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Abstract: Object detection is an important task of remote sensing applications. In recent years,
with the development of deep convolutional neural networks, object detection in remote sensing
images has made great improvements. However, the large variation of object scales and complex
scenarios will seriously affect the performance of the detectors. To solve these problems, a novel
object detection algorithm based on multi-receptive-field features and relation-connected attention
is proposed for remote sensing images to achieve more accurate detection results. Specifically, we
propose a multi-receptive-field feature extraction module with dilated convolution to aggregate
the context information of different receptive fields. This achieves a strong capability of feature
representation, which can effectively adapt to the scale changes of objects, either due to various
object scales or different resolutions. Then, a relation-connected attention module based on relation
modeling is constructed to automatically select and refine the features, which combines global and
local attention to make the features more discriminative and can effectively improve the robustness
of the detector. We designed these two modules as plug-and-play blocks and integrated them into the
framework of Faster R-CNN to verify our method. The experimental results on NWPU VHR-10 and
HRSC2016 datasets demonstrate that these two modules can effectively improve the performance of
basic deep CNNs, and the proposed method can achieve better results of multiscale object detection
in complex backgrounds.

Keywords: convolutional neural networks (CNNs); multi-receptive-field feature extraction; multi-
scale object detection; relation-connected attention; remote sensing images

1. Introduction

With the development of remote sensing technology, object detection in remote sensing
images has become a popular topic. Satellite remote sensing is not restricted by airspace
and can continuously observe the Earth’s surface dynamically, which has become the pri-
mary technique of the dynamic detection, tracking and recognition of time-sensitive targets.
Remote sensing technology can quickly obtain the location, attributes, distribution and
movement characteristics of objects, thus providing support for relevant decision-making.
Object detection and identification are widely used in applications such as dynamic port
surveillance, traffic monitoring, territorial defense and naval warfare. SAR can work all day
long under various weather conditions and is suitable for object detection under various
atmosphere and environment. In recent years, satellite remote sensing technology has sig-
nificantly advanced, and high-resolution optical remote sensing images can provide more
detailed and richer information than SAR images [1], which has attracted great attention in
the field of object detection. In comparison to SAR images, optical remote sensing images
can provide clear details in terms of geometric shape, structure, color and texture—intuitive
information which is easier for human understanding and interpretation [2]. Furthermore,
the utilization of a large number of optical satellites and UAVs allows for the acquisition
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of high-quality and high-frequency optical remote sensing images. Optical remote sens-
ing images play a vital part in object detection, which is a valuable supplement to object
detection in SAR images.

Object detection in remote sensing images is very different from those of natural
scenery. Remote sensing images are more complex and are shot from a great distance. The
scales of the objects with the same class vary in a large range and the same object changes
greatly in scale under different resolutions. The scale of the objects changes in a large range,
which will reduce the performance of the detection algorithm, especially for very small or
very large objects. Although deep learning methods have shown good performance on
natural images, they do not perform well on optical remote sensing images, especially for
small targets as their accessible characteristics are restricted. Great efforts have been made
in the field of object detection in remote sensing images, but the detection performance
degradation caused by large variation in object sizes and similarity among objects with
similar scales is still a challenging problem for object detection. Figure 1 shows challenges
of object detection in remote sensing images. On the one hand, the scale changes of objects
in remote sensing images have a large range, as shown in Figure 1a, which often make the
performance degradation under complex backgrounds. The receptive field of the common
detector is difficult to effectively cover the various object sizes, and small targets are often
submerged in the interference of large targets and background. On the other hand, remote
sensing targets with the same scale often have similar appearance and characteristics, such
as the tennis court vs. basketball court in Figure 1b. The common detectors will be confused
and it is difficult to effectively distinguish them.

Figure 1. Challenges of object detection in remote sensing images: (a) large variations in object scales;
and (b) similarity between objects of similar scales.

In this paper, we propose two useful modules to help improve the performance of
object detection tasks in remote sensing images. These are integrated into the Faster R-CNN
framework to deal with the large variation in object sizes and feature similarity between
objects of similar scales in remote sensing images. The experimental results demonstrate
that MR-FEM and RC-AM are effective plug-and-play blocks, which are easily inserted
into basic deep CNNs to improve their performance. The main contributions of this paper
are as follows:

(1) A new Multi-Receptive-Field Feature Extraction Module (MR-FEM) was con-
structed and integrated into the feature pyramid network (FPN), which enables the net-
work to extract multiscale object features that aggregate multi-receptive-field information,
providing a powerful feature representation for multiscale objects.

(2) A Relation-Connected Attention Module (RC-AM) is proposed to automatically
select and refine the features that may be similar among objects of the same scale, which
can reduce the interference of redundant features. This module obtains global information
by stacking the feature itself and the relation-feature between features, and then mines the
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global attention from them. This can effectively enhance the foreground information while
weakening the background information, making the features more distinguishable.

The rest of this paper is organized as follows: Section 2 reviews related works and
describes the challenges in multiscale object detection. In Section 3, the framework of
our object detection model is introduced in detail. We present the dataset used for the
experiments, the details of the experimental setup, the evaluation metrics, the results of
the experiments and the experimental analysis in Section 4. Finally, the conclusions are
provided in Section 5.

2. Related Work
2.1. Deep-Network-Based Object Detection

In recent years, convolutional neural networks (CNNs) have confirmed their perfor-
mance in object detection, and deep learning object detectors for object detection are now
the most common technical approach. Existing object detection methods based on deep
learning can be divided into two types based on whether region proposals are generated.
R-CNN [3], Fast R-CNN [4] and Faster R-CNN [5] are common two-stage detection meth-
ods, while SSD [6], YOLO series [7–9] and RetinaNet [10] are typically one-stage detection
methods. In general, two-stage detection methods offer high accuracy, while one-stage
detection methods have a great advantage in terms of speed. Deep networks can automati-
cally learn basic features from enormous amounts of image data with more accuracy and
robustness than traditional methods. In the two-stage method, the input image is used
in the first stage to create category-independent region proposals, and features of these
regions are extracted, after which the objects are classified and regressed using category
classifiers and regressors in the second stage. Finally, discriminative techniques such as
non-maximal suppression (NMS) are used to remove redundant bounding boxes from the
final detection results. The pioneering work of the Region-based CNN (R-CNN) [3] and
its upgraded version SPP-Net [11], Fast R-CNN [4], make it possible to simplify learning
and increase operation efficiency. By sharing convolutional weights, Faster R-CNN [5]
combines the Region Proposal Network (RPN) and Fast R-CNN into a single network,
allowing object detection to be speedy and precise end to end. FPN [12], R-FCN [13], Mask
R-CNN [14] and other high-performance detection algorithms have also been presented
to date. One-stage strategies treat object detection as a regression problem without go-
ing through the proposal generation process, resulting in almost real-time performance.
YOLO [9] and SSD [6] are two popular one-stage methods that guarantee accuracy while
maintaining real-time performance. As a solution to overcome the class imbalance problem
of one-stage approaches, RetinaNet [10] introduces a new focal loss function that applies
a modulation term to the cross-entropy loss in order for the network to focus on tough
negative samples. RefineDet [15], inspired by the two-stage method, enhances accuracy by
using cascade regression and the anchor refinement module (ARM) to adjust anchor sizes
and locations before filtering out redundant negative anchors.

2.2. Multiscale Object Detection in Remote Sensing Images

In order to address the problems of multiscale object detection in remote sensing
images, many object detection algorithms based on deep learning have been proposed.
Multiscale image pyramids is an effective method to deal with large-scale variations. In
order to implement multiscale training more efficiently, a scale normalization method
is proposed in SNIP [16,17] for training objects that match the specific scale range for
each scale during multiscale training. However, this method is time-consuming and
requires more computational resources. Another way to solve the multiscale problem is to
perform object detection on multiple layers for objects of different scales. SSD [6] directly
uses multiscale feature maps from different layers to detect targets at different scales to
alleviate scale variation. FMSSD [18] improves the performance of detection by integrating
contextual information into the feature map using the dilated space pyramid module. In
recent years, several methods have demonstrated that combining deep and shallow feature
maps at different scales can help to solve the scale problem of object detection. A classical
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means is that of FPN [12]. To enhance the loss of semantics in lower feature maps, FPN
adds a top–down path and lateral connections to propagate semantic information between
deep and shallow layers. PANet [19] improves the feature fusion structure in FPN with
an additional bottom–up path and proposes adaptive feature pooling to fuse features
from different layers. To improve the multiscale detection performance in [20], a feature
fusion module is introduced in Faster R-CNN, which jointly uses the semantic information
obtained at the high level and the detailed information captured at the low level to generate
a refined feature map, effectively improving the performance of multiscale object detection.
Yang et al. [21] proposed SCRDet, a multi-classification detection method based on the
Faster R-CNN framework, that combines finer feature fusion, multi-dimensional attention
networks and constant factors in the loss function to decrease the sensitivity of the rotation
angle. TridentNet [22] constructs a parallel multi-branch architecture with a scale-aware
training scheme to specifically train each branch by using appropriately scaled objects.

2.3. Attention Mechanism

The idea of the attention mechanism is derived from human visual attention. The
attention mechanism is to accurately extract the most valuable information from a large
amount of input data and ignore the irrelevant information. The key information is in the
dominant position for subsequent information processing, analysis and decision-making,
while other unfocused information is redundant, which will be ignored and suppressed.
An attention mechanism was widely used in computer vision tasks such as object detection
and semantic segmentation, which achieved remarkable results. There are two main
types of attention mechanism commonly used in computer vision: channel attention and
spatial attention.

SENet [23] is a classic work based on the channel attention mechanism. Its innovation
is that it pays attention to the connections between channels. It uses the channel attention
mechanism to learn the weights of each channel in the feature layer, and automatically
obtains the value of each channel. Feature recalibration is performed to enhance the
high-contributing features and suppress the low-contributing features according to their
importance. After SENet [23], many effective methods based on the attention mechanism
were proposed. In CBAM [24], the author combined the spatial attention and the channel
attention to guide the training, so that the network can not only learn what to focus on,
but also learn where to focus. ECANet [25] conducts the information interaction between
adjacent channels instead of all channel interactions in SE, which significantly reduces the
complexity of the model. Wang et al. [26] proposed the non-local (NL) module to generate
the attention map by obtaining information from all positions in the feature map, which
can capture the long-distance dependence.

3. Proposed Method
3.1. Overview

In this section, we present details of the proposed method. Since our proposed
multi-receptive-field feature extraction module (MR-FEM) and relation-connected attention
module (RC-AM) are functional modules that are used to improve the multiscale object
detection capability of the detector, they cannot complete the detection task independently.
For the convenience of description and experimental validation, we integrate them into
the Faster R-CNN framework with the ResNet as the backbone network. Specifically,
ResNet is utilized as the backbone for the extraction of basic features of images, and
the basic feature maps C2, C3, C4 and C5 are the output for each stage of the backbone,
corresponding to 4, 8, 16 and 32× downsampling, and the number of channels are 256, 512,
1024 and 2048, respectively. Figure 2 depicts the overall structure of the network. After
obtaining the fundamental feature maps of each stage, the multi-receptive-field feature
extraction module (MR-FEM) is applied to further extract the contextual feature information
with multi-receptive fields, and the output feature maps from MR-FEM are unified into
256 channels using 1 × 1 convolution. The features at each level are then fused using
FPN. Specifically, the higher-level feature map output is summed with the lower-level
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feature map, which is 2× up-sampled first, to obtain the outputs F2, F3, F4 and F5 at each
level. Then, F2, F3, F4 and F5 are applied as inputs to the relation-connected attention
module (RC-AM) to generate the final feature maps P2, P3, P4 and P5 for detection. Global
information is generated by RC-AM using global relation modeling, which can further
enhance the features and lead the network to better focus on the foreground and suppress
the background. Finally, the refined feature maps are fed into the detection head to obtain
the class scores and regression bounding box.

Figure 2. The overall framework of the detection model.

3.2. Multi-Receptive-Field Feature Extraction Module

With the development of deep learning techniques in recent years, many convolutional
neural networks have overcome the problems of gradient descent and explosion caused by
increased network depth and demonstrated robust feature extraction capabilities. However,
features in deep layers are rich in semantic information, but spatial location information
is severely compromised. In object detection, location information is crucial. Features
in shallow layers, on the other hand, are weak in semantic information but sensitive to
location information. Therefore, combining deep and shallow multiscale features with
FPN may effectively fuse semantic and location information, achieving improved network
performance. The scales of objects in optical remote sensing images change greatly, and
receptive fields that are too large or too small cannot meet the needs of different receptive
fields for the scale variation of objects, therefore feature extraction with multiscale receptive
fields is necessary. The classic FPN directly employs the features extracted from the multiple
levels of the backbone network for feature fusion, which can enhance the features to some
extent by fusing information of different scales. However, for multiscale objects, this type
of simple fusing strategy cannot adapt to the multiscale changes of the objects. As a result,
this paper proposes a multi-receptive-field feature extraction module (MR-FEM), which
aggregates multi-receptive-field object characteristics to produce a more informative feature
representation via dilated convolution. As shown in Figure 2, the MR-FEM is embedded
into FPN to adapt to multiscale objects.

Dilated convolution, also known as atrous convolution [27], was first used in semantic
segmentation tasks to merge large-scale contextual information [28,29]. It expands the size
of the convolution kernel with the original weights by performing convolution operations
at sparsely sampled locations, thus increasing the size of the receptive field without ad-
ditional parameter costs. Dilated convolution has also been widely used in the field of
object detection. The proposed multi-receptive-field feature extraction module is shown
in Figure 3.

To cover different sizes of receptive fields, the module adopts dilated convolution with
the same kernel size but different dilation rates to extract multiscale context features. First,
the features extracted by ResNet at each level are used as input, and atrous convolutions
with the same size but different dilation rates of 3, 5 and 7 were employed to ensure that the
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final feature maps contain scale and shape invariance characteristics. By inserting (d− 1)
zeros between the values of the normal convolution kernel, dilated convolution extends the
kernel size without increasing the parameters or computing cost. A 3 × 3 convolution with
a dilation rate of d, for example, can have the same receptive field as a normal convolution
with the kernel size of 3 + 2× (d − 1). Finally, cross-channel concatenation is used to
integrate features from convolution layers with different dilation rates and we then apply
a 1 × 1 convolution to reduce the dimension. At this point, we finished the extraction of
multi-receptive-field features using the proposed MR-FEM, and then the obtained features
are fused via a side connection in FPN.

Figure 3. Structure of the multi-receptive-field feature extraction module. It contains three 3 × 3
convolutional layers with different dilation rates d.

3.3. Relation-Connected Attention Module

Attention is an important tool for visual perception that allows you to focus on the
most relevant element of the input signal, which is critical in object detection. SENet [23]
employs a channel attention method to learn the weights of each channel in the feature
map and calculates the relevance of each channel automatically. The non-local Net [26]
provides a global attention method that can capture long-range relational dependencies
and collect information from all locations by learning pairwise relations in a deterministic
manner to improve the object’s location characteristics. Inspired by SENet and the non-local
Net, we designed a relation-connected attention module (RC-AM) which can mine more
valuable information from the features themselves and the relations between features, and
acquire attention in a learning manner. RC-AM can effectively refine the features and
distinguish similar features between objects of the same scale. As depicted in Figure 4,
this module is mainly composed of two parts: Relation-Connected Spatial Attention and
Relation-Connected Channel Attention. These two sub-modules are combined through
residual connection.

Figure 4. Architecture of RC-AM residual connection: ⊗ denotes element-wise multiplication; and ⊕
denotes element-wise summation
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3.3.1. Main Idea of RC-AM

The goal of the attention mechanism is to train a series of attention masks defined by
a set of parameters a = (a1, · · ·, aN) ∈ RN and use the masks to reweigh these N features
depending on their importance for a given set X =

{
xi ∈ Rd, i = 1, · · · , N

}
of N relevant

features of dimension d. Figure 5a,b illustrated two common approaches of learning the
attention weights. In this part, a feature vector is also regarded as a feature unit. (a) Local
attention: the weights of a feature unit are locally calculated, and they are formed using
the individual feature via a shared transformation function. However, this local strategy
does not take the correlations between features into consideration, thus ignoring the global
scope of information. (b) Global attention: all feature units are employed together to jointly
learn attention, for example, utilizing a fully connected operation. However, this method is
inefficient and difficult to optimize, particularly when the number of features N is large,
resulting in a huge number of parameters being generated.

Figure 5. Different methods for the assignment of attention weights. ri∗j =
[
ri,j, rj,i

]
is the

relation vector.

To solve these problems, we propose a relation-connected attention module that
explores global feature information to jointly learn attention weights by fusing features
and their relationships. Figure 5c shows the main idea for our relation-connected attention.
We first investigated the relationship between the feature unit itself and other feature units
by calculating their affinity. Then, they were concatenated together to reflect the current
feature unit’s global information. Specifically, the module uses ri,j = R(i, j) to indicate the
affinity between the ith and the jth feature unit. For the ith feature unit, its affinity vector
is ri = [ri,1, ri,2, · · · , ri,N , r1,i, r2,i · · · , rN,i] = [R(i, :), R(:, i)]. R(i, :) which represents the ith
row of the affinity matrix, which indicates the relations between the ith feature unit and all
other feature units. R(:, i) denotes the ith column of the affinity matrix, which indicates
the relations between all other feature units and the ith feature unit.

(
ri,j, rj,i

)
describes the

bi-directional relations between the ith feature unit and the jth feature unit. All the affinity
vectors form the affinity matrix R ∈ RN×N . The feature itself and the affinity relations
are then combined to generate yi = [xi, ri], which is used to infer attention in a learned
function. This method for learning attention weights is applied to both spatial and channel
attention to obtain more discriminative features.
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3.3.2. Relation-Connected Spatial Attention Module

Given a tensor X ∈ RC×H×W of width W, height H and C channels, we construct a
relation-connected spatial attention module named RC-SAM to learn a spatial mask of
size N = H ×W. The C-dimensional feature tensor at each location is taken as a feature
unit, and there are a total of N such feature units. As shown in Figure 6, the feature map is
divided into N units in the spatial dimension and we set their label numbers as 1, · · · , N.
We denote the N feature units as xi ∈ RC, where i = 1, · · · , N.

The relation ri,j from feature unit i to feature unit j is described as a dot-product
affinity as

ri,j = Fs
(
xi, xj

)
= Gs(xi)

T Hs
(
xj
)

(1)

where Gs and Hs are the transform functions which consist of a 1 × 1 convolution oper-
ation, batch normalization (BN) and ReLU activation, i.e., Gs(xi) = ReLU(BN(WGxi)),

Hs
(
xj
)
= ReLU

(
BN
(
WHxj

))
, where WG ∈ R

C
s1
×C and WH ∈ R

C
s1
×C. s1 is a dimension

reduction ratio which is a pre-defined hyperparameter. Similarly, we can express the
relationship from feature unit j to feature unit i as rj,i = Fs

(
xj, xi

)
. Thus,

(
ri,j, rj,i

)
can be

utilized to express the inter-relation between xi and xj, and an affinity matrix RS ∈ RN×N

is used to represent the interaction among all feature units.
The relation vector ri = [Rs(i, :), Rs(:, i)] ∈ R2N for the ith feature unit is created

by concatenating its affinities with all the units in a specified order, i.e., j = 1, 2, · · · , N.
Specifically, r3 = [Rs(3, :), Rs(:, 3)], the third row and third column of the affinity matrix is
the relation vector used to mine the attention of the third position, as illustrated in Figure 6.

To draw the attention of the ith feature unit, we also incorporated the local information
of the feature itself, in addition to the global information derived by the relations, to
explore both the global relational information and original local information. To effectively
aggregate the information of the feature map and reduce the amount of parameters, we
used global average pooling and global maximum pooling on the original feature maps
to aggregate spatial information. For the extraction of spatial information, a common
method is global average pooling, which responds to all pixels in the spatial position. In
addition, we also used global maximum pooling to extract information. This will form the
representations of object features that are different from average pooling, which is helpful
for obtaining a more refined attention map. The local and global information of feature
units are concatenated together to obtain the relation-connected spatial feature yi:

yi = [Avgpoolc(Ps(xi)), Maxpoolc(Ps(xi)), Qs(ri)] (2)

where yi ∈ R2+ N
s1 , Ps and Qs are transform functions which consist of a 1 × 1 convolution

operation, batch normalization (BN) and ReLU activation, i.e., Ps(xi) = ReLU(BN(WPxi)),

Qs(ri) = ReLU
(

BN
(
WQri

))
, where WP ∈ R

C
s1
×C, WQ ∈ R

2N
2s1
×2N . Avgpoolc(·) and

Maxpoolc(·) denote the global average pooling and global maximum pooling along the
channel dimension, respectively. Finally, a learnable model is used to mine valuable
knowledge from the extracted global scope information, and the spatial attention weight is
inferred through a modeling function as

ai = Sigmoid
(

W
′′
ReLU

(
W
′
yi

))
(3)

where W
′

and W
′′

are operated by 1 × 1 convolution and BN. W
′

reduces the channel in
the ratio of s2, and W

′′
reduces the number of channels to 1.
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Figure 6. Diagram of our proposed Relation-Connected Spatial Attention Module.

3.3.3. Relation-Connected Channel Attention Module

In addition to spatial attention, we also designed a channel attention model, namely
RC-CAM, to learn the C-dimensional channel attention weights. Given a feature tensor
X ∈ RC×H×W with width W, height H and C channels. We consider the feature map of
dimension H ×W on each channel to be a feature unit, and there are C feature units for C
channels in total. As shown in Figure 7, the C channels are divided into C feature units and
their labels are 1, · · · , C. The C feature units are denoted as xi ∈ RH×W , where i = 1, · · · , C.

The relation ri,j from feature unit i to feature unit j, such as spatial attention, is
characterized as a dot-product affinity as

ri,j = Fc
(
xi, xj

)
= Gc(xi)

T Hc
(
xj
)

(4)

where Gc and Hc are transform functions consisting of a 1 × 1 convolution operation, BN
and ReLU activation, which are shared among feature units. An affinity matrix Rc ∈ RC×C

is used to express the global information among all feature units. An affinity matrix
Rc ∈ RC×C is used to express the global information among all feature units.

The relation vector ri = [Rc(i, :), Rc(:, i)] ∈ R2C for the ith feature unit is generated by
concatenating its relevant relationships with all the units to express global scope information.

To derive the attention weights of the ith channel, we combine the feature itself xi
and its relation vector ri to generate the channel relation-connected feature yi and then use
Equations (2) and (3) to calculate the channel attention weights ai. All of the transform
functions are shared among channels/units.
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Figure 7. Diagram of our proposed Relation-Connected Channel Attention Module.

3.4. Loss Function

In the proposed model, a multi-task loss is utilized to guide the training of the network.
This loss function consists of three parts: regression loss, classification loss and attention
loss. It is defined as follows:

L = λ1LReg + λ2LCls + λ3LAtt (5)

λ1, λ2 and λ3 are the balance parameters for multi-task loss.
Specifically, LReg is defined as

LReg =
1
N ∑

i
p
′
i ∑

j∈{x,y,w,h,θ}
Lreg

(
v
′
ij, vij

)
(6)

where N is the number of proposal boxes, p
′
i denotes the probability of different classes

calculated by the softmax function. v
′
∗j denotes the predicted offset vectors and v∗j denotes

the offset vector of the ground truth. When p
′
i = 1, it represents the foreground, and it

represents the background when p
′
i = 0. The regression loss Lreg is a smoothL1 function

which is defined as follows:

Lreg = smoothL1

(
v
′ − v

)
(7)

smoothL1(x) =
{

0.5x2, i f |x| < 1
|x| − 0.5, otherwise

Furthermore, the classification loss is the softmax cross-entropy loss function, which
is consistent with Faster R-CNN. Due to the complexity of remote sensing images, the
obtained feature map often contains a lot of noise information, which will make the object
features become blurred. Thus, we used a supervised learning way to obtain the attention
values, which is beneficial for specific tasks. We introduced the attention loss (LAtt) to
guide the training of the attention module. Specifically, we first generated a binary map as
the mask (label) according to the ground truth. Then, we used the pixel-wise cross-entropy
loss of the spatial attention map and the binary map as the attention loss, which is defined
as follows:
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LAtt =
1

h× w

h

∑
i

w

∑
j

Latt

(
u
′
ij, uij

)
(8)

where u
′
ij is the pixel of the learned spatial attention map and uij is the pixel of the mask (label).

4. Experiments and Results
4.1. Dataset

(1) NWPU VHR-10 Dataset: To validate the performance of our method, we conducted
experiments on the NWPU VHR-10 dataset. It contains ten classes objects which are
airplane; ship; storage tank (ST); baseball diamond (BD); tennis court (TC); basketball
court (BC); ground track field (GTF); harbor; bridge; and vehicle. There are a total of
800 high-resolution remote sensing images collected from Google Earth and Vaihingen
dataset [30].

(2) HRSC2016 [31] is a public dataset of optical remote sensing images for ship de-
tection which is also used in this study to evaluate and analyze the performance of the
proposed model. The dataset, which contains 1070 images with resolutions ranging from
0.4 to 2 m, was gathered from famous harbors in Google Earth. There are a total of 2976 ship
targets in HRSC2016, with image sizes ranging from 300 × 300 to 1500 × 900. There are
various sorts of ships, such as warships, aircraft carriers and cargo ships. Some ships have
a big rotation angle, a large aspect ratio and a lot of diversity in appearance.

4.2. Implementation Details

We adopted Adam [32] as the model optimizer in the training stage with a total of
300 epochs. The training batch size is set to 6, and the learning rate is 1× 10−4 for the
first 100 epochs and 1× 10−6 for the next 200 epochs. Our experiments are implemented
in Pytorch 1.5.0 on a NVIDIA Titan XP GPU. The FPN-based Faster R-CNN is used as
the baseline and the backbone for initialization in the end-to-end training is ResNet-50
pre-trained on ImageNet. Before training, the images are normalized to a size of 608 × 608
for NWPU VHR-10 and 800 × 800 for HRSC2016 while maintaining their original aspect
ratio to prevent the distortion of the target and facilitate image batch training. On the
HRSC2016 dataset, the scales of the anchor are set to (1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/9) in order to cover as many ship scales as possible. In the RPN training stage, when
the IoU > 0.7, the anchor is regarded as a positive sample, and as a negative sample when
IoU < 0.3. The other anchors will not be used in the training. Furthermore, in Equation (5),
the balance hyperparameters are taken as 4, 2 and 1, respectively. s1 and s2 are set to 8.

4.3. Evaluation Criteria

For the algorithm performance, the mean average precision (mAP) is a widely used
evaluation metric. mAP is calculated by precision (P) and recall (R). The precision (P) and
recall (R) metrics are calculated as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where TP denotes a true positive, indicating the number of correctly detected ships; FP
denotes a false positive, indicating the number of incorrectly detected ships; and FN
denotes a false negative, indicating the number of undetected ships. We also utilize P and
R to obtain the mean average precision (mAP) for each class. It is defined as follows:

mAP =
1

Ncls

1∫
0

P(R)dR (11)

where P(R) denotes the P–R function curve. Ncls denotes the number of classes.
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The F1-Score is the harmonic mean of P and R, which is formulated as

F1 =
2PR

P + R
(12)

4.4. Comparisons with State-of-the-Art Methods
4.4.1. NWPU VHR-10 Dataset Results

Table 1 reports the comparisons of our method and the state-of-the-art detectors on the
HBB prediction task of the NWPU VHR-10 dataset. It contains ten classes of objects which
are airplane; ship; storage tank (ST); baseball diamond (BD); tennis court (TC); basketball
court (BC); ground track field (GTF); harbor; bridge; and vehicle. We compared our method
with state-of-the-art methods which are RICNN, SSD512 [6], R-FCN [13], Faster R-CNN [5]
and FMSSD [18].

Table 1. Comparisons with state-of-the-art methods on the NWPU VHR-10 dataset.

Method Airplane Ship ST BD TC BC GTF Harbor Bridge Vehicle mAP

RICNN [30] 88.35 77.34 85.27 88.12 40.83 58.45 86.73 68.60 61.51 71.70 72.63
SSD512 [6] 90.40 60.90 79.80 89.90 82.60 80.60 98.30 73.40 76.70 52.10 78.40
R-FCN [13] 81.70 80.60 66.20 90.30 80.20 69.70 89.80 78.60 47.80 78.30 76.30

Faster R-CNN [5] 94.60 82.30 65.32 95.50 81.90 89.70 92.40 72.40 57.50 77.80 80.90
FMSSD [18] 99.70 89.90 90.30 98.20 86.00 96.80 99.60 75.60 80.10 88.20 90.40

Ours 99.50 88.40 90.20 98.70 89.20 95.40 99.20 89.60 82.20 92.90 92.50

Our method achieves the highest mAP and significantly outperforms the other meth-
ods in object detection for small targets. FMSSD [18] achieves good performance on NWPU
VHR-10 by using context information in different feature maps. Compared with FMSSD,
our method has a similar performance in large-size objects while better results in small
objects such as vehicles. In addition, Figure 8 shows some detection results from the NWPU
VHR-10 dataset. Our method can effectively detect objects of different classes and scales in
remote sensing images.

Figure 8. Some detection results of our method on the NWPU VHR-10 dataset: (a) Airplane; (b) GTF
and BD; (c) TC and BC; (d) Bridge; (e) ST and ship; and (f) Vehicle.
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4.4.2. HRSC2016 Dataset Results

To further illustrate the effectiveness of our proposed algorithm framework, we con-
ducted comparison experiments with state-of-the-art methods on the HRSC2016 dataset,
and the experimental results are shown in Table 2. We compared it with the following algo-
rithms: R2CNN [33], RRPN [34], SCRDet [21], RoI Transformer [35] and Gliding Vertex [36],
and the experiments show that our algorithm achieves the most competitive results.

Table 2. Comparison with other state-of-the-art methods.

Method Backbone Image Size mAP

R2CNN [33] ResNet101 800 × 800 73.07
RRPN [34] ResNet101 800 × 800 79.08

SCRDet [21] ResNet101 512 × 800 83.41
RoI Trans [35] ResNet101 512 × 800 86.20

Gliding Vertex [36] ResNet101 512 × 800 88.20
Ours ResNet50 800 × 800 88.92
Ours ResNet101 800 × 800 89.24

From the performance comparison results shown in Table 2, our model using ResNet50
as the backbone outperforms most of the models with ResNet101 as the backbone, which
fully demonstrates that the model components proposed in this paper are very effective
in improving the performance of the detector. The method we proposed has a large
improvement over R2CNN and RRPN, 16.17% and 10.16%, respectively. R2CNN and
RRPN, which are originally designed for text detection in arbitrary directions, have poor
performance due to the complexity of remote sensing images, although they have similar
characteristics to ship detection. RoI Trans [36] uses an RoI transformer in the RPN phase
to transform the horizontal RoI into a rotational RoI by fully connected operation, which
effectively improves the detection accuracy. Compared with RoI Trans, we achieved 3.04%
higher in mAP. The performance of Gliding Vertex is comparable to ours in this paper,
with a difference of only 1.04%. Gliding Vertex [36] describes oriented targets by sliding the
four vertices of the horizontal bounding box on each corresponding edge, which facilitates
the learning of offsets and avoids the confusing problem of having sequential labeling
points for oriented targets. The method works very well for both remote sensing target
detection and text detection. Our method benefits from the multi-level receptive field
feature aggregation capability of MR-FEM and the feature refinement of RC-AM. Figure 9
shows comparative visual results with other methods. The red box represents the false
detections and the yellow box represents the missed detections.

Figure 10 shows some of the visualization results of the method in this paper on the
HRSC2016 dataset. From the demonstrated results, it can be seen that our method can
effectively detect multiscale ship targets and is more friendly in the detection of small ships.
It can detect inshore ships of different types and various sizes, as well as ships close to each
other. For harbor, roof and other disturbances, our method can effectively distinguish them
from ship targets with good robustness.
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Figure 9. Comparative visual results with other methods on the HRSC2016 dataset: (a) ground truth;
(b) R2CNN; (c) RRPN; (d) SCRDet; and (e) ours.

Figure 10. Visualization results of the method in this paper on the HRSC2016 dataset.
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4.5. Discussion
4.5.1. Ablation Study on NWPU VHR-10 Dataset

In order to verify the importance of each different module of the proposed model
in this paper, a series of ablation experiments were performed using the NWPU VHR-10
dataset. The categories are airplane; ship; storage tank (ST); baseball diamond (BD); tennis
court (TC); basketball court (BC); ground track field (GTF); harbor; bridge; and vehicle. The
main purpose was to investigate the impact of the proposed multi-receptive-field feature
extraction module (MR-FEM) and relation-connected attention module (RC-AM) on the
performance of the algorithm. In this experiment, the FPN-based Faster R-CNN algorithm
was used as the baseline, and the pre-trained ResNet-50 was used as the backbone. All
other settings were made the same to ensure fairness. The experimental results are shown
in Table 3.

Table 3. Performance of different modules in our model on the NWPU VHR-10 dataset.

Method Airplane Ship ST BD TC BC GTF Harbor Bridge Vehicle mAP

Baseline 94.60 82.30 65.32 95.50 81.90 89.70 92.40 72.40 57.50 77.80 80.90
+MR-FEM 95.84 86.36 80.64 95.62 82.40 89.82 92.62 82.10 64.20 86.42 85.60
+RC-AM 98.40 85.20 86.20 96.20 87.32 93.44 92.46 83.42 77.34 83.50 88.35

Ours 99.50 88.40 90.20 98.70 89.20 95.40 99.20 89.60 82.20 92.90 92.50

The experimental results show that the addition of MR-FEM is beneficial to improve
the detection accuracy by 4.7% in terms of mAP. When RC-AM is added, the detection
accuracy is improved by 7.45% compared to the baseline model. The performance is
achieved is better while using both of them. The experiments fully demonstrate the
effectiveness of the proposed method. MR-FEM aggregates the contextual information
of different receptive fields on the feature map, which improves the detection accuracy
of small targets such as ships and vehicles. BC and TC are different object classes which
consist of a similar appearance and features. They achieve larger improvements with
RC-AM. RC-AM enhances the feature selection and refinement capability by obtaining the
global and local attention through relation modeling, which makes the features between
similar targets more distinguishable and thus improves the detection performance. RC-AM
not only enhances the distinguishability of features among different classes of objects,
but also reduces the interference of background features, which is very helpful for object
detection tasks.

4.5.2. Ablation Study on HRSC2016 Dataset

We also performed a series of ablation experiments using the HRSC2016 dataset on
OBB detection task. In this experiment, the FPN-based rotated Faster R-CNN algorithm
was used as the baseline, and the pre-trained ResNet-50 was used as the backbone. All
other settings are made the same. The experimental results are shown in Table 4.

As can be seen from Table 4, both the proposed MR-FEM and RC-AM can effectively
improve the performance of the baseline, which are 1.24% and 3.48% higher than the
baseline model, respectively, and the AP then achieves 88.92% when using both of them.
Our proposed MR-FEM and RC-AM were proven helpful for ship detection tasks. MR-FEM
can extract multi-receptive-field features from the convolutional layers at each stage of
the backbone. Through the convergence of multi-level receptive fields, the contextual
information is increased in the feature map, which is very effective for the detection of
multiscale ship targets. The RC-AM is an important module of the method in this paper,
through which the relation between the features and the feature itself are combined to
explore the global attention. RC-AM can automatically select and refine the features, so as
to highlight the foreground and eliminate the effect of noise.
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Table 4. Performance of different modules in our model on the HRSC2016 dataset.

Method Precision Recall F1-Score mAP

Baseline (ResNet-50) 85.42 86.88 86.14 84.20
+MR-FEM 87.30 88.25 87.77 85.44
+RC-AM 90.87 90.24 90.55 87.68

+MR-FEM+RC-AM 92.68 91.52 92.10 88.92

Figure 11 shows the visualization of ship detection results for this experiment. Figure 11a
shows the comparison results between the baseline and the baseline adding MR-FEM,
and it can be found that when MR-FEM is applied to the baseline, the model has better
robustness for multiscale ship targets and is friendlier for small target detection. Figure 11b
demonstrates that, after using RC-AM, the network is able to resist the interference of
complex backgrounds and reduce the missed detections and false positives.

Studies have shown that the attention mechanism plays an important role in target
detection. In this paper, in order to obtain more fine-grained ship features with more
discriminative power, a relation-connected attention module is proposed, which consists
of two parts: spatial attention and channel attention. To further illustrate the superiority
of this module, it is compared with other commonly used attention methods, and the
experimental results are shown in Table 5.

SENet [23] is a very classical and widely used attention module and has even be-
come standard in some baseline models. In SE, they use spatial global average pooling
features and utilize two fully connected (FC) nonlinear layers to compute channel attention.
CBAM [24] designs a similar channel attention with reference to SE and uses a 7 × 7 filter
to compute spatial attention. The ECA [25] module is modified from SE, proposing that
only a few adjacent channel information interactions are required instead of interacting
with all channels, which reduces the computational cost.

(a)

Figure 11. Cont.
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(a)

Figure 11. Visualization of the ablation experiment results for MR-FEM and RC-AM: (a) The first
row is the baseline method and the second row is the result of baseline+MR-FEM. The yellow circle
represents the missed detection; (b) the first row is the baseline method and the second row is the
result of baseline+RC-AM. The red box represents the misjudgment.

Table 5. Performance comparison for different attention modules on the HRSC2016 dataset.

Method Precision Recall F1-Score mAP

Baseline + MR-FEM 87.30 88.25 87.77 85.44
+SE [23] 87.92 89.02 88.47 87.29

+CBAM [24] 88.54 89.24 88.89 87.64
+Non-local [26] 89.81 90.36 90.08 87.95

+ECA [25] 88.63 89.30 88.96 87.70
+RC-AM (ours) 92.68 91.52 92.10 88.92

From Table 5, we can see that the RC-AM proposed in this paper has a 1.63%, 1.28%
and 1.22% performance improvement over SE, CBAM and ECA, respectively. Non-local
(NL) [26] uses pairwise relations as weights to obtain long-range information to reweigh the
features. However, NL only uses them for weighted summation and ignores mining global
range information from the relations. We improved the performance from 87.95% to 88.92%
using RC-AM compared to NL. Thanks to our effective way of obtaining the attention
values, RC-AM achieves the best performance among the compared attention modules.

The RC-AM proposed in this paper contains two parts: spatial attention and channel
attention. To further investigate the respective roles of spatial attention, channel attention,
their combinations and the effects of their connection methods, we conducted some further
experiments. Table 6 shows the comparisons of our RC-CAM(RC-AM_C), RC-SAM(RC-
AM_C) and their combinations (RC-AM_S//C, RC-AM_CS and RC-AM_SC).

As can be seen in Table 6, either RC-AM_C or RC-AM_S significantly enhances the
performance over baseline by 1.62% and 0.76%, respectively, and the performance im-
provement is much greater when using their combined version (RC-AM_SC) from 85.44%
in the baseline to 88.92%. In this experiment, we investigate three methods of combina-
tion: sequential spatial–channel (RC-AM_SC), sequential channel–spatial (RC-AM_CS) and
parallel fusion (RC-AM_S//C). Compared with RC-AM_S and RC-AM_C, RC-AM_SC
achieves the best performance, which is 2.72% and 1.87% higher in mAP. The experiments
also show that the sequential connection of spatial and channel attention is better than the
parallel connection, where RC-AM_SC is slightly better than RC-AM_CS. The comprehen-
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sive experiments demonstrate that the relation-connected attention assignment strategy
proposed in this paper is effective, and mining the global attention by modeling the rela-
tionship between features and stacking them together can significantly help improve the
model performance.

Table 6. Performance comparisons of our models with the baseline, and the effectiveness of channel
attention and spatial attention on the HRSC2016.

Method Precision Recall F1-Score mAP

Baseline + MR-FEM 87.30 88.25 87.77 85.44
+RC-AM_C 88.67 88.82 88.74 87.05
+RC-AM_S 88.25 88.70 88.47 86.20

+RC-AM_S//C 89.23 89.78 89.50 87.62
+RC-AM_CS 90.80 90.24 90.52 88.76

+RC-AM_SC (ours) 92.68 91.52 92.10 88.92

5. Conclusions

In this paper, we propose a novel method combined with multi-receptive-field features
and relation-connected attention for multiscale object detection in optical remote sensing
images. Considering the various scales of objects, a multi-receptive-field feature extraction
module containing atrous convolution with different dilation rates is designed to extract
multiscale context features, which effectively adapts to the scale changes of an object. To
distinguish different objects with similar scales, a relation-connected attention module is
proposed to dynamically select and refine features and make them more discriminative,
which can mine a spatial and channel attention through relation modeling. RC-AM can
effectively guide the network to focus on object regions and strengthen object features while
suppressing redundant background information. It also makes the network more robust for
object detection under complex background conditions in optical remote sensing images.
MR-FEM and RC-AM are effective plug-and-play blocks to improve the performance of
basic deep CNNs. The experimental results on the NWPU VHR-10 and HRSC2016 datasets
show that the algorithm proposed in this paper can accurately detect objects of different
scales and distinguish different object classes of similar scales, which achieves competitive
results and better robustness.
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