that the model can get much closer to its optimal state after the pre-
training process, and thus require much fewer ground truth labeled data to refine itself to
perform accurate mapping.

The rest of the paper is organized as follows. Section 2 describes the dataset and
method. Section 3 discuss the results. Section 4 concludes this paper.

2. Materials and Methods
2.1. Study Area and Data

Our study area is the Sanjiangyuan National Nature Reserve located in the southern
part of Qinghai Province, China. As shown in Figure 2, Sanjiangyuan region contains
18 sub-areas, and covers an area of 390,000 km2. Due to large scale forest monitoring
challenges, in situ natural plateau forest distribution ground truth is extremely limited for
the Sanjiangyuan region. Here, we present the first plateau forest accurate segmentation
dataset toward Sanjiangyuan National Nature Reserve using 2 m spatial resolution ZY-3
satellite imagery.

Table 1 shows the detail information of the ZY-3 satellite data.

Table 1. Detail information for ZY-3 satellite imagery.

Parameter Type Detail

temporal resolution 5 days
spatial resolution 2 m

spectral range 0.45–0.89 µm
orbital altitude 505.984 km
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Figure 2. Sanjiangyuan National Nature Reserve is located in the southern part of Qinghai Province,
China. Two purple diamond marks A and B represents the location of the current proposed dataset:
the mark A in the middle of Sanjiangyuan is located in Yushu County, Qinghai Province; The mark B
in the eastern part of Sanjiangyuan is located in Guoluo County, Qinghai Province.

Details of the proposed dataset is shown in Table 2. In current version of the dataset,
the satellite imageries are selected from two regions with rich type of the forest community.
This could help the proposed dataset to include different types of forest distribution
information. The proposed large-scale plateau forest dataset contains 38,708 ZY-3 plateau
forest imagery samples of 128 × 128 pixels. Furthermore, in order to generate reasonable
forest segmentation labels, we spent several months manually labeling the forest imagery
samples in the false color style, using a dataset visualization tool named Labelme created in
Python language and running in the Windows 10 environment. Thus, a total 1187 accurate
forest segmentation manual ground truth data at 2 m spatial resolution were produced in
the current version of the dataset.

Table 2. Detail information for the proposed dataset.

Parameter Type Detail

data sources ZY-3 satellite imagery
sample 38,708

manual ground truth 1187
sample size 128 × 128 pixels

manual ground truth size 128 × 128 pixels
resolution for each pixel 2 m

period of the data January 2017–December 2017
period of the manual ground truth May 2017–June 2017

Figure 3 shows the visualization of the proposed dataset, including the sample and
ground truth.

To further visualize the rich types of plateau forest within the proposed dataset, we first
apply t-distributed stochastic neighbor embedding (TSNE) to reduce the data dimension
and use K-means to further cluster the samples into different categories. Figure 4 shows
different categories of the samples. As shown in Figure 4, the labeled samples can be
divided into different categories. Furthermore, we visualize each clustering category by
generating the category members’ false color composite images.
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Figure 3. The sample and ground truth visualization for an example within the proposed dataset:
(a) false color composite image, (b) manual ground truth.

Figure 4. The clustering results for the labeled samples within the proposed dataset: each dot
represents a labeled sample; each red circle represents a random selected category, and has been
further visualized by false color images in Figure 5.

Figure 5. Categories visualization for forest samples from Figure 4: (a) category 1, (b) category 2
(c) category 3.

In order to present the various spatial distribution types of forests within our dataset,
we random select three categories from the clustering result, and visualize in Figure 5.
Figure 5 shows three selected typical categories’ visualization results. We can easily observe
that the members within a single category contains a similar density of the forest, as well
as the surrounding land cover environment. Also, different densities of the plateau forest
communities and land covers can be found between different categories. This illustrates
the rich types of plateau forest within the proposed dataset.
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2.2. Proposed Method

Here, we describe the main steps of the proposed plateau forest monitoring task,
as shown in Figure 6. Figure 6 shows the proposed methods structure. The inputs for
the proposed methods are defined as follow: X =(p1, p2, . . . , pi) representing the samples
within the proposed plateau forest dataset, including Xa ∈ X that have been labeled by
an accurate forest segmentation ground truth, and Xb ∈ X that haven’t been labeled.
During the proposed plateau forest segmentation process, an unsupervised learning based
model is firstly designed for the domain knowledge extraction using Xb ∈ X. Then, a
semi-supervised learning-based model, along with a fine-tuning method are proposed to
transform the knowledge from the unsupervised learning based model to its own encoding
part, and then to better learn the knowledge within the labeled ground truth data using
Xa ∈ X.

Figure 6. The structure of the proposed plateau forest monitoring methods.

2.2.1. Unsupervised Learning Based Model for Domain Knowledge Extraction

Here, the domain knowledge from unlabeled the plateau forest satellite imagery is
extracted. The structure of the unsupervised learning-based model is shown in Figure 7.

The model follows the encoding-decoding structure. We utilize unlabeled data Xb ∈ X
as the model input, vegetation indices NDVI and RVI as model output, and thus let the
model learn the vegetation knowledge through the unsupervised process. During the
encoding process, in order to better build the high-dimension feature located in the last
layer of the encoding part, we utilize four resolution stages by using multi convolution
layer and sampling layer. In addition, we add the connecting layer idea from the UNET
structure. Furthermore, we utilized the drop-out technic to avoid over-fitting [25].

During the decoding process, two different decoding path is designed, including the
unsupervised learning NDVI target ŷ and RVI target ẑ. In order to achieve a multi learning
target, the model loss is defined in (1):

loss = n−1
n

∑
i=1

(ŷi − yi)
2 + n−1

n

∑
i=1

(ẑi − zi)
2 (1)

Here, we set the model loss as the sum of the NDVI path’s the mean-square error for
current model output ŷi and expectation output yi, along with the RVI path’s the mean-
square error between current model output ẑi and expectation output zi. Thus, during
the training process, the high-resolution satellite imageries are used as the input of the
model, and the calculated NDVI and RVI toward corresponding satellite imageries are
used as the outputs. Thus, the model automatically follows the loss in Equation (1) to
achieve self-training.
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Figure 7. Unsupervised learning-based model for domain knowledge extraction. The function of
the layer blocks are explained as follow: ‘Input’ represents an input layer; ‘Conv 3 × 3’ represents
a convolutional layer with an kernel size of 3 × 3; ‘Max Pooling’ represents a max pooling layer;
‘Dropout’ represents a dropout layer for avoiding over-fitting; ‘Up Sampling’ represents an up
sampling layer; ‘Connect’ represents the connection layer, the connection layer with the same number
as connecting with each other; ‘Conv 2 × 2’ represents a convolutional layer with an kernel size of
2 × 2; ‘Conv 1 × 1’ represents a convolutional layer with an kernel size of 1 × 1; ‘NDVI Output’
represents an output layer that using normalized difference vegetation index (NDVI) as ground truth
validation; ‘RVI Output’ represents an output layer that using ratio vegetation index (RVI) as ground
truth validation.

2.2.2. Semi-Supervised Learning-Based Model Fine-Tuning

The main purpose of this method is better adjust the model for better segment the
plateau forest using limited ground-truth data, using the knowledge transformed from the
unsupervised learning-based model. The proposed structure of semi-supervised learning
based model for plateau forest segmentation is shown in Figure 8.

The proposed structure contains an encoding part and a segmentation part. The
encoding part follows the same four resolution stages style as mentioned in the previous
unsupervised learning-based model. The segmentation part utilizes the multi convolution
layer and sampling layer, along with different kernel sizes, ranging from 3 × 3 to 1 × 1. In
order to achieve the segmentation task, we apply the sigmoid as the activation function
which defined in Equation (2):

S(z) =
(
1 + e−z)−1 (2)

Here, the kernel input z is transformed though the activation function, and the kernel
output is S(z).
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Figure 8. Structure of semi-supervised learning based model for plateau forest segmentation using
the knowledge transformed from the unsupervised learning based model. The function of the
layer blocks are explained as follows: ‘Input’ represents an input layer; ‘Conv 3 × 3’ represents
a convolutional layer with an kernel size of 3 × 3; ‘Max Pooling’ represents a max pooling layer;
‘Dropout’ represents a dropout layer for avoiding over-fitting; ‘Up Sampling’ represents an up
sampling layer; ‘Connect’ represents the connection layer, the connection layer with the same number
as connecting with each other; ‘Conv 2 × 2’ represents a convolutional layer with an kernel size of
2 × 2; ‘Conv 1 × 1’ represents a convolutional layer with an kernel size of 1 × 1; ‘Output’ represents
an output layer.

The binary cross entropy is set as the model loss which defined in Equation (3):

loss = −
n∑̂i

∑
i=1

ŷi log yi + (1− ŷi)log (3)

Here, the cross entropy between current model output ŷi and expectation output yi is
calculated and used as the training guidance.

Before the model shown in Figure 8 starts training, we first modify the model by
transforming the decoding part parameters from unsupervised learning-based model
mentioned in Section 2.2.1 to the encoding part of the semi-supervised learning based
model in Figure 8. This parameter transform process can let the encoding part of the
model better understanding the vegetation object knowledge, and extract reasonable
high-dimension features in the last layer of the encoding part within the semi-supervised
learning based model, with limited labeled ground truth information. Furthermore, the
high-resolution satellite imageries are used as the input of the model, and the manual
ground truth toward corresponding satellite imageries are used as the output of the model.
Then, the model follows the loss in Equation (3) to automatically achieve self-training.
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2.3. Comparsion Methods

The experiments are set up in the Window 10, Python 2.7 and GTX3080 environment.
In order to validate the proposed structure performance, we validated the results

with several state-of-the-art algorithms including normalized difference vegetation index
(NDVI), ratio vegetation index (RVI), random forest (RF), support vector machine (SVM)
and a supervised method, U-Net (UNET). NDVI and RVI are traditional remote-sensing
analysis indices. Random forest and SVM are well-known machine learning-based pattern
recognition methods. UNET is a supervised learning-based object detection method, and
has been widely used in image segmentation tasks.

Table 3 shows the detail of the model training process.

Table 3. The algorithms training processes’ parameters.

Algorithm Parameter Value

NDVI Threshold 0.1
RVI Threshold 0.01
RF Criterion Gini

SVM Kernel Type RBF

UNET
Learning Rate 0.0001
Loss function Binary Cross Entropy

Proposed Method Learning Rate 0.0001
Loss function Mean Squared Error, Binary Cross Entropy

Note: NDVI: normalized difference vegetation index, RVI: ratio vegetation index, RF: random forest, SVM:
support vector machine, U-Net (UNET), PROPOSED: proposed method.

3. Results
3.1. Result of Unsupervised Learning-Based Model for Domain Knowledge Extraction

The unsupervised learning-based model for domain knowledge extraction results is
shown as follows.

Figure 9 shows the training curve of the unsupervised learning-based model, which
follows the structure as shown in Figure 7. Here, the curve of the NDVI Loss and RVI Loss
represent the loss of the NDVI path and RVI path. The Global Loss represents the loss
mentioned in (1). It can be observed that both the NDVI path loss and the RVI path loss
reach a reasonable level after 20 epoch trainings, and the global loss follows the same trend
of the individual loss decreasing.

Figure 9. The training curve of the unsupervised learning based model for domain knowledge extraction.

Then, during the model testing process, we use the unlabeled samples as the model in-
put, and generate the model output based on the well-trained model. Specifically, we selected
two testing samples with different densities of the plateau forest, as shown in Figure 10.
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Figure 10. Figures of the high density plateau forest results: (a) false color composite image for
sample visualization; (b) NDVI prediction; (c) NDVI ground truth; (d) RVI prediction; (e) RVI ground
truth. The first row represents a high-density forest testing sample, and the second row represents a
low-density forest testing sample.

Figure 10 shows the model prediction for a high-density forest sample and a low-
density forest sample. We can observe that the output of the model follows the same trend
as the ground truth NDVI and RVI output.

3.2. Results of Semi-Supervised Learning-Based Model Fine-Tuning

The performance of the semi-supervised learning based model fine-tuning is compared
with serval state-of-the-art object segmentation methods.

In order to estimate the methods performance under the few-shot issue, we randomly
divide the labeled samples into a training-testing samples set, as 100–1087, 300–887, 500–687,
700–487. The training and testing results are shown as follows.

Figure 11 shows the different training curves based on the proposed method and base-
line methods using 100 training samples. We repeatedly trained models 10 times following
supervised learning UNET method and proposed semi-supervised method, and calculated
the average training accuracy and training loss curves. The ‘Supervised Learning-A’ repre-
sents a good training curve with a good accuracy trend and loss trend. The ‘Supervised
Learning-B’ curve represents a badly training process, where the accuracy and loss is
not good enough for the segmentation task. The ‘Proposed Method-A’ represents a good
training process with reasonable accuracy trend and loss trend. Finally, the ‘Supervised
Learning-Avg’ and ‘Proposed Method-Avg’ represents the average curve based on model
training process conducted 10 times. It can be observed that the accurate and loss of the
proposed method changing faster on average, compared with the supervised learning
baseline method. These can prove that the proposed method is able to better handle the
local minimum during the training process.

Then, serval state-of-the-art algorithms including NDVI, RVI, SVM and UNET are
compared with the proposed method, under different training-testing sample sets, as
shown in Table 4.

It can be observed from Table 4 that NDVI and RVI is not able to reach the goal of
the few-shot plateau forest segmentation task, due to their threshold limitations. The
supervised learning method UNET shows better performance compared with the machine
learning method SVM and threshold methods. Above all, the proposed semi-supervised
method shows better performance compared with the baseline method in terms of precision,
recall and F1 score. This shows that the proposed model structure can better understanding
the forest distribution knowledge within limited ground truth data, and proves that the
encoding part transform process can provide valuable information to the plateau forest
segmentation process. Furthermore, the less the training sample is used, the better the
proposed method performs, compared with the UNET method and other comparison
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methods. This proves that the proposed semi-supervised learning-based model fine-tuning
method outperforms comparison methods, and could better handle the few-shot issue.

Figure 11. The training curves based on the proposed method and compared supervised learn-
ing UNET method, each curve represents the average of 10 times model training following the
corresponding method: (a) the training accuracy curves; (b) the training loss curves.

Table 4. Comparison of segmentation among different methods.

Train
Samples

NDVI RVI RF SVM UNET PROPOSED

F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

100 43.09 59.32 47.38 51.21 50.76 67.63 67.02 76.83 65.07 72.23 80.35 72.61 73.28 95.48 65.73 84.23 96.32 79.09
300 45.40 54.22 52.11 51.07 47.51 71.02 62.73 72.16 62.07 71.69 74.53 77.95 81.91 94.04 80.89 86.39 97.55 82.59
500 47.28 60.18 49.36 48.84 43.69 76.25 61.65 62.81 71.94 69.23 68.68 82.52 83.85 93.57 84.25 86.76 95.20 86.53
700 43.88 46.53 52.26 51.05 46.90 68.01 67.46 70.33 71.87 73.81 79.65 74.01 92.78 93.95 90.62 92.90 93.97 91.75

Average 44.91 55.06 50.28 50.54 47.22 70.73 64.72 70.53 67.74 71.74 75.80 76.77 82.96 94.26 80.37 87.57 95.76 84.99

Note: F1: f1 score, P: precision, R: recall, NDVI: normalized difference vegetation index, RVI: ratio vegetation
index, RF: random forest, SVM: support vector machine, UNET: UNET, PROPOSED: proposed method.

Details of the segmentation results comparison are further visualized in Figure 12.
In Figure 12, the (c) NDVI and (d) RVI methods are missing most of the forest area

within the scene. The (e) RF and (f) SVM methods recognize more forest area compared
with the threshold methods, but also marked many grassland as forest, which shows a
high false positive rate. The (g) UNET is able to recognize most forest areas, and correctly
understand the difference between grassland and forest, but still some detailed parts of the
forest are missing, especially for the forest boundaries. The (h) proposed method recognizes
more accurate forest area for both the main forest area and the boundary details, and thus
shows more robust performance for large-scale plateau forest mapping.
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Figure 12. Comparison of segmentation results for the proposed method and other methods: (a) test
sample’s false color composite image; (b) test sample’s ground truth; (c) normalized difference
vegetation index (NDVI); (d) ratio vegetation index (RVI); (e) random forest (RF); (f) support vector
machine (SVM); (g) UNET; (h) proposed method. Each row represents a test sample visualization
and model segmentation, the samples are ordered based on the follow steps: we randomly select
2 test samples during the 100, 300, 500, 700 training sample models testing process, thus the first
two rows of this figure represents two samples from the 100 training sample models testing process,
and the rest are from the 300, 500, 700 training sample models testing process. The red circle within
each row of column (h) represents the significant segmentation result improvement of the proposed
method, while being compared with other state-of-the-art methods.



Remote Sens. 2022, 14, 388 13 of 19

3.3. Extracted Feature Visualization

In order to better understanding the achievement of the structure within the proposed
model shown in Figure 8, the weight matrixes within the layers of the proposed model
during the testing process are being visualized as follows. Firstly, we randomly select
a testing sample from the testing set, and produce the forest segmentation result. Thus,
Figure 13 shows the false color image, ground truth and proposed method segmentation
result of the testing sample.

Figure 13. Figures of a random selected testing sample’ visualization: (a) false color composite image;
(b) samples’ ground truth; (c) the segmentation results of the proposed method.

Then, during the production process, we record each layer’s weight matrix and
visualize them by false color map style visualization. Specifically, the visualization of
the four resolution stage’s feature maps in the encoding part, the high-dimension feature
output, the four resolution stage’s feature maps in the segmentation part of the proposed
method are shown in Figures 14–16. Each subplot within the figures represents a weight
matrix randomly selected from the corresponding layer. Furthermore, each element within
a single weight matrix is colored based on the value, the element colored in light yellow
means it is a kernel neuron with high weight. The element colored in dark blue means it
is a kernel neuron with low weight. As shown in Figure 14, the weight matrices within
each random selected layers show different spatial weight distribution. Moreover, a weight
distribution similar to the forest distribution within the test sample visualization shown
in Figure 13a can be observed in Figure 14a. This similar distribution becomes abstract
along with the rising dimension after each max sampling layer, as shown in Figure 14b–d.
Then, Figure 15 shows the high-dimension feature map, extracted from the last layer of the
encoding part shown in Figure 8. The information within each subplot of Figure 15 shows
the high dimension weight matrix distribution. Finally, the high-dimension information
contained in the high-dimension weight matrix are decoded through the up-sampling
layers. It can be observed from Figure 16 that the distributions of the weight matrixes
gradually become similar to the forest distribution within the ground truth of the testing
forest sample shown in Figure 13c. These feature extractions and visualizations could help
us to understand how the model is working to gradually produce the expected information
from the input testing sample.
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Figure 14. The visualization of the four resolution stage’s feature maps in encoding part of the model
proposed in Figure 8: (a) input of the first max pooling layer; (b) input of the second max pooling
layer; (c) input of the third max pooling layer; (d) input of the fourth max pooling layer. Each column
represents a randomly selected kernel within the corresponding max pooling layer.

Figure 15. The visualization of the high-dimension feature map of the model proposed in Figure 8:
each subfigure for column (a–c) comes from a randomly selected kernel.
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Figure 16. The visualization of the four resolution stage’s feature maps in decoding part of the model
proposed in Figure 8: (a) input of the first up-sampling layer; (b) input of the second up-sampling
layer; (c) input of the third up-sampling layer; (d) input of the fourth up-sampling layer. Each column
represents a random selected kernel within the corresponding up-sampling layer.

3.4. Forest Mapping for Large Region Based on Proposed Method

Here, we apply our proposed method to Sanjiangyuan Nature Reserve region based
on ZY-3 satellite imagery, and accomplish large-scale plateau forest mapping. Figures 17–19
show three examples for the mapping result in part of the Sanjiangyuan National Nature
Reserve region. Specifically, Figures 17 and 18 are randomly selected from the Sanjiangyuan,
during May to June 2017. Each figure contains two sub-figures (a) and (b). Sub-figure (a)
shows the visualization of the satellite image, in a false color style. Sub-figure (b) is
the segmentation result generated by the proposed method. Especially, we utilized the
sliding window style to generate large-scale satellite imagery segmentation result by using
the proposed segmentation model. Here, each sub-figure (b) is composed of multiple
segmentation results in the size of 128× 128 pixels. Therefore, the size of each sub-figure (a)
and each sub-figure (b) within Figures 17–19 are consistent. Here, the unit of the value
for each pixel within the sub-figure (b) is the probability of the forest. The value of the
probability is range from 0 to 1, where 0 represents the non-forest region, and 1 represents
the forest region. Thus, the closer the pixel value is to 1, the more likely the pixel is to be
a forest region. Also, the closer the pixel value is to 0, the more likely the pixel is to be a
non-forest region. It can be observed that most plateau forests marked in yellow are located
on the mountain side, which matches the natural course in which most precipitation occurs
near the mountainside, and provides reasonable mapping results for large-scale plateau
forest monitoring.

Furthermore, we select the winter season in January of the same region toward
Figure 18, and produce the forest mapping pipeline toward this imagery. It can be ob-
served that the forest area previously shown in Figure 18 shows similar distribution in
Figure 19. Also, we can observe some low-density yellow dots among the mountains,
which are further discussed below.
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Figure 17. Visualization of a ZY-3 satellite imagery for Western part of Sanjiangyuan National Nature
Reserve, at 12 May 2017: (a) false color composite images; (b) the plateau forest segmentation based
on the proposed method.

Figure 18. Visualization of a ZY-3 satellite imagery of eastern part of Sanjiangyuan National Nature
Reserve on 30 June 2017: (a) false color composite images; (b) the plateau forest segmentation based
on the proposed method.

Figure 19. Visualization of a ZY-3 satellite imagery of Eastern part of Sanjiangyuan National Nature
Reserve, on 9 January 2017: (a) false color composite images; (b) the plateau forest segmentation
based on the proposed method.
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4. Discussion

In this study, we design a semi-supervised based forest segmentation model, along
with a large-scale plateau forest satellite imagery dataset.

We examine the model pre-training idea, by transforming the pre-training weight
from the unsupervised model into the supervised segmentation model. Firstly, the perfor-
mance of the model training process shows that the semi-supervised model combining the
additional information transformed from the unlabeled data, could be trained faster, and
better deals with the local minimum issue. Secondly, the comparison between the proposed
and state-of-the-art object segmentation methods shows that the additional information
acquired from the unlabeled satellite imagery could better help the semi-supervised model
to segment the forest within the plateau region. Thirdly, by utilizing the proposed plateau
forest dataset through the model training and testing process, the quality of the ground
truth is validated and proves the dataset can provide useful information for the plateau
forest community.

However, there are still some limitations. In the current version of the proposed
dataset, the time period of the data covers each month in 2017. Due to the lack of the
plateau forest satellite imagery ground truth, we manually create the ground truth for the
data range from May to June in 2017 by visualizing and marking the forest region within
the false color style satellite imagery. Thus, those samples under snowy weather have not
been considered during the labeling process due to the difficulty of visualizing the tree
covered by snow, and could cause locally low performance for the snow-covered region
during the winter. One possible solution could be utilizing the multi-spatial satellite time
series to locate the forest region without snow, and approximately label the region in the
snowy season. Other possible solutions could be using multi-source satellite imagery to fill
the gaps of the snow cover challenge.

5. Conclusions

Large-scale plateau forest mapping is an essential step for plateau forest monitoring.
To overcome the challenges including the paucity of labeled data for plateau forests, and
imbalance between the labeled and unlabeled data, we present a few-shot learning method
for large-scale plateau forest mapping. Firstly, we design an unsupervised learning based
model for domain knowledge extraction. Secondly, we propose a model fine-tuning method
with semi-supervised learning for plateau forest segmentation using limited ground-truth
data. Experiments show that our proposed few-shot learning method outperforms several
state-of-the-art algorithms. These prove the idea that the proposed domain knowledge
extraction and model fine-tuning processes could reasonably extract the information from
the unlabeled data, and better help the large-scale plateau forest monitoring.

Most importantly, we represent the first 2 m resolution ZY-3 based Sanjiangyuan
plateau forest segmentation dataset, including 38,708 plateau forest imagery samples and
1187 handmade accurate plateau forest ground truth masks. The dataset will be soon
available online for the public. We believe this dataset could provide more labeled data
information for the plateau forest monitoring community.

We also anticipate better segmentation results for long-term plateau forest monitoring
if more accurate ground truth information during different seasons and locations is available
for the training process. This can be further explored in our future work.
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