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Abstract: (1) The existing frameworks for water quality modeling overlook the connection between
multiple dynamic factors affecting spatiotemporal sediment yields (SY). This study aimed to imple-
ment satellite remotely sensed data and hydrological modeling to dynamically assess the multiple
factors within basin-scale hydrologic models for a realistic spatiotemporal prediction of SY in wa-
tersheds. (2) A connective algorithm was developed to incorporate dynamic models of the crop
and cover management factor (C-factor) and the soil erodibility factor (K-factor) into the Soil and
Water Assessment Tool (SWAT) with the aid of the Python programming language and Geographic
Information Systems (GIS). The algorithm predicted the annual SY in each hydrologic response
unit (HRU) of similar land cover, soil, and slope characteristics in watersheds between 2002 and
2013. (3) The modeled SY closely matched the observed SY using the connective algorithm with the
inclusion of the two dynamic factors of K and C (predicted R2 (PR2): 0.60–0.70, R2: 0.70–0.80, Nash
Sutcliffe efficiency (NS): 0.65–0.75). The findings of the study highlight the necessity of excellent
spatial and temporal data in real-time hydrological modeling of catchments.

Keywords: remotely sensed data; SWAT; sediment yield; spatiotemporal predictions

1. Introduction

Soil erosion is the process by which land surface is washed away by hydrogeological
factors, meteorological agents, and human interference. It leads to long-term changes
in the environment and results in reduced water quality, which ultimately affects envi-
ronmental and human health. Soil erosion decreases soil fertility as well as agricultural
productivity by land degradation, increased flooding and landslides, and surface and
ground contaminant diffusion by the inflow of sediments to rivers [1–7]. In the United
States, numerous studies have reported that soil erosion is a significant environmental
hazard owing to its critical ecologic effects [8–10]. Various attempts to estimate soil loss
due to erosion involve the development of models such as the Universal Soil Loss Equation
(USLE) Model [11,12], Revised Universal Soil Loss Equation (RUSLE) Model [13], Modified
Universal Soil Loss Equation (MUSLE) Model [14], USLE-M [15], dUSLE [16], Water and
Tillage Erosion Model/Sediment Delivery Model [17,18], and the Agricultural Non-Point
Source Pollution Model [19]. With increasing human interventions and potential man-
agement, as well as climatic change, there is a growing need to monitor water quality
in landscapes with noticeable spatial and temporal transformations, especially on and
adjacent to watersheds [20–22]. USLE is the well-known and most used empirical model for
estimating long-term average annual soil loss globally. Supporting this, [23] showed that
around 40% of soil erosion and sediment yield (SY) models adopted input parameters from
the USLE model for water quality modeling. USLE estimates long-term annual soil loss
and guides proper cropping, management, and conservation strategies [24,25]. However,
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it cannot be applied to much finer and specific spatiotemporal cases such as year, storm
event, and spatial combinations of different land cover, soil types, and slope categories.

Two of the essential parameters in the USLE equation that affect soil loss are the
crop and cover management factor (C-factor) and soil erodibility factor (K-factor). The
C-factor is an index showing the effects of different land covers, vegetation, and crop-
ping and management practices on the soil erosion rates and potential soil erosion
risk [26]. The C-factor in the USLE equation is defined as the ratio of soil loss from
land cropped under specified conditions to the corresponding loss from clean-tilled,
continuous fallow land [14–16]. Generally, the C-factors are estimated for spatial as well
as temporal conditions by assigning values to land cover classes mostly using classified
remotely sensed images of study areas [27]. Most previous studies generated C-factor
calculations using regressions such as accumulation curves, rank-order correlations, and
quadrat estimation as well as hydrologic models including SEMMED, SEDD, SWAT+,
SWAT-CUP, and Soil and Water Assessment Tool (SWAT) for specific watersheds and
more significant geographic regions [28–32]. In addition to this, various studies devel-
oped statistical and numerical models connecting C-factor and diverse environmental
factors [33–37]. On the other hand, the K-factor is the intrinsic susceptibility of soils to
erosion and is quantified by measurements of soil detachment by runoff and rainfall
impact. The K-factor is a vital source in evaluating the severity of soil erosion [24]. The
traditional approaches commonly used to assess K-factor include experimental and
field data, as well as statistical, empirical, and physical models. The most commonly
used are the models generated using USLE and RUSLE equations [38]. However, the
previous studies have assumed that variation in soil erodibility is static in time and space.
In this context, new K-factor estimation techniques are introduced, which model the
relationships of the novel hydrogeological factors in impacting the extent and severity of
soil erodibility [39–46]. Furthermore, the availability of high-resolution digital elevation
models, remotely sensed satellite data, and radar and space technologies have facilitated
a dynamic estimation of C-factors and K-factors temporally and spatially to enhance the
estimates of water quality [47,48]. The last two decades have evidenced an increase in
studies devoted to remote sensing for data and modeling of C-factor and K-factor. All
these endeavors resulted in rendering more attention to the dynamic processes of soil
erodibility and cover management individually, which were conventionally neglected
due to problems concerning their accurate measurements.

Attempts have continued from the early 2000s to the present to use basin-scale hydro-
logic models such as SWAT and remote sensing technology for modeling and monitoring
agricultural water use and water quality factors [49]. Some studies have applied the SWAT
model to ascertain the responses of sediments to soil characteristics and their spatial het-
erogeneity in watersheds around the world [50]. Some of the literature has demonstrated
the applicability of SWAT in capturing uncertainties in SY predictions in watersheds in
the United States and China [51,52]. Moreover, the SWAT model was extensively used in
quantifying the uncertainty of nonpoint source attribution in distributed water quality mod-
els [53]. Similar studies have been conducted to validate the efficacy of SWAT in predicting
sediment imports and exports for streams, reaches, and groundwater systems [54–57].
The full application of remotely sensed data in monitoring surface water quality offers
enormous advantages over conventional methods at fixed monitoring stations. Remote
data and satellite sensors can cover higher and wider spectrums in condensed and easily
retrievable formats [58]. On the contrary, remote sensing possesses the disadvantages
of not being able to provide the spatial and temporal resolution required to cover some
particular processes and requires a strong knowledge of technical procedures needed for
sensor alignment and radiometric correction [59,60]. In the past, studies conducted using
moderate resolution imaging spectroradiometer instrument on the Terra and Aqua satellites
(MODIS) have been capable of estimating suspended sediments. However, corrections for
atmospheric effects were recommended [21]. Later, NASA facilitated the availability of
the 250 m spatial resolution MODIS Terra surface reflectance and their products, which
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is atmospherically corrected [61]. Such advancements elevated the uncomplicated use of
remotely sensed MODIS products. These data were implemented in various kinds of soil
erosion and SY models, which help to quantify the concentrations of suspended sediments
in watersheds [62].

Recently, more studies have made use of the concept of remote sensing for data and
modeling of C-factors and K-factors because of its easy accessibility, low cost, rapid and
reliable data analysis, and lower instrumentation. Furthermore, remote sensing data can be
easily integrated with Geographic Information System (GIS) and geoprocessing modules.
It helps in the evaluation of land covers and the quantification of soil loss and sediments
with spatiotemporal heterogeneity for estimation of water use and management [63–65].
Therefore, remotely sensed data, geo-computation and visualization, and geographic
environmental modeling work cumulatively to determine the spatiotemporal dynamics of
cover management and soil erodibility, and these factors interact in a complex fashion to
produce a realistic representation of SY. Nevertheless, remote sensing products have been
uncertain in the results in other SY studies owing to specific variables that were directly or
indirectly connected to the spatiotemporal variation of SY such as land cover, soil moisture
content, and topographical characteristics (slope gradient, slope length). Few studies have
evaluated the relations of C-factor, K-factor, and SY to land use change [25], urban land
covers [41], dense forestation [24], vegetated zones and crop cover management that have
not been accounted for in the conventional USLE equations for SY predictions. Hence,
the present study used annually varying land use land cover data for the study areas to
understand the vitality of dynamic land cover modeling for realistic soil loss predictions.
The enhanced vegetation index, which details the vegetative property of a hydrologic unit,
was considered as the primary variable in the novel C-factor modeling. Additionally, the
variables of soil moisture content [66], slope length [67], and slope gradient [68], which are
relevant for soil loss estimation, were used as the independent variables affecting SY for
the watersheds of the study.

Currently, there is a lack of connective model frameworks for SY predictions in dif-
ferent river basins with varying spatiotemporal and hydrogeological conditions that can
be manageably incorporated into hydrologic models. Furthermore, studies are scarce that
merge ready-to-use functionalities from remote sensing into K-factor and C-factor estima-
tion methods. This study is the very first to incorporate a connective algorithm of C-factor
and K-factor into SWAT to dynamically predict SY in the watersheds of the southeastern
United States, with the aid of remotely sensed MODIS data. This union augments spatially
and temporally significant estimations in watersheds when compared to the traditional
USLE equations. Hence the study fills the deficiencies of the USLE formulation of K and C
factors in the SWAT model and reinforces the potential of using remote sensing to facilitate
hydrological modeling for better water use estimates. Ideally, the study provides a useful
model enhancement utilizing readily available and unambiguous data that can be used for
predictive purposes.

2. Materials and Methods

This study is a union of two dynamic factors of the USLE equation into SWAT to
advance SY predictions using satellite remotely sensed data. The C-factor and K-factor
models were developed using dynamic remotely sensed MODIS data of enhanced the
vegetation index, the fraction of photosynthetically active radiation, the leaf area index,
and soil moisture. A GIS and Python programming language-based connective algorithm
was proposed for the incorporation of the C-factor and K-factor models into SWAT. Then
sensitivity analysis was performed to evaluate their influence on SY estimation in water-
sheds. The spatial distributions of the K-factor, C-factor, and SY at annual time scales were
generated and analyzed for every hydrologic response unit (HRU) of similar land cover, soil
attributes, and elevation characteristics within the watersheds of the study. The impact of
the connective framework of the K-factor and C-factor on SY was evaluated for three cases:
(1) using the traditional factors of CUSLE and KUSLE, (2) using the dynamic C-factor and
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the traditional KUSLE, and (3) using the dynamic K-factor and the dynamic C-factor. The
study thus enhances spatiotemporal predictions of SY in the SWAT model. Furthermore,
agreement between the real-world observations and the spatiotemporal predictions from
the satellite remotely sensed data-based connective system of K-factor and C-factor will
strengthen their reliability and global usability for real-time water quality modeling. It will
also help to analyze the interconnectivity of the USLE factors and watershed erosion for
better water use management.

2.1. Dynamic Models of C-Factor and K-Factor
2.1.1. C-Factor Model

Pedotransfer functionality of the C-factor was developed based on remotely sensed
geospatial data including enhanced vegetation index (EVI), fraction of photosynthetically
active radiation (SR in %), leaf area index (LAI), soil moisture content (AWC in %), slope
gradient (S), and percentage area for every HRU of similar land use, soil, and slope
characteristics in the watershed (A). The MODIS EVI data are of 250-m resolution and
contain the best possible pixel value over 16 days. The LAI and SR data product is a
500-m resolution product on a sinusoidal grid over an 8-day observation period. The
AWC data product represents the soil moisture content (%) in the surface from 0–10 cm,
which determines the nutrients such as nitrogen, phosphorus, and organic carbon in soils.
The values of A and S were obtained from the model outputs of watershed delineation
identified for the corresponding HRUs.

The remotely sensed environmental data, including the EVI, AWC, LAI, and SR,
were obtained per pixel from the processed MODIS imageries for the southeastern United
States [69,70] (Table 1). The remotely sensed datasets of EVI, AWC, LAI, and SR were
generated by the spatial superposition of the remotely sensed data for the spatial level of
HRU in the watersheds.

Table 1. Input data used in SWAT modeling and estimation of the C-factor and K-factor.

Data Data Sources Information Period

DEM (S, LS) NED Raster, Annual, 30 m 2002–2013
Land cover USGS: MODIS: LP DAAC Raster, Annual, 500 m 2002–2013

Soil (BD, Psoil) USDA Raster, Annual, 60 m 2002–2013

EVI
AWC
LAI
SR

Meteorological data
Hydrological data

USGS: MODIS: LP DAAC
USGS: MODIS: LP DAAC
USGS: MODIS: LP DAAC
USGS: MODIS: LP DAAC

U.S. National Weather
Service, NOAA

USGS

Raster, 16-Day, 250 m
Raster, Monthly, 250 m

Raster, 8-Day, 500 m
Raster, 8-Day, 500 m

Daily, 250 m
Daily, 250 m

Monthly

2002–2013
2002–2013
2002–2013
2002–2013
2002–2013
2002–2013

The C-factor model used for the vigorous estimation of CUSLE in this study is given
here [71]:

C − factor = 0.203 − 0.007 exp
(
−a EVI
b − EVI

)
− 0.094 SR + 0.006 LAI + 0.0001 AWC + 0.0001 A − 0.003 S (1)

where a and b are parameters that determine the shape of the exponential curve of C
and EVI. Values of 1.5 and 1 were assigned for a and b, respectively, and the coefficients
presented in Equation (2) were employed, which yielded the best fit for the C-factor model
for the study areas (R2 = 0.68, PR2 = 0.51, p < 0.05).
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2.1.2. K-Factor Model

The dynamic functionality of the K-factor in the study was developed using the
topographic factor (LSUSLE) and the crop and cover management factor (dynamic C-factor),
as well as the soil properties of moisture content (AWC in %), bulk density (BD in g/cm3),
and permeability (Psoil in mm/h). The topographic factor, LSUSLE was calculated using
the reference equation [72]. The values of the variables, such as slope length L (m) and
slope steepness or slope gradient S (m/m), were obtained from the model outputs of the
watershed delineation identified for the corresponding HRUs. The slope S was calculated
from the DEM of the watershed. The soil properties of BD and Psoil were obtained from the
soil attribute characterization module (.sol) of the SWAT model. They were calculated by
the spatial join of the soil map (soil type) and the HRU map (HRU ID) in the SWAT model.
Thus, the developed model of the K-factor serves as a dynamic and realistic improvement
of the KUSLE equation in terms of capturing the HRU, as well as annual variations in soil
erodibility, and is given here [73]:

K − factor = −0.064 + 0.173AWC + 0.122BD − 0.000044Psoil + 7.699LSUSLE + 0.0081C − factor (2)

where C-factor is the crop and cover management factor developed using Equation (1).

2.2. SWAT Model

This study uses the basin-scale hydrologic model SWAT as a platform for the imple-
mentation of dynamic functionalities to enhance soil loss predictions in watersheds. The
SWAT is a physically based, distributed parameter model that operates on an interface
called ArcSWAT. It is used for long-term analysis of hydrologic components and predicts
the transport of sediments and contaminants in the watershed scale with varying soils, land
uses, and management conditions [74]. The concept behind the modeling of spatial units in
SWAT is the assortment of HRUs, which are the portions of a sub-basin that possess unique
land cover, slope gradient, and soil characteristics. SWAT uses USLE to calculate SY [75].
The SY from USLE in each HRU on a given day, denoted by SYUSLE (metric ton/ha), are
obtained from the SWAT model using the equation

SYUSLE = 1.292 EIUSLE KUSLE CUSLE PUSLE LSUSLE CFRG (3)

where EIUSLE is the rainfall erosion index in 0.017 m-metric ton cm/cu·m h, KUSLE is the
K-factor in 0.013 metric ton cu·m h/cu·m metric ton cm, PUSLE is the USLE support practice
factor, LSUSLE is the USLE topographic factor, and CFRG is the coarse fragment factor.

2.3. Development of Connective Algorithm

The study developed a connective algorithm to simulate spatiotemporal sediment
yields in SWAT by incorporating two models of C-factor and K-factor. These two equations
of K-factor (Equation (4)) and C-factor (Equation (2)) were used for the first time in modeling
multiple watersheds and to predict sediment yields. The novel functions of K-factor
and C-factor, which were developed using spatiotemporally dynamic satellite remotely
sensed data, are expected to tackle the uncertainties in SY predictions arising from the
conventionally used static input variables for estimating K-factor and C-factor. Thus, they
will improve SY predictions. The proposed algorithm incorporating dynamic models of
C-factor and K-factor into SWAT was based on modeling a yearly variation scheme for
the traditional equations of CUSLE and KUSLE in the SWAT model. The algorithm adopts
an input-oriented functionality and runs on annual temporal conditions in the level of
sub-basins and HRUs. The newly incorporated components include modification of SWAT
equations (SWAT-Equation), addition and editing of SWAT input files (SWAT-Edit), and
extraction of SWAT output files (SWAT-Extract). SWAT-Equation was used to modify
the equations in the routines and subroutines. SWAT-Edit was used to add new model
input files, as well as to edit the existing model input files of SWAT such as crop (land
management and vegetation characterization module) and sol. Additionally, SWAT-Edit
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edits the model input files of SWAT simultaneously for crop and sol modules. First, the
remotely sensed factors that take part in the algorithm were fed into the respective input
modules of SWAT and saved using SWAT-Edit. Second, each row pointing to one HRU
was modified to the new functions for C-factor and K-factor (Equations (2) and (4)) using
SWAT-Equation. Then SWAT was called to simulate SY for the study watersheds for the
required temporal conditions. Further, the spatiotemporal maps for the CUSLE, KUSLE,
K-factor, C-factor, and sediment yields were processed. The described processes are shown
in Figure 1.
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2.4. Validation of Connective Algorithm
2.4.1. Sensitivity Analysis

The developed algorithm connecting models of the C-factor and K-factor into SWAT
was validated using sensitivity analysis of SY predictions in three different cases. The
sensitivity analysis involved three cases of SY predictions for annual conditions in the
HRU level using spatiotemporal C-factors and K-factors. Case 1 represented SY with the
traditional values of CUSLE and KUSLE. Case 2 represented SY with dynamic C-factor and
traditional KUSLE. Case 3 represented SY with the dynamic C-factor and dynamic K-factor,
respectively. All cases were correlated to observed sediments at the monitoring stations
to understand the effect of the C-factor and K-factor functions in realizing the spatial and
temporal dynamics in SY estimation.

2.4.2. Performance Evaluation

In this study, the performance of the developed algorithm in advancing spatiotem-
poral SY predictions was evaluated using three statistical methods. The coefficient of
determination R2 typically ranges from 0 to 1 and is expressed as
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R2 = 1 −
(

SSres

SStot

)
(4)

where
SSres = ∑(yi − fi)

2 (5)

and
SStot = ∑

(
yi − ymean

)2 (6)

y and f represent the observed data and predicted data, respectively. SStot and SSres
represent the total sum of squares proportional to the variance of the data and the sum of
squares of residuals, respectively.

Next, the predicted R2 (PR2) was employed, which indicates the wellness of a model
in predicting responses to new observations. One of the most used coefficients of determi-
nation in hydrology is the Nash–Sutcliffe model efficiency coefficient (NS).

NS = 1 − ∑(Xobserved − Xsimulated)
2

∑
(

Xobserved − Xsimulated_average

)2 (7)

where Xsimulated_average is the mean simulated stream flows and SY of the watersheds
averaged per HRU.

2.5. Spatiotemporal Analysis
2.5.1. Spatial Interpolation and Mapping

In the present study, the inverse distance weight (IDW) method was used for comput-
ing the spatial patterns of the remotely sensed variables of EVI, AWC, LAI, and SR for all
the HRUs in the watersheds annually. The raster data was used to obtain the HRU wise
spatial maps of EVI, AWC, LAI, and SR. Each HRU was organized into grids where an
HRU contains values representing EVI, AWC, LAI, and SR [76,77]. Later, they were used to
estimate and geospatially map the modified C-factors and K-factors.

2.5.2. Temporal Trend Detection

The t-test was employed as a parametric trend detection test to understand the HRU
wise annual trends of C-factor, K-factor, and SY [78,79].

2.6. Case Study Areas

Two case studies were chosen as representations of the water quality constituent of
SY evaluated using dynamic soil erodibility and cover management factors with changing
space and time. Two basins, the Tampa Bay watershed (TBW) in Florida and the Winyah Bay
watershed (WBW) in South Carolina, were used in this study (Figure 2). The TBW is located
on the Gulf coast of west-central Florida and has an area of approximately 590,522 km2. The
second study area of WBW is approximately 575,590 km2 and encompasses the neighboring
areas of the tidal waters of the estuary. The TBW highlights the hydrological responses of a
coastal zone with rapid urban development and the WBW highlights the impact of coastal
development on increasing soil erosion.
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Data and Modeling

The elevation data was rasterized as a 30 m resolution digital elevation model (DEM)
from the National Elevation Dataset (NED) provided by the United States Geological
Survey (USGS). The soil data concerning texture, depth, and drainage attributes were
rasterized from vector maps supplied by the Web Soil Survey (WSS) under the United
States Department of Agriculture [80]. The study area watersheds were delineated using
the DEMs. The annual land cover maps of the watershed HRUs were developed using a
supervised classification analysis based on remotely sensed MODIS images. The developed
classifier was trained for the study area watersheds, which produced their supervised
classification with fifteen land cover classes [73]. The annually classified land cover maps
were employed as the land cover unit in the SWAT model for enhancing hydrological
predictions in SWAT.

The models were developed in SWAT for both study areas. A watershed delineation
was performed, and several sub-basins were obtained. Then the overlay of land cover, soil,
and the slope was carried out, producing the HRUs within the sub-basins. The threshold
values used for land cover, soil, and slope while defining the HRUs were 7%, 12%, and 12%,
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respectively. Later, climate data such as precipitation, temperature, solar radiation, relative
humidity, and wind speed were incorporated, model setup was completed, and simulation
runs were performed. The stream flows and sediment load from each HRU were calculated
separately using input data for weather, soil, topography, vegetation, and land management
practices. Later, they were merged to determine the total loadings from the sub-basin as
well as from the HRUs. More details and descriptions of the water balance, soil erosion, and
water quality process equations can be found in the SWAT technical documentation [72].
Twelve years (2002–2013) of daily weather data were collected from ground weather stations
as well as from downscaled and projected data from climate.gov [81,82] with a spatial
resolution of 250 m. The observed monthly stream flows and sediment concentrations
(Xobserved) obtained from USGS for the years 2002–2013 at the respective monitoring stations
were used to calibrate and validate the SWAT model. All the datasets for the study were
collected for the years 2002 to 2013 (Table 1). Simulations were done for land cover, soil type,
and climate condition of 2002 to 2013 using the weather data with the existing management
practices, which generated the simulated stream flows and SY from 2002 to 2013 (Xsimulated).
Tables 2 and 3 explains the descriptive statistics of remotely sensed and modeled soil
properties for K-factor estimation in TBW and WBW respectively. The soil texture is stable
for a relatively long period of five (2009–2013 in WBW) to eight (2002–2009 in TBW) years
in certain parts of the watersheds. However, the majority of the HRUs showcased annual
variations in the soil property of AWC, and some of the HRUs showed annual variations
for BD and Psoil.

Table 2. Descriptive statistics of remotely sensed and modeled soil properties for K-factor estimation
in TBW.

Descriptive
Statistics AWC (%) BD (g/cm3) Psoil (mm/h) LS (m) A (sq·km)

Mean 13.82 1.20 497.02 23.88 258.32
Median 12.27 1.25 537.50 19.75 36.34
Mode 24.60 0.87 487.50 0.00 0.18

Minimum 0.00 0.29 0.12 0.00 0.09
Maximum 37.49 1.78 875.00 403.48 13,356.90

Table 3. Descriptive statistics of remotely sensed and modeled soil properties for K-factor estimation
in WBW.

Descriptive
Statistics AWC (%) BD (g/cm3) Psoil (mm/h) LS (m) A (sq·km)

Mean 23.33 1.17 121.90 22.94 276.95
Median 22.84 1.14 116.75 7.03 35.73
Mode 18.25 1.44 39.25 0.30 0.09

Minimum 17.47 0.20 2.80 0.00 0.01
Maximum 32.80 1.55 887.50 1131.53 10,426.52

3. Results
3.1. SWAT Calibration and Validation Results

The two case studies were calibrated and validated in varying spatial and temporal
conditions. The two different spatial extents (TBW in Florida and WBW in South Carolina)
and two different temporal extents (2002–2009 and 2009–2013) were introduced to evaluate
the efficacy of SY predictions by the dynamic C and K factors in the SWAT models when
there are changes in hydrogeological and spatiotemporal scenarios. The SWAT model
was initially set up for the two watersheds in the southeastern United States. TBW was
developed with the land cover, soil type, and climate condition for the year 2002 with
29 sub-basins, 2286 HRUs within 29 sub-basins, 15 land cover classes, and 21 soil categories.
Similarly, WBW was developed with the land cover, soil type, and climate condition for
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the year 2009 with 31 sub-basins, 2118 HRUs within 31 sub-basins, 15 land cover classes,
and 32 soil categories. The spatial resolution of the HRUs in the study ranged from
9 km to 16 km with an annual temporal resolution. The SWAT model simulations were
employed at the levels of seasons, months, and years in the study models. The soil loss
predictions were estimated seasonally and monthly in the study watersheds, as opposed to
conventional SY predictions on a long-term timespan [83–85]. Both the watershed models
were calibrated and validated for the years from 2002 to 2013 with the land cover, soil type,
and climate conditions for the respective years. The calibration and validation procedure
were performed for stream flows as well as SY by selecting the most sensitive parameters
affecting stream flows and SY through one-factor-at-a-time sensitivity analysis [86,87]. The
most sensitive parameters of ESCO, CN2, and AWCS were used to calibrate stream flows,
and ERORGN, ERORGP, and HRU_SLP were used in SY calibration (Table 4).

Table 4. List of SWAT model calibration and validation parameters and the optimized values.

Parameters Descriptions
TBW WBW

Ranges Fitted Values Ranges Fitted Values

Stream flow

ESCO
Soil evaporation

compensation
factor

0.85–1.00 0.824 0.80–1.00 0.83

CN2
SCS curve

number
1.00–2.00 1.73 1.00–2.00 1.55

AWCS
Available water
capacity of the

soil layer

0.00–1.00 0.324 0.00–1.00 0.44

Sediment
yield

ERORGN

Organic N
enrichment ratio
for loading with

sediment

0.00–5.00 0 0.00–4.00 0.5

ERORGP

Phosphorus
enrichment ratio
for loading with

sediment

0.00–5.00 0 0.00–4.00 0.2

HRU_SLP Average slope
steepness 0.00–1.00 0.215 0.00–1.00 0.43

The study performed three trials each for stream flow and SY calibration, as only six
parameters were significantly sensitive to the hydrologic responses of the two basins [87].
AWCS, ESCO, and CN2 were the most critical parameters affecting stream flow patterns in
wet conditions because they were found to be highly sensitive to 70% of the stream flows.
Even though the parameters such as surface runoff lag coefficient (SURLAG) and Manning’s
coefficient for overland flow (OV_N) area are considered to be important in surface flow
dynamics, they were obtuse in this study [88,89]. The parameters such as HRU_SLP,
ERORGN, ERORGP, average slope length (SLSUBBSN.hru), sediment concentration in
lateral and groundwater flow (LAT_SED.hru), and a linear and exponential parameter
representing the sediment re-entrained through channel sediment routing (SPCON.bsn,
and SPEXP.bsn, respectively) are the conventionally crucial parameters affecting SY [90,91].

However, all the parameters except HRU_SLP, ERORGN, and ERORGP were found
to be less sensitive to SY in the study. The methods of auto-calibration (ERORGN and
ERORGP) and manual calibration (HRU_SLP) were collectively employed for fast-paced
and manageable iterations within the SWAT model. The summary results of calibration and
validation are given in Table 5. Overall, for both watersheds, the hydrologic calibration and
validation results closely matched the measured values (R2 (0.44–0.85) and NS (0.35–0.75))
for the temporal conditions between 2002 and 2013. The results showed that the model



Remote Sens. 2022, 14, 400 11 of 24

simulations were good estimates in predicting stream flows and SY for Old Tampa Bay,
Hillsborough Bay, Middle Tampa Bay, Lower Tampa Bay, and WBW (Figure 3, Table 5).
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Figure 3. The observed versus simulated stream flows in the calibration and validation for (a) TBW
(n = 89) and (b) WBW (n = 139). n is the number of data points used for calibration and validation.

Table 5. Summary of SWAT model calibration and validation results.

Observed
Data

Test Simulation
Period

Monitoring
Station

Performance

R2 NS

Stream Flow

Calibration 2002–2005
Rocky Creek

0.842 0.711

Validation 2006–2009 0.786 0.680

Calibration 2009–2011
Black River

0.767 0.632

Validation 2012–2013 0.598 0.620

Calibration 2009–2011
Lynches River

0.566 0.543

Validation 2012–2013 0.587 0.518

Calibration 2009–2011
Pee Dee River

0.762 0.688

Validation 2012–2013 0.655 0.645
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Table 5. Cont.

Observed
Data

Test Simulation
Period

Monitoring
Station

Performance

R2 NS

Sediment
Yield

Calibration 2002–2005 Rocky Creek 0.560 0.533

Validation 2006–2009 0.601 0.589

Calibration 2009–2011
Black River

0.662 0.644

Validation 2012–2013 0.572 0.512

Calibration 2009–2011
Lynches River

0.442 0.360

Validation 2012–2013 0.468 0.376

Calibration 2009–2011
Pee Dee River

0.691 0.564

Validation 2012–2013 0.644 0.590

3.2. Results of Connective Algorithm Validation

The developed K-factor and C-factor and the USLE K-factor and C-factor for the
HRUs of the two watersheds were utilized to estimate spatiotemporal SY in the study.
The performance results of the statistical evaluation for the implemented model cases are
depicted in Table 6. R2, PR2, and NS ranges between 0.5 and 1 are considered to have
acceptable goodness of fit in hydrologic modeling purposes [92]. The R2, PR2, and NS
values of the generated SY during Case 1 were 0.582, 0.531, and 0.603, respectively, for TBW
and 0.503, 0.462, and 0.418, respectively, for WBW. In TBW, they increased to 0.719, 0.636,
and 0.741, respectively, after the C-factor data were applied. For the WBW, the increases
were 0.594, 0.533, and 0.527, respectively. The dynamic K-factor function (Equation (4))
constitutes the C-factor estimates developed using the remotely sensed variables of EVI,
LAI, SR, and AWC (Equation (2)). It designated the repeated implementation of C-factor
information in Case 3, where dynamic C-factors and K-factors are connected. PR2 acts as a
potent tool to eliminate the overfitting of the model due to the repetition of the C-factor
variable [93–95]. The increase of PR2 from Case 2 to Case 3 indicated that the twin use of
the C-factor variable does not result in overfitting of the SY in Case 3 (TBW: 0.636 (Case 2)
to 0.668 (Case 3); WBW: 0.533 (Case 2) to 0.644 (Case 3)).

Table 6. The performance results of the statistical evaluation for the implemented model cases.

Performance
Indices

TBW WBW

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

NS 0.603 0.741 0.744 0.418 0.527 0.683
R2 0.582 0.719 0.733 0.503 0.594 0.713

PR2 0.531 0.636 0.668 0.462 0.533 0.644

Figure 4 shows the observed SY versus simulated SY for Cases 1, 2, and 3 at the Rocky
Creek monitoring station of TBW and monitoring stations of the Black River, Lynches River,
and Pee Dee River in WBW between 2002 and 2013. The significant deviations in actual and
simulated SY in Case 1 were significantly reduced in Case 2 during the low SY conditions.
This demonstrates that the dynamic C-factor model with the traditional KUSLE model is a
better simulator of the low SY that is generally found at the inlet of a watershed and in the
dry seasons. Most estimates of lower SY converged to the actual measured values in TBW
(NS: 0.603 to 0.741) with the application of the dynamic C-factor and traditional KUSLE,
whereas they showed a minor impact in WBW (NS: 0.418 to 0.527). Interestingly, both
study areas exhibited potential and further nearness of observed and simulated SY with the
connectivity of dynamic K-factor and C-factor (NS: 0.603 to 0.744 (TBW); NS: 0.418 to 0.683
(WBW)). This shows that model efficiency of SY predictions increased for every dynamic
factor added; for all cases, the highest model efficiency occurred when the two dynamic



Remote Sens. 2022, 14, 400 13 of 24

factors were connected (Case 3: PR2: 0.60–0.70, R2: 0.70–0.80, NS: 0.65–0.75). These findings
emphasized that Case 3 is a much better representation of the actual sediment prediction
for different watersheds with varying spatial and temporal environments compared to Case
2. Hence, the connectivity of the dynamic estimates of C-factor and K-factor into SWAT
realistically predicted SY when compared to the dynamic assessment using the singular
C-factor model [96,97].
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Figure 4. The observed SY versus predictions of SY using CUSLE-KUSLE (Case 1), C-factor-KUSLE

(Case 2), and C-factor-K-factor (Case 3) for the years between 2002 and 2013 for (a) TBW (n = 89) and
(b) WBW (n = 139).

The correlations and predictions of Case 3 indicated that the combined application
of C-factor and K-factor powerfully represented the SY estimates both for the whole
watershed and for the HRUs in the watersheds. This finding is corroborated by some recent
studies [98,99]. Despite the different spatial resolution of the various remotely sensed
MODIS variables of the study ranging from 30 m to 500 m, the study could demonstrate the
advancement of the existing algorithm in predicting the SY. The differences between the
actual and estimated SY accounting for the soil erosion for the spatial and temporal extents
in the watersheds can be attributed to the modeling techniques, interpolation methods,
and real hydrogeological conditions involved in the study areas. These differences also
include the ambiguity in the space-wise trends from the IDW technique when interpreting
different factors from remote sensing, which were employed in models for catchment scales.
Additionally, dynamic modification of the other USLE factors such as rainfall erosion index,



Remote Sens. 2022, 14, 400 14 of 24

support practice factor, and topographic factor might improve the precision and reliability
of the spatiotemporal SY estimates in watersheds.

3.3. Spatiotemporal Predictions of C-Factor and K-Factor

The annual C-factors and K-factors for each HRU in the watersheds were calculated
using the dynamic functions from Equations (2) and (4) to investigate their distribution in
the watersheds. The spatial CUSLE and KUSLE simulated by the SWAT model along with
the spatially and temporally dynamic C-factors and K-factors averaged from 2002 to 2009
for TBW and from 2009 to 2013 for WBW are reported in Figure 5. For both watersheds,
the C-factor range of 0.01–0.50 was almost 60% of the total watershed, which indicates the
dominance of grass and shrubs, pasture, and vegetation in TBW and WBW. The proportion
of urban spaces and forests (C-factor: 0–0.01) and wetlands and water (C-factor: 0.5–1) were
35% and 5%, respectively, for TBW and 10% and 30% for WBW. The spatial distribution
characteristics of the CUSLE deviated from the annual C-factors averaged from 2002 to
2013. C-factors were found to increase in Lower Tampa Bay, indicating the presence of
deforestation as well as land management activities in the Lower Tampa Bay region [22].
The distribution of KUSLE for Lower and Middle TBW was underestimated in comparison
with the developed annual K-factors by 45% and 35%, respectively. In contrast, it was
overestimated by around 20% and 28% in the northwest and central portions of the WBW,
respectively. In both watersheds, no significant annual dynamics were observed in K-factor
between 2002 and 2013, despite the noticeable deviation of annual K-factors from the KUSLE.
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Figure 5. HRU wise spatial distributions of the traditional CUSLE and KUSLE versus the average
dynamic C and K factors in TBW from 2002 to 2009 (a,c) and WBW from 2009 to 2013 (b,d).

The K-factor from the USLE equation, KUSLE, considered spatial changes with each
HRU while neglecting the temporal dynamics with each year, while the use of the remotely
sensed MODIS data estimated accurate soil moisture content. Thus, they captured the
spatial as well as annual changes in the developed K-factor function that led to improved
K-factor estimation in the watershed. For the years between 2002 and 2009, a K-factor
range of 0–0.1 was observed for the Old Tampa Bay and Hillsborough Bay watershed (58%
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of the total watershed), showing the existence of less erodible soils that can elevate the
agricultural productivity encompassing the catchments. Meanwhile, elevated K-factors
ranging from 0.1–0.7 were found in the remaining portion of the watershed, which indicates
the presence of highly erodible lands and potential risks for soil loss due to erosion. On the
other hand, only 20% of the total watershed area showed K-factors between 0–0.1, which
leaves a significant portion of the WBW with moderate or highly erodible soils [100–102].
Hence it is necessary to adopt sustainable water management measures as well as erosion
control strategies within or near the coastal zone for further improvement of agricultural
productivity. They will result in coastal water resource improvement [103–105].

The trends in the C-factor and K-factor time-series from 2002 to 2013 were determined
by computing the C-factors and K-factors averaged annually over all the HRUs of the water-
shed (Figure 6). The trend analysis results determined a decreasing trend of the watershed
C-factors from 2002 to 2013, which confirms the existence of annual management-induced
land cover dynamics at the watershed scale [106–111]. This highlights the importance
of more detailed temporal assessments of crop and cover management for improved
investigation of water management in watersheds.
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However, on the whole watershed scale, significant increases and sudden decreases
were detected in the C-factor time-series from 2003 to 2004 and 2006 to 2007, respectively,
in TBW. This result indicates that the C-factor time-series in TBW might not exhibit a
consistent pattern for the less dominant land cover distributions. The time-series of K-
factors from 2002 to 2013 demonstrated a moderately reducing trend for both watersheds.
An evenly transitioning trend was observed in WBW, ranging from 0.218–0.224 in the five
years. However, the K-factors in the TBW had minimal changes from 0.206 to 0.210 in the
eight years. These findings were substantiated by shreds of research which examined the
increasingly important influence that urbanization and its associated soil losses have on
the individual drainage basins of TBW and WBW [111]. Thus, the trend test results for the
K-factors and C-factors adhere to the real hydrogeological conditions. The inclusion of
more precise temporal conditions including seasons, months, days, and hourly intervals
holds importance in this context, as these conditions can impact time-series trend detection
at the watershed scale, at specific monitoring stations, and concerning point and nonpoint
sources of contamination within the watersheds.

4. Discussions
4.1. Spatiotemporal Predictions of Sediment Yields

The study illustrated the spatial and temporal variability in SY assessment using a
connective algorithm of the dynamic models of the C-factor and K-factor in the SWAT model.
Annual SY was generated for each HRU of the watersheds from 2002 to 2013. The annual
HRU wise SY ranged from 23 ton/ha to 70 ton/ha. Overall, high sediment deposition was
observed in Lower Tampa Bay and Hillsborough Bay, which indicates the accumulation
of the collected sediments towards the outlet of the watershed. About 16%, 44%, and 50%
of the watershed was associated with the lower, medium, and higher proportions of SY,
respectively. However, keen observation was essential to identify the slight reductions
in the SY in some parts of Lower Tampa Bay and Old Tampa Bay. This is supported by
studies which pointed out significant increases in urban spaces, developed areas, and
water cover with corresponding reductions in agricultural productivity [21]. This led to
reduced water quality constituents such as suspended sediments and turbidity in TBW.
WBW showed moderate yield assessment in which 70%, 22%, and 8% of the watershed
was associated with the lower, medium, and higher proportions of SY, respectively. SY
was observed to spatially increase from the northwest portion to the southeast portion of
the WBW from 2009 to 2013 [112,113]. This shows that with variable spatial resolution (30
m to 500 m) and relatively coarse temporal resolution (annual) satellite remotely sensed
data, a good estimate of SY in catchments of the southeastern United States can be made.
According to Figures 7 and 8, the spatial variability of sediment generation in the HRUs of
both watersheds was much more significant than the temporal variations. Therefore, the
temporal variability of the K-factor, which represents the severity of soil and sediment loss,
can be neglected when compared to its spatial variation. Some studies support the use of
dynamic models for valid water quality assessments in catchments [114–118].

For the year 2007, geospatial changes in the C-factor led to significant reductions
in sediment generation in HRUs of TBW. This indicates the improved correlation of the
dynamic C-factor and K-factor estimates on water quality predictions compared to the
USLE estimates. Hence, they strongly infer the probable association of the connective soil
erosional components C-factor and K-factor in changing the water quality of sediments
from year to year, especially on watershed scales [119]. Overall, the results showed that the
predictions using the developed models are feasible, which can help users to reduce the
uncertainty of the quantification of USLE parameters of the C-factor and K-factor.

The vital contribution of the study is the remotely sensed data-driven models proposed,
which present a manageable and user-friendly determination of SY for advanced water
resource management and can yield advanced spatiotemporal K, C, and SY mapping
for watersheds in the United States. In this study, we used K-factor and C-factor to
capture the SY dynamics, although these might not fully represent the connectivity of the
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contributing factors of SY in the areas. Because the catchments have similar areas, mixed
land covers, similar soil types, and relative terrain features, we assumed that the whole of
the catchments contributed proportionally to the sediment delivered to the outlet [120,121].
However, even in small catchments, SY at the outlet depends on other factors such as
atmospheric deposition and groundwater tables, as well as extreme stormwater events.
Therefore, a complete understanding of different factors and dynamic SY generation entails
the integration of multifaceted environmental and hydrogeological data both at very small
scales and at large watershed scales. Furthermore, the annual geospatial maps of C-factors,
K-factors, and SY can represent the interannual variability of these factors on SY assessment
and soil erosion modeling.
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4.2. Study Limitations

The connective framework of the study, which was incorporated in SWAT and tested
for the watersheds of the southeastern United States, can be applied to comparable wa-
tersheds with mixed land covers. However, extensive spatiotemporal validation of these
dynamic models would bolster their global effectiveness in SY predictions and water qual-
ity modeling. Regarding the differences between the actual and estimated SY accounting
for soil erosion at the spatial and temporal levels in the watersheds, the error is attributable
to the lack of alternative dynamic factors, modeling techniques, interpolation methods,
and real hydrogeological conditions involved in the study areas. The findings of the study
also highlight the necessity of finer spatial and temporal data in real-time water quality
modeling of watersheds. Further studies should investigate the connections between
unexplored soil erosional factors and water quality, which will broaden knowledge regard-
ing the variability of different water quality constituents and agricultural management
in watersheds with changing space and time. Remote sensing-based approaches can be
substantially constrained by the coarse resolution of remotely sensed data and the accuracy
of its processing, including land cover classification and estimation of various environ-
mental indices. Therefore, justifying a remote sensing-based approach for different study
watersheds requires added assessments of how the benefits of the novel models compare
to the uncertainties resulting from the fundamental limitations of remote sensing products
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and methods of their processing, which is outside the scope of this study. In addition, the
temporal extents (2002–2009 and 2009–2013), which are much less than 30 years, exert some
limitations for long-term studies on soil loss calculations. Nevertheless, the core emphasis
of future works should be the elimination of the uncertainties involved in the present study.

5. Conclusions

Various conceptual frameworks of sediment yield assessments have been developed in
recent years for enhanced soil erosion modeling. The existing frameworks model singular
factors affecting SY; however, they overlook the connection between multiple factors
affecting SY spatially and temporally and lack a manageable and user-friendly platform.
This study incorporated a new framework of two dynamic factors affecting SY (C-factor
and K-factor) into the SWAT model using satellite remotely sensed MODIS data of EVI,
SR, AWC, and LAI, and evaluated whether dynamic models can advance spatiotemporal
SY predictions in watersheds. We developed a connective algorithm that incorporates
all the components required to temporally (annual) and spatially (HRU level) simulate
dynamic C-factors and K-factors within the SWAT model. The connective algorithm was
validated using sensitivity analysis and three performance indices to determine the impact
of the dynamic C-factors and K-factors on SY predictions. The rise in the PR2 (TBW: 0.636
(Case 2) to 0.668 (Case 3); WBW: 0.533 (Case 2) to 0.644 (Case 3)) with the inclusion of the
dynamic factors of C and K showed how well the SY was predicted and that the model
is not too complicated concerning performance and overfit. The results showed that the
model efficiency of SY predictions increased for every dynamic factor added; for all cases,
the highest model efficiency occurred when the two dynamic factors were connected (Case
3: PR2: 0.60–0.70, R2: 0.70–0.80, NS: 0.65–0.75). Minor changes in K-factors and gradual
decreases in C-factors in the watersheds reflected potential land use changes that can
impact sediments and agricultural water use in these regions. The spatiotemporal analysis
of the SY simulations generated using the dynamic C-factors and K-factors displayed
moderate to high sediment deposition at the watershed outlets. The spatial variability of
sediment generation in the HRUs of both watersheds was much more significant than the
temporal variations. Therefore, we recommend the application of the dynamic models at
smaller spatial scales than the catchment scale to eliminate uncertainty in spatial predictions.
Overall, the connective system improved the reliability of SY predictions in SWAT and
created options for applying remotely sensed data unlike the conventional USLE functions
existing in SWAT.

The study concluded that satellite remotely sensed data of EVI, SR, LAI, and AWC
can effectively be used in spatiotemporal estimation of the dynamic C-factor and K-factor,
as well as SY, within basin-scale hydrologic models. The results emphasized the greater
feasibility of SY and water demand predictions in SWAT when all the satellite remotely
sensed dynamic variables are implemented in the connective algorithm of the C-factor and
K-factor. This can help users to reduce the uncertainty of the quantification of USLE param-
eters of the C-factor and K-factor with the aid of the SWAT model. The vital contribution of
the study is the remotely sensed data-driven models proposed that put forth a manageable
and user-friendly determination of SY and can yield advanced spatiotemporal K, C, and SY
mapping for watersheds in the United States. Regarding the differences between the actual
and estimated SY accounting for the soil erosion for the spatial and temporal extents in the
watersheds, the error is attributable to the modeling techniques, interpolation methods,
and real hydrogeological conditions involved in the study areas. The findings of the study
highlight the necessity of better spatial and temporal data in real-time water quality model-
ing of watersheds in order to ensure hydro-environmental health. Further studies should
investigate the underlying uncertainties of remote sensing-based approaches as well as the
relationships between unexplored soil erosional factors and water quality in watersheds
with changing space and time.
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