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Abstract: Recently, 3D point clouds have become a quasi-standard for digitization. Point cloud
processing remains a challenge due to the complex and unstructured nature of point clouds. Cur-
rently, most automatic point cloud segmentation methods are data-based and gain knowledge from
manually segmented ground truth (GT) point clouds. The creation of GT point clouds by capturing
data with an optical sensor and then performing a manual or semi-automatic segmentation is a
less studied research field. Usually, GT point clouds are semantically segmented only once and
considered to be free of semantic errors. In this work, it is shown that this assumption has no overall
validity if the reality is to be represented by a semantic point cloud. Our quality model has been
developed to describe and evaluate semantic GT point clouds and their manual creation processes.
It is applied on our dataset and publicly available point cloud datasets. Furthermore, we believe
that this quality model contributes to the objective evaluation and comparability of data-based
segmentation algorithms.

Keywords: 3D point cloud; quality model; annotation tools; datasets; evaluation metric;
evaluation parameter

1. Introduction

A major research topic in geodesy is to digitize activities in construction [1–3], in
building maintenance [4,5] and in navigation [6,7]. For the digitization of these tasks,
digital building parts and furnishing objects must be formed and processed. Digital models
of real-world buildings (digital twins) are needed to make complex and large semantic
data interpretable for humans and machines [8]. The creation of digital twins is often based
on 3D point clouds, which are efficiently captured with depth imaging cameras or light
imaging, detection and ranging (LIDAR) systems. The 3D point cloud without any semantic
features can already be considered a model, since humans can use their knowledge to
interpret semantic point groups as single objects. These semantic point groups are, e.g., the
objects and scanning artifacts, as shown in Figure 1.

Figure 1. Examples of objects (chair and table) and scanning artifacts in a point cloud. Common
scanning artifacts are: comet tails, mixed pixels on edges (jump edges), multi-path effects and
defused reflections.
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For the digital processing of point clouds, semantic information has to be given to
the point cloud to form semantic segments. The initial semantic segmentation is always
performed by humans. For this purpose, different tools can be used to form segments as
efficiently, reliably, precisely and correctly as possible and to assign the correct semantic
label. The efficiency, reliability, precision and correctness of semantic segmentation are
characteristics that describe the quality of a semantic point cloud. These characteristics build
the quality model, which describes how well the creation of the semantic point cloud works.
Evaluation metrics now become parameters of the quality model, which describe the point
cloud characteristics. A comparison of different segmentations is possible with the quality
parameter. Method comparisons are common in automatic semantic segmentation [9–12],
which typically uses machine learning (ML) and artificial intelligence (AI). For method
comparisons, point cloud benchmarks are used [13,14]. Semantic point cloud benchmarks
are point clouds for which a semantic ground truth (GT) is given. It is assumed that the
GT point clouds are free of semantic and geometric errors. However, unfortunately, in
most cases, a complete evaluation of the manually or semi-automatically created semantic
point cloud benchmarks is not performed. The characteristics of a semantic point cloud
that can be evaluated vary strongly among the published point clouds. In some works, the
semantic accuracy of a point cloud is evaluated completely [13] or by spot checks [14,15].
Other works evaluate only the completeness and correctness of a building model [16].
Even if some characteristics of the point cloud can be evaluated, then a comparison of the
evaluation metric is often not possible, since no uniform metrics are defined. For example,
intersection over union (IoU), F1-score, overall accuracy, recall, precision and many others
are used to validate the accuracy. The variety problem of the evaluation metric for the case
of object detection in images is well known and a tool to translate the evaluation metrics
for compression was developed [17].

To the best of our knowledge, a holistic quality model in which availability, integrity
and accuracy are represented does not exist for semantic point clouds. Such a quality
model has the potential to make the investigation of existing and upcoming GT point
cloud datasets comparable. Deviation from reality, the availability of information and
applicability to a certain purpose can be determined with our quality model for indoor
point clouds.

Fundamental for the development of the quality model is the definition of the semantic
segmentation, as well as its separation into detection and classification (Section 2.1). The
capture methods of 3D point clouds for indoor applications (Section 2.2), the existing point
cloud datasets (Section 2.3), as well as the tools for manual and semi-automatic semantic
segmentations (Section 2.4) determine the characteristics needed in the quality model. The
development of the quality model is derived from a process description (Section 3.1), a
class definition (Section 3.2) and a data model (Section 3.3). The quality characteristics
and parameters are defined and discussed in Section 3.4. The descriptive and evaluative
use of the quality model is presented and discussed based on different point clouds in
Sections 4.1 and 4.2. Finally, Section 5 summarizes the main conclusions and gives an
outlook for further development and possible use of the quality model.

2. State of the Art

The surfaces of real objects are often represented as 3D point clouds after digitiza-
tion. These 3D point clouds are an unsorted list of coordinates with additional (spectral)
information. This representation is particularly well suited for measuring systems that
use high-frequency scanning of object surfaces. Very efficient storage of single points or
point groups (lines or arrays) is thus possible. This has caused the point cloud to become a
quasi-standard for 3D object representations. The point cloud represents very efficiently,
accurately and with a high resolution the geometry of scenes and objects. Unfortunately,
with point clouds, the separation of individual objects is not possible right away. Thus, it is
a necessary next processing step to derive information or models from point clouds.
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Current research on the separation of point clouds is mainly applied to autonomous
operating systems, building modeling and computer vision (CV) tasks. Autonomous operating
systems include autonomously driving cars, where information for obstacle avoidance,
route planning and sign recognition has to be generated from the 3D point clouds [18,19].
CV and building modeling aim to enrich the point cloud with semantic information. The
enriched point clouds are the basis for decision making and the creation of semantic models.
If the point clouds represent complex scenes in which individual objects appear several
times, then instancing is often the goal. Applications include the modeling of digital twins
or the creation of city models, as well as the direct creation of simple building models based
on point clouds and prior knowledge [20–22].

Different types of acquisition systems, segmentation tools and semantic point cloud
datasets are available, forming the basis for the development of automatic point cloud
separation methods. The application of these sets the quality of a semantic point cloud. A
large amount of semantic training and benchmark point clouds are available.

2.1. Classification, Object Detection and Segmentation

The definition of classification, object detection and segmentation is not clear in the
literature, and these terms vary by research and application field. Different terms are
used for the same separation task, or the meaning of the terms may be ambiguous. Some
reviews [23,24] distinguish between classification, object detection and segmentation. Other
researchers [25] use segmentation as an all-encompassing term for various categorization
methods. To avoid misunderstandings, classification, object detection as well as semantic
and instance segmentation are briefly defined below for this work.

Classification: Classification is the assignment of a class feature (label) to one object.
This can be a single point, a point cloud, a segment of a point cloud or another geometry
type. Usually, semantic labels or IDs are assigned. The classification in the following is
understood as the assignment of one semantic label to one point cloud segment.

Object detection: In object detection, specific objects are defined based on geometric
or spectral features in the point clouds. The individual object and not the entire point cloud
is of interest, so that large parts of the point cloud are not evaluated in detail. Several
objects in a point cloud can be detected and a unique identifier is obtained. Object detection
is often used in conjunction with tracking objects in applications with multiple sub-point
clouds. The objects are usually roughly described in terms of geometric size, position and
orientation using bounding boxes. In other cases, it is not the objects as a whole that are of
interest, but only certain surfaces or shapes [26]. These are searched for in the point clouds
(shape detection).

Semantic segmentation: The semantic segmentation has the goal of extending the
features of the points by semantic labels. Semantic labels are semantic classes that usually
describe real-world objects. The difference for the classification is that the segments are
formed in this process step and a label is set for all points of the segment. A semantic
segment can consist of several geometrically independent segments. For example, a
point can belong to the class table; complementarily, it can belong to the subclass table leg.
Moreover, the results of the classification of each point can form a new segment.

Instance segmentation: An instance segment describes the geometric shape of one
object. Instances in a point cloud can be distinguished by a unique identifier. An instance is
usually enriched with semantic information. Points of the same semantic segment describe
different objects. For example, if two tables are in one point cloud, then both carry the same
semantic label. In order to distinguish the tables, instances must be created. Each table is
an instance, which usually consists of a geometrically connected point cloud segment.

The creation of a digital twin goes beyond this idea. For modeling a digital twin,
new parametrized objects have to be formed that describe the point cloud content by
generalizations such as a simple geometry.
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2.2. Captured and Synthetic Point Clouds

Almost any semantic 3D point cloud is derived from a synthetic surface model or is
captured by contactless sensors. An overview of the methods is given in Figure 2.

Synthetic 3D point clouds are mostly generated from large collections of online model
databases, such as [27]. These point clouds are generated efficiently by transforming a
surface model into a regular or random point cloud. These points lie on the surface of the
previous model or have synthetic noise added. Synthetic 3D point clouds usually represent
only a single object or a small group of objects. Usually, they are used for algorithm
development or prototype testing [28,29].

Figure 2. Capturing systems and basic data for the creation of 3D point clouds.

Any acquisition technique for capturing reality has a certain resolution, precision
and correctness, which can be found in the resulting point cloud. These point cloud
characteristics often depend on the surface of the object, the acquisition distance, the
environmental conditions and the measurement sensors.

Optical sensors are the most widely used method for mapping reality. Optical sensors
use light of different spectral bands to create a 3D point cloud of real environments with
photogrammetric methods, as described in [30]. In particular, depth imaging cameras and
LIDAR systems have been widely used in the last decade to create point cloud datasets [23–
25]. The reasons are user friendliness, mainly moderate acquisition and evaluation costs
[31,32] and the efficient capturing of larger areas. In addition to optical sensors, radar is
sometimes used to create point clouds [33,34].

Depth imaging cameras consist of one or more cameras for different spectral ranges
and an active emitter. Different principles for determining the image depths are used.
For example, the Matterport Pro 3D Camera and the Microsoft Kinect V1 use structured light
(SL) [35] and the Microsoft Kinect V2 uses the time of flight (ToF) method [36].

With the SL cameras, a monochrome near-infrared (NIR) image is captured in addition
to a true-color image (red, green, blue (RGB)). The scene to be captured is illuminated by a
projector with a known NIR pattern. The pattern consists of various bright and dark dots
that are distributed in a non-correlating manner. The projected pattern is distorted by the
geometry of the object. The depth is determined in several steps and for each pixel. First,
the horizontal displacement of the dot pattern is determined based on the object distance.
Based on the distortion, the depth of the respective pixel is then calculated in the next
step using the equation for stereo triangulation [37]. For this purpose, the distortion in the
unit of pixels, the base length (distance projector–camera) and the focal length in pixels
are used. For each pixel, the distortion is determined using a local, e.g., 9 × 9 pixel area,
which is compared with a set of reference images for different depths. The comparison
is performed using cross-correlation. An interpolation is performed between the highest
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correlation values to increase up to sub-pixel resolution [36,38]. For further information on
the SL method using the Microsoft Kinect V1 as an example, the reader is referred to [39].

Investigations of the Microsoft Kinect V1 show the precision expressed by the standard
deviation (SD) of 1 mm at 800 mm distance and of 11 mm at a distance of 3000 mm [32]. Ac-
cording to [31], the correctness (offset to the target geometry) is up to 40 mm for a captured
distance of 1600 mm (within a typical working range of 400 to 4000 mm). Effects such as
flying pixels (erroneous point measurement in a gap), color-dependent accuracy changes
and multipath overlaps at edges do not or only occur at a very low level [31]. Moreover,
for the Matterport Pro 3D Camera, which was used for online available training datasets by
[40,41], the correctness, precision and resolution have been investigated in different studies.
Here, a distance-dependent correctness of up to 80 mm for the furthest capturing distance
was also determined. After a scaling factor is eliminated, a precision of better than 10 mm
SD can be determined for the entire working range [35]. A LIDAR point cloud was used
as a reference for the mentioned study. The resolution of the Matterport Pro 3D Camera is 5
(horizontal) and 10 (vertical) points per degree [42].

The ToF technique is based on measuring the travel time of a signal from an emitter
to reflect at an object’s surface and back to a receiver [30]. Pulse modulation (PM) and
continuous-wave (CW) amplitude modulation are the most common ToF methods. In most
depth imaging cameras, such as the Microsoft Kinect V2, CW amplitude modulation is used.
In CW amplitude modulation, the object to be captured is continuously illuminated with
NIR light, whose amplitude changes periodically. Because the signal needs a certain time
between sensor and object, a phase shift occurs between the transmitted and received signal.
This phase shift is proportional to the signal propagation time. If this time is multiplied
with the known speed of light, the double distance between object and sensor system can
be determined. The phase difference is determined for several modulated frequencies
by correlating the received signal with the emitted reference frequencies. As long as the
maximum distance is smaller than 2π of the frequency, a distance can be determined as
unique [36].

The precision of the Microsoft Kinect V2, as with the Microsoft Kinect V1, depends on the
acquisition distance and varies between 1 and 3 mm SD for the typical working range of
800 to 3000 mm [31,32]. Recent depth imaging cameras, such as the Microsoft Azure Kinect,
have a precision of less than 1 mm for the same working range (static recording). Ref. [31]
observed a constant offset of -18 mm for the whole working range of the Microsoft Kinect V2.
Systematic erroneous measurements, such as flying pixels, color-dependent accuracy
changes of up to 4 mm, multipath-effects at edges of up to 30 mm and a high depen-
dence of distance measurements on temperature changes, are the disadvantages of this
measurement principle [31,36,43]. These effects can be considered or eliminated in a later
semantic segmentation.

LIDAR systems are used for static and kinematic recordings of scenes. LIDAR systems
emit a laser beam, which is projected onto a rotating mirror. Through the rotation, the beam
is shifted by a certain increment. For each increment, the vertical and horizontal directions
as well as the distance to the surface are registered. Together with the intensity value, and
eventually with further spectral values, the 3D point cloud is created. For the distance
measurements, there is the phase difference (PD) method, which can be used to realize a
higher measuring frequency, and the PM method, which is less object surface-sensitive [30].
PM LIDAR systems are preferred for kinematic scanning on mobile platforms. Kinematic
laser scanning usually involves measuring individual profiles, which are assembled as an
entire point cloud using navigation data or algorithms, as in [44]. Mobile LIDAR systems are
mainly used for outdoor applications and on robots. Medium-range LIDAR systems such as
Velodyne HDL-64E are often used for creating datasets in research projects with a precision of
20 mm [45]. High-end mobile mapping systems (MMS), such as the Riegl VMY-1 [46], allow
the surveying of large-scale areas with a point accuracy of 15 mm at 50 m distance and a
precision of 10 mm. MMS such as the Nav Vis M6 are used in many studies [47].
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The current state of the technology for indoor surveys includes terrestrial LIDAR
systems (TLS), such as the Leica RTC 360, Z+F-Imager 5016 or Faro Fokus X 3D 330. These
systems predominantly use the PD method and are used for distances shorter than 100 m.
Laboratory and field investigations show that, with these measuring systems, 3D point
clouds with precision of less than 1 mm and correctness of less than 2 mm in the near field of
up to 20 m can be reached [48]. However, these values refer to optimal study circumstances
such as matt or homogeneous surfaces. In practice, it has been shown for all LIDAR systems
that the accuracy of the point clouds varies and scanning artifacts occur. Typical scanning
artifacts are comet tails, mixed pixels on edges and multi-path effects on highly reflective
surfaces, as shown in Figure 1. Other influencing variables, such as the measurement
object, the setup and the environment, as well as the condition of the measurement systems
[49], must be taken into account for the determination of the quality of a captured point
cloud [50–52]. The resolution, the approximated accuracy, the acquisition method and
the working range are crucial parameters that must be known or estimated for the later
semantic segmentation of a point cloud.

2.3. 3D Point Cloud Datasets

In various reviews [23–25] and in web databases (e.g., https://paperswithcode.com/
datasets accessed on 30 November 2021 and https://www.semanticscholar.org/ on 30
November 2021) on point cloud datasets and methods for point cloud processing, an
overview of more than 100 publicly available point cloud datasets is given. These con-
tributions summarize information on application areas, applied sensors, environmental
circumstances or file formats. The main goal of these publications is to provide benchmarks
for arithmetic evaluations. A semantic segmentation is not available for all existing datasets.
A selection of semantic 3D point clouds is examined in more detail. The focus will be on
the initial human segmentation and its evaluation. Not all datasets could be documented
in the same level of detail.

The datasets in Table 1 were derived from synthetic surface models. All show one
object of one known class. In some datasets, the object models are subdivided so that they
can be used for semantic and instance segmentation. Since the point clouds are derived
from synthetic models, the geometry can be considered free of scanning artifacts. However,
errors can still occur during annotation and alignment.

Table 1. Synthetic datasets with year of publication, data source, separation method (classification
(Cls), semantic segmentation (SSeg) and instance segmentation (ISeg)), number of models, number of
classes and environment.

Dataset Year Data Source Separation
Method

No. of
Models

No. of
Classes

Environment

ShapeNet [27] 2015 Trimble 3D
Wareh., Yobi3D Cls, SSeg > 220, 000 3135 In-/Outdoor

ModelNet [53] 2015 Trimble 3D
Wareh., Yobi3D Cls, ISeg 151,128 660 In-/Outdoor

Shape2Motion [26] 2019
ShapeNet,

Trimble 3D
Wareh.

ISeg Cls,
SSeg

2440 45 In-/Outdoor

An evaluation metric for classifications is introduced by the ShapeNet dataset, which
describes how accurate or unique a classification is. Human annotators classify a semantic
model until the classification accuracy varies by less than 2% [27]. The ModelNet dataset
consists of 3D CAD models taken from web databases. The annotation is performed
using Amerzone Mechanical Turk (AMT). The annotators classify different models using a
web-based tool. For this, a model and a label are proposed. The annotators improve
the correctness of a label for a displayed model by yes-or-no questions. An evaluation
is conducted by the dataset designers for the ten most popular categories [53]. In the

https://paperswithcode.com/datasets
https://paperswithcode.com/datasets
https://www.semanticscholar.org/
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Shape2Motion dataset, a semantic segmentation of movable parts, such as wheels or car
doors, and their properties is performed. An evaluation of the classification is carried out
by simulating the motion directly after the segmentation and classification [26].

Complex point cloud simulation tools, such as the HELIOS++ [54] or Gazebo together
with the Robotics Operation System [55], have reached a high level of development. These
tools can be used to create point clouds from surface and CAD models that contain the
characteristics of specific sensors and system configurations.

Indoor datasets are commonly captured with depth imaging cameras. Some of the
most popular datasets are summarized in Table 2. For a large number of datasets, depth
imaging cameras are used in combination with an initial measurement unit (IMU). To-
gether with the poses from the IMU and the images, a Simultaneous Localization and
Mapping (SLAM) procedure is used to compute a multi-dimensional representation of the
captured scene. The semantic annotation occurs either in images, videos, meshes or in 3D
point clouds.

Table 2. Indoor datasets recorded by depth cameras with year of publication, sensor, sensor method,
separation method (classification (Cls), object detection (ObjD) and semantic segmentation (SSeg)),
surface area and number of classes.

Dataset Year Sensor Sensor
Method

Separation
Method

Surface area
Points

No. of
Classes

SceneNN [56] 2016 Kinect v2 ToF Cls, SSeg 7078 m²
1,450,748

19

S3DIS [40] 2016 Matterport SL Cls, SSeg 6020 m² 12
ScanNet [57] 2017 Occipial (iPad) SL ObjD, SSeg 78,595 m² 17

Matterport3D [41] 2017 Matterport SL Cls, SSeg 219,399 m² 40

ScanObjectNN [58] 2019 SceneNN,
ScanNet ToF, SL Cls, SSeg 2.971.648 15

The Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset is semantically segmented as
a 3D point cloud using the software Cloud Compare (CC) [59]. For the SceneNN, ScanNet
and Matterport3D datasets, a mesh is the segmentation base. All annotations are performed
with custom tools. The SceneNN dataset is first automatically segmented coarsely and then
finely. The graph-based segmentation algorithm of [60] is adapted and the segmentation is
afterwards improved by the operator by separating, merging and re-forming the segments.
The semantic annotation is performed by users attaching labels to the segments [56,61]. The
semantic segmentation of the ScanNet dataset is performed by automatic pre-segmentation
and a subsequent fine segmentation with classification using tools on AMT. In addition to
semantic segmentation with meshes, CAD models are fitted into a mesh and are available
as a different data format [57]. The Matterport3D dataset is semantically segmented in
two stages and verified by ten experts. In the first stage, floor plans are derived using
planes projected onto the mesh. In the second stage, the meshes of individual rooms resp.
regions are segmented according to classes and instances using ScanNet’s tool [41]. For the
ScanObjectNN dataset, the SceneNN and ScanNet meshes are the basis. A selection from this
dataset is used and improved. Segments are rebuilt and categories are harmonized. A 3D
point cloud with 1024 points is calculated out of each mesh.

The verification of depth image datasets is mainly performed by experts or the authors [41,
58]. Alternatively, the same dataset is semantically segmented by different people to
identify error annotations [56]. No information is available about the validation of the
S3DIS dataset [40].

A selection of recent semantic 3D point clouds generated with LIDAR systems is
summarized in Table 3. These datasets will be used later in the quality model. Most 3D
point clouds from LIDAR systems are for outdoor scenes and are captured with multi-
sensor systems (MSS). With MSS, the capturing of larger areas is more efficient than with
TLS. The geometric accuracy of a few centimeters, which is necessary for the majority of
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applications in geodesy and civil engineering, is maintained. In addition to the LIDAR
measurements, many MSS capture RGB images from the scanned scene to colorize the
point cloud. Furthermore, these images can be used for semantic segmentation.

The GT semantic segmentation of the datasets Paris-Lille 3D, Semantic3D, MLS1 TUM
City Campus (MSL1 TUM CC), Toronto3D and Complex Scene Point Cloud (CSPC) is conducted
completely or in parts with CC. For these datasets, the 3D point cloud format is the basis for
data processing. This is also the case for the SemanticKITTI dataset, which is semantically
segmented using a custom offline tool [13]. The Building Indoor Point Cloud (BIPC) dataset
uses the LabelMe tool [62] for the segmentation and classification of 2D images. The 2D
semantic segments are projected into 3D space after annotation. Any incorrect annotations
in the point cloud are corrected using another 3D tool [63]. Another method to semantically
segment 3D point clouds is to fit geometries, such as planes or boxes, into the point cloud.
This is applied to parts of the dataset Semantic3D [15]. All points within a certain distance
from the geometry are selected. The resulting segment is assigned to a class.

Table 3. LIDAR-recorded datasets with year of publication, sensor, sensor method, separation method
(semantic segmentation (SSeg) and instance segmentation (ISeg)), number of points, number of classes
and environment.

Dataset Year Sensor Sensor
Method

Separation
Method

No. of
Points

No. of
Classes

Environment

Paris Lille 3D [64] 2018 Velod.
HDL-32E MMS car SSeg 1,431 M 50 Outdoor

Semantic3D [15] 2017 Unknown TLS TLS SSeg 4 B 8 Outdoor

SemanticKITTI [13] 2019 Velod.
HDL-64E MMS car SSeg 4.5 B 28 Outdoor

MSL1 TUM CC
[14] 2020 Velod.

HDL-64E MMS car SSeg, ISeg 1.7M 8 Outdoor

Toronto3D [65] 2020 Teled. Opt.
Mev. MMS car SSeg 78.3 M 8 Outdoor

CSPC-Dataset [66] 2020 Velod. VLP-16 MMS backp. SSeg 68.3 M 6 Outdoor
BIPC-Dataset [63] 2021 Velod. VLP-16 MMS backp. SSeg - 30 Indoor

Closely related to the semantic segmentation is its evaluation. The Semantic3D dataset
is evaluated by class comparisons in the overlapping areas of the neighboring point clouds.
For this purpose, all points in the neighborhood of an adjacent point cloud are selected
from a given point with a search radius of 50 mm. The classes of the selected points are
compared with the class of the initial point [15]. The SemanticKITTI and the CSPC datasets
are evaluated and improved by experts in a second processing step [13,66]. For the BIPC
dataset, the segments created in 2D are evaluated on the 3D point cloud [63]. Statistical
evaluation of semantic accuracy for all datasets is not documented. No information on the
verification of semantic segmentation is available for the Paris-Lille 3D, MLS1 TUM CC and
Toronto3D datasets.

Based on the datasets from the last six years, it can be concluded that more and more
LIDAR systems are being used. Mainly LIDAR datasets of outdoor areas are created,
because of the larger range and the higher resolution of these systems. For indoors, depth
imaging cameras are still commonly used. Since many of these data come from the CV
domain, surface models or voxels are additional output formats, along with point clouds
and images. It can be seen that the datasets are not necessarily larger in terms of classes and
points, but the annotation is more specialized and improved compared to early datasets.
Earlier datasets are evaluated with new tools and optimized for specific tasks. The manual
annotation can be still identified as a bottleneck.

2.4. Point Cloud Annotation Tools

Many annotation services and tools are used for autonomous driving or driver as-
sistance. For this application, a few outdoor classes need to be (roughly) annotated. An
overview and comparison of 33 annotation tools for this area of application is presented in
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[67]. These annotation tools mainly use simple geometries, such as bounding boxes, plane
and lines, to form instances and semantic classes. The very efficient and coarse semantic
segmentation of large datasets is possible with these (semi-automatic) methods.

A number of commercial label services, such as Playment (https://playment.io/ ac-
cessed on 20 November 2021), scale.ai (https://scale.com/ accessed on 20 November 2021)
and basic.ai (https://www.basic.ai/ accessed on 20 November 2021), have also extended
their services towards 3D point clouds. The disadvantage of these services is that they
cannot be used for projects with confidential data. For applications where confidentiality
and accurate semantic segmentation are relevant, offline tools can be used. Some of these
tools are highly specialized for certain fields of application, so that only certain data can be
imported or annotated according to predefined classes or rules [13,68].

The tools for annotation are diverse in terms of user interaction. In this context,
annotation tools use virtual reality visualization [69]. Other tools use segmentation in 2D or
3D space [62,68], as well as fully manual and semi-automatic segmentation [70]. A selection
of tools is briefly presented in Table 4. The tools are distinguished by the functionality of
semantic and instance segmentation. In addition, they are categorized according to the
central functions for the segmentation.

Table 4. Selection of annotation tools (x = present). Distinguished for instance and for semantic
segmentation. Segmentation is performed in 2D or 3D with free-hand tools, automatically or with
bounding boxes or geometries.

Tool Instance Semantic Free Hand Automatic Bounding Box

Recap [71] x 3D 3D
CloudCompare [59] x x 3D 3D
SemanticKITTI [13] x x 3D

PCCT [72] x 2D

Recap [71] is a commercial software used to segment and classify 3D point clouds.
Single or multiple registered point clouds are visualized in one project as one 3D point
cloud. By rotations, displacements and zooming via mouse buttons, any perspective can
be selected. In each Recap project, individual classes can be created, according to which a
point cloud is semantically classified. For each class, an individual file is exported, which
carries the class name. For the classification, point cloud segments are formed by free-hand
selection, wrapping with simple geometries or fitting of layers.

CloudCompare [59] is one of the most commonly used open-source tools for point
cloud processing and analysis, which can be used to segment and classify point clouds.
Different methods to create annotations are offered as plugins. Moreover, Semantic3D and
MSL1 TUM CC use the available functions in the main program for efficient semantic
segmentation. The point cloud is displayed in 3D and navigation with mouse buttons is
possible. The workflow uses the geometric and spectral point features to segment the point
cloud in stages. After pre-segmentation, point cloud segments are further subdivided by
free-hand selection. Individual segments can be combined into one semantic class, which is
exported as a single file.

The SemanticKITTI annotation tool [13] was initially developed for the classification
of kinematic 3D point clouds from a Velodyne LIDAR system. In addition to the point
clouds, navigation and synchronization data are required for this tool. The processing of all
Velodyne raw data is performed by this tool. Individual scans are registered at the beginning,
resulting in a continuous acquisition sequence. For segmentation and classification, the
point cloud is divided into 100× 100 m tiles. The segmentation is carried out with a free-
hand lasso and a point marking tool. Predefined or custom classes can be used. The original
point cloud files are not modified with this tool. For each point, a label file is created that
contains the semantic information and instances of each point.

The point cloud classification tool (PCCT) [72] is a tool for the semantic segmentation
of (primarily) static panoramic scans. Point clouds are projected into 2D space for classi-

https://playment.io/
https://scale.com/
https://www.basic.ai/
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fication. This is achieved by cutting the point cloud horizontally or vertically into slices.
Alternatively, vertical cylinders in different distances are used as a projection plan. The seg-
mentation is performed in the 2D plane using a pixel-based regional growing method [60].
Via a browser application, users can assign one of 20 predefined indoor and outdoor classes
to the displayed segments. The PCCT is multi-user-capable. For each semantic class, a
point cloud is provided.

The presented tools show the range of functions for the segmentation of the point
clouds. As more flexibility is given to the user for segmentation, more details of the
segments can be formed. Tools such as the PCCT form the segments according to fixed
rules. Here, different results can only be achieved by the classification of different users.
With all other tools, classification and segmentation performance are not separable.

3. Quality Model for Semantic Point Clouds

Many published datasets and tools are indicated as high-quality. This statement is true
for the application for which these datasets are intended. The term "high-end" may refer
to the quality of the acquisition, the reconstruction of a mesh, the semantic segmentation
or any other aspect. However, in the rarest cases, all possible aspects are of high quality.
In order to describe the quality of the datasets, the first step is to define the main quality
characteristics. Unfortunately, a quality model cannot be created for all conceivable cases.
This would be too complex and no longer understandable, and the focus should therefore
be on one aspect per quality model. This aspect will be the focus of semantic segmentation
for our quality model. The measurement methods, datasets and annotation tools described
in Section 2 are the basis for the quality model’s development.

One approach to describe the quality is to use the ISO 9000:2015 (3.6.2) [73] and
DIN 55350:2020 [74]. Here, quality is defined as the “degree to which a set of inherent
characteristics of an object fulfills requirements” [73]. The point cloud and the segmentation
processes are the subjects of investigation, whose quality characteristics should be fulfilled
to a certain degree. The characteristics can be expressed by quality parameters. Thus,
the quality is a simple comparison of the actual and required quality parameter values
of an object. ISO 9000:2015 also defines quality for the process of creation, so that process
characteristics are required as well. Besides the process (segmentation) characteristic, there
are characteristics that are affected by previous steps, such as capturing, and this influences
the final object characteristics (semantic point cloud). This interaction is shown in Figure
3. The prior characteristics are derived from the acquisition method and must meet a
minimum standard. Only if the minimum standard is fulfilled can the actual processing
step be performed. The unprocessed point cloud must have a minimum resolution and
fulfill a certain geometric level of accuracy (LoA). A suitable scheme to define the geometric
LoA is provided by DIN18710:2010 [75]. The prior and the process characteristics influence
the new object’s characteristics.

Figure 3. Interaction of the different characteristic types and the requirement to determine quality.

The way in which a semantic segmentation is performed can be expressed in the
object’s quality parameters. For example, erroneous points should be determined by the
semantic knowledge of the annotator and should be assigned to an appropriate class. Thus,
additional knowledge is introduced into the application. The quality of this knowledge is
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an example of a process-dependent influence on the quality. Aspects such as how a process
is carried out and how it is evaluated must be expressed by characteristics. For the semantic
segmentation, the degree of correctness and repetition accuracy can be determined if either
a reference is available (correctness) or the process is performed n times independently
(repetition accuracy). For the repetition accuracy, the number of repetitions and the type of
process must be defined. This is an additional aspect that should be covered by a quality
model. For the creation of a quality model that takes into account the above-mentioned
aspects, the following basic requirements are necessary:

• An application must be defined;
• A semantic segmentation process must be described;
• An abstract model of the semantic must be created;
• A data model must be created;
• Measured or synthetic point clouds must be available;
• Characteristics and parameters must be defined;
• Target values for the quality parameters must be defined.

These seven constraints set the framework for the development of the quality model.
The applied case is the creation of a semantic segmented point cloud for the modeling of
indoor components and furniture. One application for which such a scenario is necessary
is the creation of a Building Information Model (BIM) from a point cloud (Scan-to-BIM).
The semantic segmentation of a point cloud for this is a complex and an increasingly
demanding application in geodesy and civil engineering [76]. The differentiation of clutter
or scanning artifacts from filigree classes, such as tables or chairs, is a problem that cannot
be adequately solved by current automatic processes.

3.1. Classification Process

A process description outlines the individual steps that are to be implemented.
Thereby, goals (tasks), data, definitions, tools and framework conditions are addressed.
Point clouds belong to the group of geodata, so that a process description based on the
model for geodata [77] is chosen. The point cloud semantic segmentation process is shown
in Figure 4. It consists of the object in the real world, two models (c and d), the data (b) and
an action statement describing the interaction.

Figure 4. Process for semantic point cloud segmentation.

Semantic segmentation is an extension of point cloud features that can be described
as a process. An abstract model (d) of the reality defines semantic classes, which describe
which objects are represented and in which level of detail. The abstract model is always
a generalization of the real world (a), which is captured by measurement methods as
measured values (b). The measured values are the unclassified point clouds or individual
points and consist of the geometric and spectral features. The data model (c) defines
the file format in which the measured values are available and into which format they
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are transformed for the abstract model (by semantic segmentation). The data model for
semantic point cloud segmentation specifies that any point has a new semantic feature and
each semantic class is a segment.

3.2. Abstract Model

The abstract model for a semantic segmentation describes which semantic classes are
represented and defines the class content. The definition of the abstract model should
correspond to the application for which the point cloud is used. When defining the classes,
two variants are used. Variant 1 is to determine exactly those classes that are needed.
Variant 2 is a hierarchical class definition (CD). For this, super-classes are formed stepwise,
so that object parts can be distinguished. Variant 1 leads to very small semantic CD,
such as that required for autonomous driving [78]. Variant 2 leads to a CD with more
than 50 classes [64]. A very small number of classes has the advantage that the semantic
segmentation can be performed faster and the classes can be more precisely defined. A
distinction between trees and traffic signs is easy in point clouds. If it is necessary to
distinguish between beech and oak trees, the definition is much more complex. It should
be done in multiple steps and with additional training of human or algorithmic annotators.
In such a case, the definition of the abstract model should be structured hierarchically, as
shown in Figure 5. A simple structure in two stages is applied to the SemanticKITTI dataset.
There, the first hierarchical level contains the class soil, which is distinguished in the second
level by roads, sidewalks, parking lots and other surfaces [13]. This structure makes the
semantic segmentation more explicit and simpler.

Figure 5. Hierarchical abstract model for the definition of semantic classes. The application is the
classification of indoor point clouds.

The optimal abstract model contains all possible classes. This is not possible due to the
wide range of applications for point clouds. In Figure 5, a two-level model is shown, where
only classes (or objects) are considered that are in a building. It would be too specific for
modeling an entire building, since no external objects are included. In turn, for modeling
parts of a building, this model is too general, because, in such a model, furniture and
disturbances are not included. The advantage of a detailed model is that classes that are
not needed are simply ignored. This favors a general model. A possible way to build a
universal model would be to refer to the linguistic model WordNet [79], as it is already
the basis for ShapeNet [27] as well as others. All nouns are attributed to the word entity.
Starting from the entity, top-level nouns are formed, which can be distinguished in any
direction. An application-independent hierarchic abstract model can thus be built. WordNet
also has the advantage that cross-connections between hierarchical classes are possible and
it has a directing effect for the creation of specific abstract models.
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For building models from point clouds, an orientation to existing standards, such as
the Industry Foundation Classes (IFC) [80], as well as national [81,82] and international
[83] guidelines for the Level of Development (LoD), would be possible and helpful. Unfor-
tunately, these standards and guidelines do not yet offer an exact and detailed description
of what a semantic class has to look like, but they regulate in which level which contents
have to be presented. Moreover, it is still necessary to create an explicit CD. This is the basis
for the work of the annotators. The following points should be considered when defining
the abstract model:

• A general semantic model should provide the structure for the abstract model;
• The classes of the abstract model should be structured hierarchically, so that, in one

definition level, only a number of around five classes exists. The next lower-definition
level should contain only points of one higher-level class;

• For each level, all points are classified;
• The classification is an iterative process;
• The level of detail is mainly based on the application and the existing technical

functions of the tool.

In addition to class names and class structures, the content of the classes must be
defined and represented in such a way that it is understood by the annotator without doubt.
The following points for the content definition should be considered:

• The semantic definition must be written in the language of the annotator in order to
avoid linguistic misunderstandings, such as translation errors.

• Objects must be described unambiguously by describing their shape, size or color. It
is to be considered that objects of the same semantic class are represented differently
in the point clouds. If objects appear in different designs, then this is to be described
adequately. A definition of objects can be created, as described in [84].

• Special and unknown objects are to be illustrated by examples, so that the idea of the
annotator is identical with what is being represented.

• A definition consists of a written and a figurative description.
• Topological relations should be represented to facilitate the decision in case of difficult-

to-recognize object appearances. For example, furniture could be defined as standing
on the floor or walls running perpendicular to the floor.

• Geometric boundaries should be clearly defined, as this is the only way to achieve
the required geometric accuracy. Using the class door as an example, the following
definition is possible: A door ends at the frame, at the seal or at the wall. Erroneous points
should be separated completely from the objects.

The abstract model setup must be communicated to the annotators in a suitable format
(training) and checked on a regular basis. In [13], this is implemented by training the
annotators on the data previously and providing feedback on the performance. This is
possible since each point is semantically segmented by at least two annotators. Feedback to
annotators can be given directly by moving or highlighting the segment in the tool [26]. In
addition, videos, teaching tools and abstract models are common and useful [67].

3.3. Data Model

The data model is defined differently in the literature. Occasionally, the abstract model
is also called the data model. In the context of this paper, the definition by [77] is applied,
who sets the data model equal to the physical model. The data model defines which file
format is to be used for the measured and the semantic point cloud. In addition, it is
clarified how the objects are organized in this file format and which attributes an object can
have.

The data model consists of two layers. One is the unclassified point cloud and the
other is the classified point cloud. For the purely semantic segmentation of single point
clouds, a very simple data model can be chosen. It provides the point cloud as an unsorted
list of points with their geometric and spectral attributes. For the unclassified point cloud,
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these are typically 3D positions (x, y and z coordinates), color values as RGB values and
reflected intensity as values. If more attributes are needed for the point feature description,
many applications use a database. Besides the structure and file format, the data type of the
feature has to be defined. This is usually done in the file format description. A data model
for the semantic segmentation must be able to represent semantic features in addition to
geometric and spectral features.

3.4. Quality Model

The quality model describes the characteristics and suitability of a semantic segmented
point cloud for a certain application. Process- and object-specific quality characteristics
from the quality domains of reliability, integrity (usefulness) and accuracy are used as the
basis for the evaluation [85]. The quality characteristics are chosen in such a way that they
are applicable for manual semantic segmentations, if these are performed according to the
process in Section 3.1. The three quality areas are described by seven quality characteristics
(Figure 6). Each quality characteristic is expressed by quality parameters.

Figure 6. Quality model for 3D point clouds. Concept idea inspired by [85].

The model shown in Figure 6, which is further described below, has its roots in the idea
of [85]. It is accepted in many disciplines and is used for various applications. To the best of
our knowledge, this model idea has not yet been applied to the semantic segmentation of
3D point clouds. Our central contribution in terms of the quality model is the compilation
and selection of characteristics and parameters to make a semantic segmentation of a point
cloud describable and evaluable. The development of the quality model has the goal of
questioning and improving the quality of the datasets. Only with all-round high-quality
datasets is it possible to develop reliable and accurate algorithms and tools [86]. In addition,
the practical use of point clouds for reality capturing should be considered by the model
characteristics.

3.4.1. Quality Characteristics

Quality characteristics are selected characteristics from the total of all characteristics
that a semantic point cloud has. This characteristic selection relates to the requirements
of a certain application in which the object is to be used [74]. When applying a quality
model to a semantically segmented point cloud, the quality of the segmentation and
classification, as well as the quality of the raw point cloud, is primarily expressed by the
quality characteristics.

The availability describes which data and information are available to the annotator or
the algorithm prior to the task. Parameters for this characteristic express which information
is known about the point cloud. This relates to point clouds, task definitions and processes.
A quality parameter expresses whether the information is available in a specific form and
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in the required quantity. It is the basis of all further characteristics and must be fulfilled in
order to carry out a semantic segmentation and its evaluation.

The process reliability describes how the process was carried out. This characteristic
can be determined by performing the semantic segmentation several times. After each
segmentation, accuracy parameters are determined, which can be used as terminating
criteria, as in [27]. Other variants require that a certain number of iterations must be fulfilled
in order to determine a quality parameter. This variant is preferred for the description of the
process quality, since it maps the variance of the metric and parameter values. Using this,
the achievable performance can be determined by a process setting. Due to the complexity
of these tasks, the average repetition factor to determine this parameter is usually very
small, as shown in [13] factor 2, in [57] factor 2.3 and in [68] factor 4.

Completeness gives the degree to which the necessary information, determinations
and execution of the work steps for the classification are present.

Consistency is the degree to which the measured values match the data model. Here,
it is necessary to check whether the point cloud features are present and whether they take
the corresponding range of values.

For the semantic segmentation, correctness, precision, and semantic accuracy are
different characteristics that have different underlying causes and different effects on the
usability of the point cloud. Moreover, these characteristics are often defined and summa-
rized in different ways. For example, if only the performance of a semantic segmentation
method is to be considered, correctness and precision are often combined with accuracy.
The accuracy is commonly given when ML and AI algorithms are used. In many semantic
segmentation applications, this defined characteristic is expressed by the parameter IoU,
also known as the Jaccard index, or the F1 score, also known as Dice’s index. These pa-
rameters are the weighted averages of both characteristics. It is advantageous to apply
one combined characteristic of accuracy and its meaningful parameter, e.g., IoU, for better
comparison. Other applications use more than one parameter to describe the different
perspectives of accuracy for a more distinguished and cause-oriented view.

For the analysis of the semantic segmentation process, two types of errors are possible:
a point is erroneously assigned to a class to which it does not belong or a true point of
this class is not recognized as member of it. These two errors are known as first- and
second-type errors from statistical tests [87]. The segmentation precision can be considered
an error of the first type. This error specifies how well an annotator or an algorithm can
distinguish classes—for example, how accurately class boundaries can be drawn. The
segmentation correctness can also be considered a second-type error. This error describes
how well a class can be recognized, e.g., how unique the point features are. Thus, the
best features are used to obtain a class of homogenous points. This type of error can be of
importance depending on the analysis in question. For example, it may be less critical if
not all points of a large class (such as floor) are detected during semantic segmentation, as
long as these points are not classified or assigned to a class (e.g., scanning artifacts) that is
not further used. More problematic are additional points (e.g., from scanning artifacts) that
are assigned to the class floor, because the point cloud represents incorrect semantics.

Thus far, correctness and precision based on the number of points describe the quality
of a semantic point cloud. However, these characteristics do not give any information
about the geometry of the semantic classes and its geometric size changes due to errors. In
order to be able to evaluate the geometric aspect as well, the characteristics of correctness
and precision have to be extended. Geometric correctness can be determined if a (dense)
reference point cloud or surface model is available. The correctness can be determined for
each individual point. This information can no longer be evaluated for several hundred
thousand points. The correctness of a point cloud can be determined by the mean, average
deviation or standard deviation of all points in a segment. In general, correctness is the
degree to which the abstract model matches the achieved semantic segmentation result.
This can be divided into user-dependent and software-dependent correctness. The user-
dependent correctness is based on the understanding of the CD and the usage of the
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software by the user. The software-dependent correctness refers to errors in the software
(e.g., incorrect parameters or programming). However, a separation is only possible if the
semantic segmentation is carried out several times under controllable conditions.

The quality characteristic of precision is described by the parameters for the semantic
and geometric precision. The term "precision" should be defined clearly, because there
are different definitions in use. In the geodetic context, precision is often understood
as repeatability [87]. The deviation of the results of an experiment to its mean value
after n repetitions is determined. For the semantic segmentation process, this definition
would lead to the determination of how much the individual segmentations deviate from
each other. This shall not be the main subject of the investigation, since a deviation to
the mean of several segmentations usually has no relevance for a practical application.
Nevertheless, it makes sense to repeat a segmentation and to calculate a joint point cloud
from these repetitions in order to increase the reliability, as mentioned above. Usually,
deviation from a reference point cloud is required. This can be expressed by the ratio of
true points to all points assigned to a class [88]. This term describes how much of the
segmentation is "correct" and is commonly used in ML. Mostly, the inverse proportion is of
major importance for the development of an application, because this describes what does
not work yet [89]. This proportion is then the subject of analysis. In addition to the use of
the number of points, it is advantageous for 3D models and point clouds to also use the
areal ratios as well as geometric parameters.

The semantic accuracy describes how well the semantic label fits to a semantic point
cloud segment. The difficulty is in defining what is semantically correct, which attributes
are described and which depth of description and distinction must be applied. For the
definition of what is semantically correct, no universally valid definition can be found. An
attempt to standardize this problem was discussed in Section 3.2. For the type of attribute
description, the IFC standard [80] can be used. This is designed for the development and
not for the documentation. This can be explained using the example with the tables. The
table itself forms a semantic class. These classes can be differentiated during the next
stage into a frame and table top. As far as we know, there is no standardized scheme
for this definition, so that an individual CD as shown in Appendix A must be developed
and applied.

3.4.2. Quality Parameters

The seven quality characteristics used for semantic segmentation can be described by
quality parameters. These parameters describe the property that an object has for a certain
characteristics. For instance, these parameters are the presence of a certain data format
as a qualitative parameter or the number of points (NoP) as a quantitative parameter. This
will be demonstrated in an example in Section 4.1. The evaluation of point clouds by the
quality model will be covered in Section 4.2. For the evaluation, the quality parameters
must be determined and threshold values must be set. Furthermore, the parameters for
the semantic segmentation can be distinguished into parameters with object relation (O),
concerning the point cloud, and process relation (P), such as the time required for an action
or the use of a certain CD. All parameters for the semantic segmentation task are briefly
explained and shown in Tables 5–11. The parameters are numbered in the text and refer to
the corresponding table entry with P#.# for a clear understanding.

Quality parameters for characteristic availability describe which information must
be available about the process and the point cloud for a description and an evaluation
(Table 5). These parameters are the abstract model expressed by the CD (P1.1), the size of
the point cloud expressed by the NoP (P1.2) and the area size (P1.3), as well as the object
features (e.g., x-, y-, z-coordinates) before (P1.4) and after (P1.5) the semantic segmentation.
Furthermore, the file format output (P1.6) and use restrictions (P1.7) must be investigated. The
use restrictions refer to the question of whether a dataset can be used for an application or
processing step. Further restrictions are that certain datasets may not be used for training.
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The parameter P1.7 ensures an objective evaluation of the datasets. Thus, it is considered
that any dataset has a certain bias, which is learned by ML algorithms [86].

Table 5. Parameters for availability.

P. no. Parameter Name Unit Range P/O

P1 Availability

P1.1 CD exists yes/no P
P1.2 Number of points >0 O
P1.3 Area size m2 >0 O
P1.4 Object charac. in yes/no O
P1.5 Object charac. out. yes/no O
P1.6 File format out e.g., pts O
P1.7 Use restriction yes/no O

Table 6. Parameters for process reliability.

P. no. Parameter Name Unit Range P/O

P2 Reliability of Process

P2.1 Number of
segmentations >1 P

P2.2 Average time required % 0–100 P

The parameters number of segmentations (NoS) (P2.1) and average time required (ATR)
(P2.2) describe the reliability of the process (Table 6). If a point cloud is independently
semantically segmented more than once, the reliability can be measured. The more fre-
quently a process is carried out, the more reliable are the correctness and accuracy. This is
the theoretical assumption. The parameter NoS describes how often a segmentation was
performed with a certain method. It is the basis for the calculation of other parameters
and can also be used as a quality measure. The ATR can be used to compare different
semantic segmentation methods. The ATR is calculated for each method. The average time
of all annotators with any method is of interest. The maximum segmentation time of all
methods is the value ∆tmax. The ATR is calculated from Equation (1), where i stands for the
respective segmentation. ∆ti is therefore the time needed for the segmentation i. Moreover,
the user-dependent segmentation time can be analyzed if all segmentations performed
with a certain tool are compared. The parameter ATR describes the process and allows the
planning of the working time.

ATR =
∑imax

i=1 ‖
∆ti∗100
∆tmax

‖
i

(1)

Table 7. Parameters for completeness.

P. no. Parameter Name Unit Range P/O

P3 Completeness

P3.1 Semantic segmentation rate % 0–100 O
P3.2 Number of classes >0 O

The completeness of a semantically segmented point cloud (Table 7) is described by
the semantic segmentation rate (SSR) (P3.1) and number of classes (NoC) (P3.2). The parameter
SSR describes how many points have been assigned to any class. The SSR is the quotient of
the number of classified points (Pcls) and all points (Pall) (Equation (2)).

SSR =
Pcls
Pall
∗ 100 (2)

A point cloud that is only segmented in parts often occurs in the application phase. The
semantically segmented parts of the point cloud are used for training or for the evaluation
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of an algorithm. The rest of the data are then semantically segmented using the automatic
method. The parameter NoC describes how many classes are available for a certain dataset.

Table 8. Parameters for consistency.

P. no. Parameter Name Unit Range P/O

P4 Consistency

P4.1 Geometric Consistency (GC) of x, y, z m ≥0 O
P4.2 Spectral Consistency of RGB (SCRGB) 0–255 O
P4.3 Spectral Consistency of I (SCI) 0–255 O
P4.4 Class equality 0–1 O

The consistency of the data (Table 8) is determined by the units and the scaling
ranges of the object features (P4.1 to P4.3). Each object parameter directly relates to a
quality parameter. The determination can be achieved automatically or taken from the
data (e.g., using a text editor). Furthermore, the consistency is described by the measure
of the class equality (CE) (P4.4). This is calculated from the target value of a balanced class
distribution (Ctarget). All classes should be represented by the same amount of points, so
that, later, an ML procedure has optimal learning conditions. However, this requirement is
never given with real datasets, because classes such as walls and floors are overrepresented
by points. The proportion of points of a class in relation to the total NoP is expressed
by a ratio in the value range 0–1. The actual distributions are then calculated (Cact). The
differences between the target and actual values for each class are determined. The sum
of the absolute differences divided by two is a measure of balance (Equation (3)), where 0
represents a balanced ratio and 1 an unbalanced ratio.

CE =
∑k

i=1 ‖(Ctarget − Cact)‖
2

(3)

Table 9. Parameters for correctness.

P. no. Parameter Unit Range P/O

P5 Correctness

P5.1 Recall of points class x % 0–100 O
P5.2 Recall of area class x % 0–100 O

The correctness (Table 9) of the semantic segmentation can be described by the param-
eter recall of points (RP) (P5.1). The PR is the rate between correctly assigned true positive
(TP) points and the NoP in the abstract model for a certain class (TP and false negative
(FN) points) (Figure 7). It is expressed by Equation (4). This parameter depends on the
size differences of the class in the abstract model. If the classes differ greatly, as can be
evaluated by the parameter CE, a comparison of different classes may lose significance. For
a small set, even a few FN points can significantly lower the parameter. This problem is
discussed in [89] and described by a new parameter for informativeness. For applications
in the context of point clouds, this parameter is unsuitable due to the irregular distribution
of the points.

RP =
TP

TP + FN
(4)

RA =
TParea

TParea + FNarea
(5)

To avoid the point cloud density problem, the representation in the form of areas can
be used. Here, the areas are calculated for the point cloud segments. Instead of the NoP,
the TP area size can be inserted into Equation (4). The result is the recall of area (RA) in
Equation (5). The correctness is now described by the area that is covered by TP points
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divided by the area of all reference points of this class. As an intermediate step to calculate
these parameters, the areas that are correctly and incorrectly assigned are calculated. In the
case of incorrect assignments, the distinction between FN and FP areas is of interest. The
parameter RA expresses the influence of FN surfaces. The influence of the false positive
(FP) areas is described in the following, among others, by the precision of area (PA). The
FN and FP points are visualized in Figure 8. This visualization allows an analysis of the
semantic segmentation, e.g., the assignment of scanning artifacts to a class or the occurrence
of classification gaps can be determined.

Figure 7. Schematic representation of the confusion matrix for the floor class with entries for TP, FN,
FP and true negative (TN) points.

Table 10. Parameters for precision.

P. no. Parameter Unit Range P/O

P6 Precision

P6.1 Precision class x % 0–100 O
P6.2 Precision area class x % 0–100 O
P6.3 MD of FP pts. class x mm ≥0 O
P6.4 SD of FP pts. class x mm ≥0 O

The precision is expressed by the precision of points (PP) (P6.1) and the PA (P6.2). The
PP is the ratio of TP points of a class to all points assigned by the segmentation of this class
(Equation (6)). The assigned points could also be expressed as the sum of the TP and the
FN points (Figure 7).

PP =
TP

TP + FP
(6)

PA =
TParea

TParea + FParea
(7)

The consideration of the characteristic precision based on areas that are spanned by
the point cloud segments can be advantageous when using the point cloud as a model. For
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a geometric expression, Equation (7) can be used to determine PA. The visualization of the
FP points is given in Figure 8, which is a good starting point for the analysis process.

Figure 8. Segmented point cloud of the class table colored by TP, FP and FN points.

The geometric part of the precision can also be described by the parameters maximum deviation
(MD) of FP points (P6.3) and SD of FP points (P6.4). The MD of FP and SD of FP points rely on the
FP points of the semantic segmentation. They are the points that change the geometry of
the semantic class, as shown in Figure 9. For this consideration, only classes with semantic
objects are considered, since, normally, the goal of semantic segmentation is to extract
objects and to remove scanning artifacts. The geometric deviation of the point cloud
segment is of major importance for creating a model. If the point cloud is used to create
a mesh, then the MD, which is the enlargement of the class segment, is decisive. This
is expressed by the furthest FP point. For modeling on the basis of point clouds or the
representation of the recorded objects by symbols, as is the case at the LoD 100 for a BIM
application [90], the parameter SD of FP points is more meaningful.

The semantic accuracy (Table 11) is described by parameters that can be expressed by
yes-or-no questions. Documentation of the process and visual inspections can be used to
determine the CD applied parameter (P7.1) and whether it is structured hierarchically (P7.2).
The parameter CD applied can be answered with yes if the CD is used and at least one class
is segmented. The parameter Hierarchical CD can be confirmed if the used CD has several
levels (at least two) and so different semantic detailing levels are available. The query
whose class was finally used is expressed by the parameter P7.3. If the class is present and
semantically correct, the parameter is answered with yes.

Table 11. Parameters for semantic accuracy.

P no. Parameter Unit Range P/O

P7 Semantic Accuracy

P7.1 CD applied yes/no P
P7.2 Hierarchical CD yes/no O
P7.3 class x used yes/no O

3.4.3. Descriptive and Evaluative Function

A quality model such as the one above can have two functions. One is descriptive and
the other is evaluative, as described by ISO 9000 (2015) [73].
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For the descriptive use, the aim is to display and analyze how individual parameters
(defined as significant by the model) vary when influences change. Different settings, tools
or work processes for a semantic segmentation can be compared. Quality parameters are
not transformed into another representation or range for this purpose. The main influencing
characteristics for the development of a semantic segmentation process are considered and
this is one main application of the quality model. More precisely, the influence of the initial
(manual) segmentation of a point cloud is investigated. Thus, the model also provides
the basis for describing an automatic (e.g., ML-based) semantic segmentation process, as
considered in many works, such as [91–94].

Figure 9. Calculation of the SD of FP points σ on the example of a chair. Green TP points are
within the object boundaries. The red FP points were added to the chair class but actually belong to
another class.

For the evaluative use, the suitability of a point cloud for an application should be
assessed. It should be derived from the parameters whether a point cloud in combination
with the segmentation method is suitable for a certain application or not. For this purpose,
the calculated parameters of the quality model are crucial. An example application would
be to use a semantic point cloud to determine the wall surface area, to calculate the
renovation costs, based on the as-built wall surface area. For this task, correct semantic
segmentation is crucial. The point cloud should be evaluated by applying a quality model
in advance. The quality of the individual parameters must be defined by limit or target
values. These values are derived from the application. The evaluation steps are defined
according to the scheme shown in Figure 10.

After the limit or target values have been defined, they are compared with the de-
termined actual values. This adjustment can be represented in an automatic procedure
by one Boolean value. In the simplest overall evaluation method, all parameters must
be true for sufficient quality. The weighting of the parameters for special cases prevents
excessively rigorous filtering. The central issue is the limit or target values, which are not
always known and have to be estimated based on experience.

Figure 10. Evaluation of the suitability of a point cloud with the quality model.
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4. Applying the Quality Model

The benefit of the quality model as a basis for describing and evaluating the properties
of a semantic 3D point cloud will now be explained by some examples. The performance
of the quality model is shown on the basis of two of our own indoor point clouds and other
publicly available point cloud datasets. Our own point clouds are shown in Figure 11 and
were semantically segmented independently, multiple times, using two different semantic
segmentation tools. The quality of the point cloud and the semantic segmentation process
are described by the quality parameters. The evaluation performance of the quality model
is considered for our own and the publicly available datasets. The applications of interest
are the analysis of:

• Semantic point cloud as a model;
• Semantic point cloud as a modeling basis;
• Semantic point cloud as training data.

Target values are defined in each case. The geometric, semantic and formal character-
istics of the point cloud are processed and used for an application. However, these point
cloud characteristics have a degree of uncertainty if the semantic point cloud was created
by capturing a real object and performing a semantic segmentation. The possible errors
and the quantitative uncertainty of the sensors are described in Section 2.2. It can be stated
that the usually resulting effects of currently available and used sensors do not significantly
affect the indoor modeling applications. Our own point clouds were recorded with the
Z+F Imager 5016 using a resolution of 6 mm at 10 m. The quality was set to high to reduce
the noise while still having a moderate (in practice useful) recording time of 6 minutes [95].
The geometric correctness of this point cloud on a flat surface can be estimated as 2 mm
to 3 mm according to the investigation of [48], using the DVW-test-field-method according
to [96]. This accuracy varies due to the different surface shapes and other object properties.
In addition, scanning artifacts occur, as shown in Figure 1 and described in Section 2.2. The
focus is now on the semantic segmentation, where errors are caused by tool settings and
the annotator.

Figure 11. Points to be examined without semantic segmentation. Objects of the chair, table and floor
classes, as well as scanning artifacts, are shown.

The point clouds in Figure 11 are very challenging for semantic segmentation. A
CD was developed and applied in order to investigate segmentation problems. This CD
consists of five classes and is partly hierarchically structured. The classes of the first
level are floor, furniture and scanning artifacts. In the second level, the furniture class
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is divided into table and chair. Tables and chairs are two object classes that are spatially
and geometrically similar, which makes segmentation difficult. The points of these two
classes also have similar spectral properties. Finally, the object surfaces are highly reflective
and the geometric shape is susceptible to the occurrence of scanning artifacts. The floor
class was integrated to simulate scenic segmentation with foreground and background
objects. The separation of scanning artifacts is a complex task, even for humans, where
subjective decisions must be made and learned. The test point cloud does not represent any
real particular task, but is intended to demonstrate achievable performance on challenging
cases. The point clouds show recordings of a laboratory (Lab) and a seminar room (Room),
which were automatically segmented with the PCCT using the spectral parameters color
and intensity. The point clouds were processed by up to nine different annotators. These
are the test point clouds Lab RGB, Lab I as well as Room RGB and Room I. Furthermore, the
point clouds Lab and Room were processed with Recap, in which the annotators determine
the segments by themselves. These are the datasets Lab R and Room R.

4.1. Quality Model to Describe Semantic Point Clouds

The description of a semantic point cloud and a segmentation process is always based
on a selection of characteristics, with the goal of being able to answer a specific research or
practical question. The research question for the following consideration is:

What influence do the segmentation tool and different annotations have on the quality
of the semantic segmented point cloud?

The motivation for this question is to develop an efficient, effective and traceable
segmentation process. Different experimental settings and development stages shall be
described, so that their influences on the process can be analyzed. This should also result
in more convenient point clouds for models and training data, as well as improved process
and algorithm understanding. All characteristics of the model are described in detail in the
following.

4.1.1. Reliability Characteristics

The reliability of a point cloud can be described mainly by formal information or
metadata, as listed in Table 12. The creation and use of a CD, which regulates which objects
will be segmented and classified, is of primary importance. A comparison of semantic
segmentation is only possible if the CD is kept constant. The parameter CD exists must be
available to utilize all other semantic-based descriptions. The accuracy of the implementa-
tion of the CD is described by the parameters of semantic accuracy in Section 4.1.3. For the
test point clouds, a CD exists, which describes the semantic classes of floor, furniture, chair
and table, and scanning artifacts.

The size of the point cloud is another formal parameter, which is described by the
NoP and the surface area. The NoP that can be processed by segmentation tools varies
widely. Sometimes, the point cloud is automatically reduced to a maximum NoP. This
filtering changes the point cloud structure and, depending on the application, can result in
unwanted effects, such as the loss of surface details. The Lab and Room point clouds consist
of 2.7 and 14.5 million points. The surface area of the objects covered by points is 51 m2 and
61 m2 for the Lab and the Room point clouds, respectively. Based on these two parameters,
an additional useful parameter, the average point cloud density, can be calculated. The
average point cloud density can be used as the resolution of the point cloud. This varies
with the distance to the recording device, and this shows that the parameters of the quality
model are chosen to be fundamental, so that optional parameter extensions are possible.

The segmentation tools require certain point cloud features to enable processing. Spec-
tral features are often used to perform an automatic segmentation or to color the point
for better visual differentiation. Most point clouds have geometric features (coordinates)
and spectral features for color and intensity. In addition to these features, normals (N) are
calculated to create perspective images or orient the single point within their neighborhood,
as done with the PCCT. These features can enrich the point cloud after the semantic seg-
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mentation. The exported feature can change during the semantic segmentation. The point
clouds in the example are only extended by the feature semantic class. This is expressed
by exporting each class as a single pts file. Closely related to the feature parameters of
the point cloud is the file format that is available for import and export for software. The
pts format is supported by all tools being used. This file format corresponds to the data
model of Section 3.3. The used data model states that all segments should be available as
an individual file. If the data model requires that the semantics of the point cloud have to
be included in one file, then a different export file format must be used. This file format
must have one additional space for the semantic label. The point clouds Lab and Room are
currently not licensed and are only used internally, so there is no restriction on usage (P1.7).
This means that the use of the datasets cannot be traced.

Table 12. Calculated and determined values for the quality parameters of availability and reliability
of process. Object parameters with * are calculated in the segmentation software.

P. no. Parameter Name Lab RGB Lab I Lab R Room RGB Room I Room R

P1 Availability

P1.1 CD exists yes yes yes yes yes yes
P1.2 NoP 2,790,352 points 14,526,242 points
P1.3 Area size 51 m2 61 m2

P1.4 Object char. in. x, y, z, I, R, G, B, xN*, yN*, zN*
P1.5 Object char. out. x, y, z, I, R, G, B, Class
P1.6 File format out. pts/csv pts/csv pts pts/csv pts /csv pts
P1.7 Use restriction no no no no no no

P2 Reliability of Process

P2.1 NoS 7 7 9 8 8 8
P2.2 ATR 13% 13% 55% 38% 45% 49%

In addition to point cloud metadata, metadata about the process are also represented
by the process reliability, as shown in Table 12. Reliability can be determined if a process
is performed independently multiple times. It can be determined by observing which
parameters change systematically and which are random. According to the research
question, two influences should be analyzed. On the one hand, the influence of different
users is considered, and on the other hand, that of different tools is assessed. The repeat
accuracy of different users is investigated in Section 4.1.4. At this point, the focus is on the
two different tools. For a statistical consideration, the number of seven to nine annotations
per tool is too small. However, a qualitative or comparative description of the influences of
the tools in the form of a tendency is possible despite the small number of samples. For this
purpose, the following values are not based on the annotations of individual annotators,
but on a joint point cloud with all annotations. For the determination of the parameters
of the datasets Lab RGB and Lab I, seven different annotations were performed; for the
Lab R dataset, nine annotations were performed, and for the datasets Room RGB, Room I and
Room R, eight annotations were performed.

The ATR is calculated based on the longest time for semantic segmentation for each
point cloud. The maximum time is 120 minutes for the point cloud Lab and 194 minutes for
the point cloud Room. For both point clouds, the semantic segmentation with Recap takes
the longest. The ATR values in Table 12 show that the PCCT provides an average of only
13% of the maximum time for small point clouds such as Lab. With Recap, the ATR is 55%
for the Lab point cloud. For the larger dataset, it can be seen that the PCCT can be used to
work faster on average, but the differences in time decrease with increasing point cloud
size.

The parameters of availability and process reliability are the basis on which to describe
further parameters that have a more practical meaning for the investigated question. Thus
far, it is described how a process can be carried out with the selected data and resources,
how reliable this process and the other quality parameters are, as well as how efficient the
tools and its usage are in comparison to others.
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4.1.2. Integrity Characteristics

The integrity of the semantic point cloud is described by the parameters of the charac-
teristics completeness, consistency and correctness, which are shown in Table 13. Complete-
ness refers to the point cloud and its individual points. More precisely, it indicates how
many points are still present after processing with a segmentation tool. After processing
with Recap, the NoP was significantly reduced. The segmented point cloud still consists of
74% of the original points for the Lab R dataset and 41% for the dataset Room R. This point
reduction is due to the tool. In other applications, this may arise from the task description—
for example, if only x% of the point cloud is to be semantically segmented manually and
the rest automatically. In addition to object completeness, semantic completeness can be
determined. All classes described in the CD should exist in the semantic point cloud. This
parameter is important for large and hierarchical CDs, when all levels are not or not yet
classified. With respect to the segmentation tool, it must be possible to select or include the
necessary classes. With PCCT and Recap, all five classes can be named and set with respect
to the application. The point clouds are classified for all classes, but, for the following
consideration, only the most detailed level is used. The furniture class is a super-class of the
sub-classes table and chair. A super-class exists automatically if all sub-classes are present.

Section 4.1.1 describes which characteristics must be present for the point cloud. The
presence of the characteristic is the necessary condition to evaluate whether the point clouds
can be used. This is usually only possible if the point cloud features are consistent, which is
the case for all six datasets, as shown in Table 13 by P4.1 to P4.3. The spectral features are
scaled to the value range of 0 to 255 and the geometric features are given in meters.

A point cloud should have an equal amount of points for each class if it will be used
as training data. The CE takes values of 0.65 (Lab) and 0.62 (Room), indicating that the class
distribution is unequal (0.0 means equally distributed). The point cloud Lab consists of
90% of the floor class. The remaining 10% of points comprise chairs (3%), tables (6%) and
scanning artifacts (1%). The distribution of the point cloud Room is comparable (Table 13).

Table 13. Calculated and determined values for the quality parameter of integrity.

P. no. Parameter Name Lab RGB Lab I Lab R Room RGB Room I Room R

P3 Completeness

P3.1 SSR 1.000 1.000 0.739 1.000 1.000 0.409
P3.2 NoC 5 5 5 5 5 5

P4 Consistency

P4.1 GC x, y, z 10.34, 8.56, 1.00 m 8.07, 6.11, 0.82 m
P4.2 SCRGB 0–255 0–255
P4.3 SCI 0–255 0–255
P4.4 CE 0.65 0.65 0.65 0.62 0.62 0.62

P5 Correctness

P5.1 RP floor 99.9% 99.9% 100.0% 99.8% 99.9% 100.0%
P5.1 RP chair 96.1% 95.7% 99.2% 81.6% 66.0% 99.7%
P5.1 RP table 89.6% 89.6% 99.8% 94.5% 87.8% 99.7%
P5.1 RP scan. artif. 27.1% 27.6% 69.6% 47.1% 35.6% 77.2%

P5.2 RA floor 100.0% 100.0% 100.0% 99.8% 99.8% 100.0%
P5.2 RA chair 97.7% 97.1% 99.5% 97.7% 90.4% 99.7%
P5.2 RA table 96.8% 96.1% 99.8% 96.7% 95.9% 99.6%

The characteristic correctness can be determined if it is possible to describe what is
true. This description can be made for a semantic point cloud by a semantically enriched
geometry. The geometry either describes the target state from planning data or is cap-
tured and processed by a higher degree of correctness. This is the case if the point cloud
was captured with a more accurate measurement system and a more accurate semantic
segmentation method. For most furnished indoor scenes, no highly accurate geometric
planning data are available. In this work, a measurement and segmentation method is used
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that is significantly more accurate than the method under investigation. The method used
for the creation of the semantic GT point cloud is based on simultaneous acquisition and
semantic segmentation with the line scanning system Leica T-Scan5. The Leica T-Scan5 is
used in conjunction with the Leica Lasertracker AT 960. Based on the technical manufacturer
specifications [97], the geometric accuracy (GAP) of predominantly flat surfaces can be
determined according to Equation (8).

GAP = 80 µm + 3 µm ∗ d m (SD o f 2σ) (8)

A maximum distance (d) between the laser tracker and the Leica T-Scan5 of 10 m can be
assumed. The maximum GAP is therefore 0.11 mm. This can be set equal to the geometric
correctness for the following consideration. The semantic is obtained by scanning the
real objects individually with the Leica T-Scan5 and assigning a semantic class during
the measurement. Errors can occur due to the assignment of an incorrect class. This
was minimized by intensive checks in the field and during data preparation (four-eyes
principle). The original point clouds acquired with the Leica T-Scan5 are further compressed
and harmonized so that the maximum point density is less than 1 point/mm2. The GT point
clouds are considered free of semantic errors and contain only semantic objects. Scanning
artifacts are not included in the GT point cloud. The point cloud in Figure 12 is the reference
model for determining the correctness and the precision of the point cloud to be analyzed.

Figure 12. GT point cloud for determination and verification of correctness and precision parameters.

The determination of the correctness parameters can be performed if the GT and the
analyzed point clouds are in the same coordinate system. Both point clouds are transformed
via discrete target points into a local room coordinate system. Residuals of up to 7 mm
(Lab) and 5 mm (Room) occur as a result of this transformation of the analyzed point cloud.
The residuals are considered to denote uncertainty when comparing the point clouds to
determine the quality parameter for correctness and precision.

The class segments of the GT point clouds are geometrically compared with those to
be analyzed. For this comparison, the following rules apply:

• If the point distance between both point clouds is less than a threshold, then a point in
the point cloud under investigation has been correctly semantically segmented. These
points are TP points.

• If a segmented point in the investigated point cloud is closer to a segment of another
class, then it is an FP point of the selected class.

• The FP points are also FN points of the other classes. By comparing the GT point cloud
segments of the other classes with the sub-point cloud of the investigated point cloud,
the FN points can be determined.

The resulting confusion matrix of TP, FP and FN points (Figure 7) provides the basis for
determining the parameters RP and RA. These parameters express how correct a semantic
segmentation is—RP by the ratio of the TP points to all points of the semantic target class
and RA by the ratio of the TP area to the total area of a semantic target class. The areas are
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calculated via a triangular meshing with the Ball Pivoting Algorithm by [98]. Depending
on the application, either the RP or RA is more appropriate. RP is more meaningful for
applications in which the individual points are important. This is the case if ML applications
have to be validated. In these applications, it should be checked how well a task is solved
with a dataset. For the use of a point cloud as a model or as a basis for modeling with
parametrized geometries, the RA is more suitable.

All correctness parameters in Table 13 refer to a joint point cloud, which was calculated
from all segmented point clouds of each dataset. A small program based on Open3D
functions [99] was used for this purpose. The class membership of each point in the joint
point cloud is based on the majority of the classifications within a dataset. The performance
of individual annotations can be found in Tables A6–A8 in Appendix C.

The RP varies between 27.1% and 100.0%. The floor class is best recognized, with
99.9% to 100.0%. The chair and table classes were determined differently depending on
the tools. For the Lab R and Room R datasets, the RP is higher than 99.1%. The RP of the
PCCT datasets varies for the smaller semantic objects between 66.0% and 96.1%. It can be
seen that semantic segmentation is better for the smaller point cloud Lab (PR higher than
89.6%) than for the larger Room point cloud (RP higher than 66.0%). The scanning artifacts
are predominantly not detected in the segmentation with the PCCT (PR less than 47.1%).
Moreover, with Recap, these classes are determined poorly, with a PR of only 69.6% and
77.2%, respectively (Table 13).

The RA is determined only for the object classes, since scanning artifacts are not useful
for the visualization of an area. For all datasets, this parameter is higher than 90.3%. For
the floor class, it is even higher than 99.7%. Since this parameter is based on the same data
as the RP, similar behavior can be expected. However, differences occur due to the different
point densities. For example, the RA is higher than the RP for all PCCT datasets, since this
tool is used for areal segmentation and small groups of points (e.g., at class boundaries) are
more often assigned to an incorrect class. This can be observed, e.g., in dataset Room I, with
an RP for the chair class of 66.0% and with 87.8% for the table class. Here, the RA is 90.4%
for the chair class and 95.9% for the table class (Table 13). The differences between RP and
RA are smaller or do not occur for Recap, because the segments can be formed more finely
and individually.

Figure 13. TP and FN areas of dataset Room at different semantic segmentations for the table class.

The analysis of the areas can also be useful, if the inverse RA, the area of FN points, is
considered. This indicates which areas are not assigned to the correct class. These are holes
or missing parts in the segmented point cloud. By visualizing these areas, it is possible to
identify certain problematic sections for which the applied tools do not allow correct class
assignment. The problematic sections are colored red in Figure 13.
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4.1.3. Accuracy Characteristics

The accuracy in the quality model is expressed by the quality characteristics of preci-
sion and semantic accuracy. Precision is described by two ratio parameters. Additionally,
MD and SD are determined from the FP points. The geometric accuracy is described for the
handling of the semantic definitions and in terms of implementation per class (Table 14).

The PP of the floor class is higher than 99.5% for all datasets, so that all segmentation
methods work equally well for this class. Based on the PA, the maximum incorrect area
can also be determined with 0.5% of the object areas. The use of points or areas leads to no
measurable differences.

In contrast, the semantic augmentations applied for the chair and table classes show
varying precision. The semantic segments with Recap for chair and table consist of more
than 95.4% of TP points and 95.6% of the TP area. Thus, only 0.23 m2 of the table area
and 0.17 m2 of the chair area is falsely semantically segmented. The proportion of object
class points in the scanning artifacts class is very small, with 4.6% and 2%. In points, this
corresponds to approximately 125,000 and 290,000, respectively. The MD from the GT
geometry is up to 92 mm. The SD of FP points is less than 39 mm.

The floor was determined by a plan fit; tables and chairs were segmented free-hand. It
can be observed that more precise work can be achieved via free-hand segmentation. For
the table and chair classes, the SD of FP points varies between 9 mm and 16 mm (Table 14).
The PCCT segmentation of the two point clouds is less precise. The PP for chairs varies
between 67.3% and 78.5%. In terms of surfaces, the PA varies between 90.4% and 91.7%. For
the table class, the PP varies between 92.1% and 93.6%. The table class has a wider range
for PA, from 87.7% to 97.6%. The PA of the chair class is considerably higher than the PP.
For the table class, a higher PP can be determined for the dataset Lab. For dataset Room, the
PA is lower and can be expressed as the area. For the table class, up to 1118 mm2, and for
the chair class, up to 380 mm2 are incorrectly segmented. The proportion of object points in
the scanning artifacts class is very high, which is expressed by the PP, which ranges from
30.8% to 61.3% for the PCCT datasets. This agrees with the observations on the RP for the
object classes in Section 4.1.2.

An influence due to the segmentation with RGB or I values cannot be observed.
However, it can be seen that the smallest object class, chair, is less precise for the dataset
PCCT I. A comparison of the values in Table 14 shows that the PP and the PA are influenced
by the size and content of a point cloud. As an example, this can be observed by the table
class for the datasets Lab RGB and Room RGB. For Lab RGB, the PA is higher than the PP. For
the dataset Room RGB, the PA is 5.5% lower than the PP. This occurs for the PCCT datasets,
because scanning artifacts are present behind the objects. The scanning artifacts are often
assigned to object classes at the front. This can be seen in Figure 14.

Figure 14. TP and FP points for the table class. The point cloud was semantically segmented with
PCCT (left) and Recap (right).

The more scanning artifacts are spread, the more the PA of the object is affected. This
can observed with the parameter MD of FP points. The MD of FP points values are shorter
for the Lab RGB than for the Room RGB dataset. This is also true for the SD of FP points,
which is larger than 600 mm for the Room RGB dataset. The geometry of the class segments
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becomes describable via the SD and MD of FP points. Based on the parameters PP and PA,
it could be assumed that all point clouds are well-suited as a model. However, this is
not the case due to the high deviations caused by scanning artifacts and overlapping
segments in the PCCT datasets. The SD of FP points can describe, without visualization or
human interpretation of the point cloud, that a point cloud is suitable or not as a model.
A point cloud can be advantageous as a basis for modeling if the MD of FP points is large
and the SD of FP points is small. These observations indicate isolated outliers. With SD and
MD of FP points in combination, the quality of semantic point cloud segments can also be
described geometrically.

The semantic accuracy can only be determined if the dataset-specific CD was used,
since there is no general one. For these descriptions, the CD in Appendix A is applied.
For all Lab and Room datasets, the CD was applied during all annotations. For other
datasets, the respective CD of the dataset must be used. For our examples, the used CD is
hierarchical, as can be seen in Table 14. In the CD, there are two semantic levels, which are
filled out. Moreover, the class segments according to the CD are present or can be created
by merging sub-classes into one super-class. Proof of the correct semantic class can be
obtained by comparison with a reference or a visual inspection, as in Figure 8. For the
example datasets, the furniture class cannot be seen directly, but it can be formed from the
table and chair classes. One analytical strategy may be looking only at the most detailed
classes. Since the furniture class is not directly present in our datasets, this class is not
examinable and the parameter P7.3 is set to no in Table 14.

Table 14. Calculated and determined values for precision and semantic accuracy.

P. no. Parameter Name Lab
RGB

Lab
I

Lab
R

Room
RGB

Room
I

Room
R

P6 Precision

P6.1 PP floor 99.7% 99.8% 99.8% 99.6% 99.6% 99.9%
P6.1 PP chair 78.5% 78.2% 95.8% 77.9% 67.3% 95.5%
P6.1 PP table 92.1% 93.1% 98.2% 93.2% 93.6% 97.5%
P6.1 PP scan. artif. 53.4% 52.6% 95.4% 61.3% 30.8% 98.0%

P6.2 PA floor 99.8% 100.0% 100.0% 99.5% 99.5% 99.5%
P6.2 PA chair 91.7% 91.6% 96.7% 90.4% 90.8% 95.7%
P6.2 PA table 96.8% 97.6% 98.8% 87.7% 87.6% 97.3%

mm mm mm mm mm mm

P6.3 MD FP pts floor 249 666 83 131 884 92
P6.3 MD FP pts chair 1278 1244 48 1699 1485 55
P6.3 MD FP pts table 1237 1558 53 1906 1967 53

mm mm mm mm mm mm

P6.4 SD FP pts. floor 42 87 38 61 161 24
P6.4 SD FP pts. chair 151 152 9 646 591 16
P6.4 SD FP pts. table 207 214 14 279 443 14

P7 Semantic Accuracy

P7.1 CD applied yes yes yes yes yes yes
P7.2 Hier. CD yes yes yes yes yes yes
P7.3 floor used yes yes yes yes yes yes
P7.3 furniture used no no no no no no
P7.3 chair used yes yes yes yes yes yes
P7.3 table used yes yes yes yes yes yes
P7.3 scan. artif. used yes yes yes yes yes yes

4.1.4. Descriptive Use for Multiple Annotations

Regarding the research question, the individual annotation performance is also of
interest. To investigate this aspect, 47 independent segmentations from nine different anno-
tators are used for two point clouds. The metadata of the point cloud do not change due to
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the individual annotations, so only eight parameters describe the annotation differences.
These are ATR, RP, RA, PP, PA, MD of FP points, SD of FP points and ’class’ used.

The processing time is determined in relation to the maximum time required and is
presented for each annotation in Table A2 in Appendix B. An analysis of the individual
segmentations shows that the largest differences in processing time occur for Recap. The
fastest annotation has been performed with only 20% of the maximum duration for Lab
resp. with 15% for Room by PCCT. For the semantic segmentations with the PCCT, the
segmentation duration varies by 5% for Lab I, by 10% for Lab RGB, by 31% for Room I and
by 39% for Room RGB. It can be seen from the values in Table A2 that the processing time is
more consistent with PCCT than with Recap for different annotators. The longest semantic
segmentation with PCCT was 38% faster than with Recap. Thus, PCCT has the advantage
of a shorter processing time and better planning capability for tasks.

Further differences for the individual annotations can be found for the characteristics of
correctness and precision. The parameters RP and PP are calculated for each segmentation
(Tables A3–A8 in the Appendix C). Based on the small variation in all values for RP and
PP for the floor class, it can be concluded that this class can be segmented very reliably,
correctly and precisely using a geometry fit.

For the table and chair classes, the individual results are different. The correctness
and the precision vary strongly. For Recap, the minimum RP is 49.6% and the maximum is
99.8%. The lowest PP value is 87.5% and varies up to 14%. It can be seen that the reliability
for chairs and tables decreases, because different annotations reach different accuracies.
The class with the lowest correctness is the scanning artifacts class (RP of max. 80.1%). The
worst annotation for scanning artifacts with Recap contains only 42.3% TP points. Similar
trends can be seen for the datasets processed with PCCT, but these are even lower in terms
of precision and correctness.

To investigate whether the different results in a multiple segmentation occur by
random or whether there is a systematic effect, we tested whether the set of the RP and the
PP per class is normally or t distributed. The hypothesis is that the RP or the PP is normally
distributed around an expected (average) value per class; thus, the annotation performance
would then also be normally distributed. Random differences would be describable in this
way. The Kolmogorov–Smirnov test [100] was used to test this hypothesis.

It was found that, for most classes of the Room datasets, the RP and PP are normally
distributed. For the smaller Lab dataset, no normal distribution could be observed. The
hypothesis can therefore not be confirmed. A possible reason for the different distributions
could be that the larger point cloud has more random segmentation errors than the smaller
point cloud, which is reflected in the parameters. In the small point cloud, the operator is
more focused and the assignments are less ambiguous. This observation is supported by
the fact that the RP and PP of the Lab datasets are predominantly higher.

The parameters MD of FP points, SD of FP points, PA and RA behave in a similar way to
RP and PP, so these will not be discussed further. The parameter class used must be tested
before joining to avoid gross errors in the joined point cloud. This can be tested during the
joining by allowing only certain classes and excluding segmented point clouds that contain
other classes.

4.1.5. Summary of the Descriptive Use

The description from Sections 4.1.1–4.1.3 focuses on comparing the tools and how they
perform differently for smaller and larger point clouds. The basis of the investigation for
each tool was a joined point cloud, which is free of individual segmentation patterns. It
can be concluded that, with the quality model, semantic point clouds can be described
for a comparison. Without further knowledge about the point cloud or the segmentation
tool, an analysis of the point cloud can be performed based on 23 parameters. The quality
model is holistic and does not only refer to parameters for correctness and precision,
such as in [13,57]. Recap is more suitable than the PCCT for the outlined applications.
Nonetheless, with the appropriate settings for the automatic segmentation, the PCCT is
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more efficient. The separation of objects and scanning artifacts has proven to be the main
problem. Based on the analysis process, and in connection with the developed tools, it is
possible to investigate other segmentation tools.

The second part of the research question was discussed in Section 4.1.4. It can be
noted that the processing time and the achieved accuracy are user-specific. There is no
common relationship between long processing time and higher accuracy. However, it can
be observed that, with Recap, a longer processing time leads to more accurate results in
most cases. With PCCT, the processing time is, on average, 42% shorter. The influence of
the user is noticeably large when using Recap. This can be seen in Table A4. For the same
point cloud and tool, differences of up to 18% (PP) for object classes occur. This observation
confirms the hypothesis that multiple processing is necessary, in order to allow a realistic
evaluation of the quality of the point cloud.

4.2. Quality Model to Evaluate Semantic Point Clouds

The description of the semantic points from the previous Section 4.1 is the basis for an
evaluation of a semantic point cloud. Due to the large number of semantic point clouds
available on the web, it is difficult to obtain an overview of which point cloud is suitable
for which application. The quality model, with its parameters, provides a framework for
the comparison and selection of datasets. The parameters can be used to evaluate the
characteristics of the point cloud in terms of metadata, geometry and semantics. Thus, the
point clouds that do not meet the important criteria of an application can be excluded. In the
following, the quality parameters for almost all datasets from Section 2.3 were researched.
The research results were summarized in an Excel database. A threshold set and query
functions were added. For the used thresholds, it can be queried whether they are met,
not met or unknown. For the example semantic point cloud as a model, the query result is
shown in Figure A1 of Appendix D. The public datasets in the database are extended by
the datasets of the point clouds Lab and Room. For our own datasets, it is ensured that all
parameters are known.

The collection of datasets shows that most of the metadata for the point clouds are suf-
ficiently documented or can be determined from the datasets. Thereby, implicit parameters
are derived. For example, a class definition is present, even if this is not written down, and
can only logically be derived by an application or from the point cloud itself. In addition, it
is concluded that at least one semantic segmentation took place. Therefore, the parameter
NoS is assumed to be 1, if nothing else is found. Parameters concerning the size of the
dataset, the file format and the data model can usually be taken from publications, web
documentation or directly from the dataset.

The correctness and precision parameters are unknown for all external datasets. This
is a central weakness of existing practice in dealing with datasets provided as training
data or for modeling. This work tackles the problem by providing the quality model. The
model should attempt to encourage the evaluation of published datasets (at least in part)
for geo-semantic accuracy. This kind of evaluation is standard for automatic semantic
segmentations in almost all publications. Since most automatic ML methods learn from
human-annotated datasets that are not evaluated, these methods "learn" possible errors in
the data. Thus, learning is done with a GT dataset, which is not always a true representation
of reality. It is only the reality as seen (most of the time) by one annotator. In the end, only
a relative evaluation of ML procedures is possible with currently available datasets.

The use of the Excel database does not aim to determine exactly one dataset for which
all parameters are fulfilled. It should rather be an aid with which a selection can be made.
Not all parameters are always relevant for all applications and can therefore be disregarded.
A possible use of the quality model is now presented for the example application from
above.
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4.2.1. Point Cloud as Model

The semantic point cloud as a model is usually useful for an application for which
the capturing sensor properties are well known and the point cloud has to be semantically
segmented at least once. The data model and the abstract model have to be known. The
parameters of the quality characteristics of availability, process reliability, completeness,
consistency and semantic accuracy must be fulfilled. The flowing example is a visualization
of the floor, table and chair classes in CC.

The parameters CE and ATR have no meaning in this example, since no comparison
of procedures is queried with regard to duration or training. The quality characteristics
of correctness and precision are determined by one or more semantic segmentations,
which always contain uncertainties. Thus, these parameters should never be set as 100%.
Holes in the point cloud lower the correctness. Depending on how these holes occur and
what additional information is available, the correctness can play a minor role. For the
visualization, it is important that as few FP points as possible are present in the classes.
This means that the precision must be high. The parameters RA and PA are favored
over RP and PP in this application, since non-uniform density can be expected. Based on
these considerations, we chose to set the thresholds for parameter RA to 70% and for the
parameter PA to 80%. The scanning artifacts class is not considered, because it contains
no object information. In addition, if PA is satisfied, the thresholds for SD of FP points and
MD of FP points must be set to low values. Here, we suggest 50 mm as the threshold for
SD of FP points and 100 mm as the threshold for SD of FP points. These limits vary from
application to application. For a visual analysis of an indoor scene, our suggestions are
sufficient to recognize objects such as tables and chairs.

The semantic conditions are fulfilled for the datasets SceneNN, S3DSP and ScanNet and
our own datasets, Lab and Room. The ScanNet dataset is not available as a point cloud and
therefore does not correspond to the research question. SceneNN and S3DSP are available in
the appropriate file format for CC and have the necessary features (x, y, z-coordinates and
semantic label). For an exclusive visualization, no restrictions of use are present. Subject to
the unknown parameters, the datasets can be used for the example task.

For our own datasets, the semantic and all relevant formal constraints are satisfied
(Section 4.1). The RA parameter for correctness and the PA parameter are satisfied for all
classes as well, but the datasets processed with the PCCT do not meet the thresholds for
SD of FP points and MD of FP points. The PCCT dataset cannot be used for the visualization.
The Recap point clouds for Lab and Room meet the specifications and can be used. This is
shown in Figure 15 for the point cloud Room R.

Figure 15. Semantic point cloud consisting of the floor, table and chair classes for visualization of a
real room.

4.2.2. Point Cloud as a Basis for Modeling

A similar procedure as in Section 4.2.1 can be followed when using a semantic point
cloud as the basis for modeling. The semantic parameters must also be fulfilled to model
the needed classes. The semantic and geometric characteristics of the point clouds must
be available. The file formats must be compatible with the modeling software. Most point
clouds are available in open or open-source file formats that can be loaded with most
modeling software, such as PointCab (https://pointcab-software.com/en/ accessed on 15
December 2021). However, this is not always the case, as popular modeling programs, such
as Autodesk Revit (https://www.autodesk.de/products/revit/ accessed on 15 December

https://pointcab-software.com/en/
https://www.autodesk.de/products/revit/
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2021), only support their proprietary file formats. A software that supports open or open-
source file formats should be used.

Due to the chosen semantic and formal target values, only the datasets SceneNN and
S3DSP, as well as Lab and Room, can be considered for the example. Since no information is
available for SceneNN and S3DSP regarding correctness and precision, these parameters
cannot be evaluated. For our own datasets, Lab and Room, there are parameter values
available, which are used to evaluate correctness and precision. As before, correctness is
less important than precision as holes and incomplete edges can be closed or completed
associatively when modeling with parametric geometry objects. In modeling by triangu-
lation, holes can be closed up to a certain size. Thus, the threshold for correctness can
be lowered to, e.g., RA 60% and complete modeling can still be achieved. The precision
has higher relevance, because objects are mostly enlarged. The threshold for PA should
remain at 80%. The thresholds for SD and MD of the FP points now have additional relevance
as before. Distant single points are usually excluded automatically by the knowledge of
the modeler, so this parameter can be very large (e.g., 2000 mm). More important is the
SD of the FP points, which should remain at 50 mm. The choice of the threshold must also be
customized for the task in question. For modeling objects using a model catalog or in LoD
100 or LoD 200 BIM applications, the proposed thresholds are sufficient. Due to the chosen
threshold, only the two Recap datasets are available.

4.2.3. Point Cloud as Training Data

The third example is to use point clouds as information carriers to train data-based
algorithms. For this purpose, the scanning artifacts class is necessary, in addition to the
object classes from above. For many semantic indoor datasets, the scanning artifacts class
or a comparable class for disturbances/noise is not included. For most outdoor datasets,
not all indoor object classes are available.

Only our own datasets are considered in the following. The parameter NoP must be
fulfilled, so that enough data for training and evaluation are available. A dataset with only
2 million points is too small for training. The training algorithm parameters will likely lead
to unreliable and inaccurate results for other unknown point clouds. The target value for
the NoP is set to 5 million points and at least three independent semantic segmentations
are considered necessary to verify the knowledge in the data, even if no GT data of a higher
accuracy level are available. The parameter ATR has the function of identifying, in the case
of a large number of operations, the operators that work particularly fast. For example,
these workers could be favored over the slower ones for further work.

The correctness and the precision for this work are equally important, because the
method to be trained should learn the optimal handling of the data. Here, the points are the
relevant input variables, which is why the RP and PP are used. The suggested thresholds
are 75% for scanning artifacts and 80% for objects. It is expected that objects are segmented
more distinctly and an interpretation of the scanning artifacts is more difficult. The other
geometric parameters should not exceed the limits for the applications described above,
but they are of minor importance for this application.

4.2.4. Summary of the Evaluated Use

The three example applications show how a semantic point cloud can be evaluated
with the quality model and how it can be decided whether the quality of a dataset is suffi-
cient. It should should be emphasized that, with the parameters, an objective evaluation is
possible, even if the relevance of the individual parameters is different in the respective
application. The presented applications and used thresholds are only examples, based on
our experience.

5. Conclusions and Outlook

Semantic 3D point clouds play a crucial role in the context of the digitization of
working environments. A representation of reality as a detailed point cloud or in the
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form of a derived model is a fundamental component in many planning and management
processes for buildings. Bringing semantic information into a geometric model is the
next major step towards the automation of planning and decision making. Integrating
the semantics of objects as additional information into a point cloud is a necessary and
challenging task that must be solved. The semantics of the point cloud must be describable
in terms of resolution, correctness and precision. This requires additional metadata about
the point cloud and the previous processes. The requirements of an application must be
compared with the actual characteristics and it must be tested whether the requirements
are fulfilled.

The quality characteristics of a point cloud can be described by a quality model. For the
holistic description of a semantic point cloud, a model based on seven characteristics was
deemed to be suitable, offering the user the possibility to describe, compare and evaluate
their own as well as third-party point clouds. In order to describe the quality of semantic
point clouds with a manageable number of parameters, a quality model was created and
tested in this work. The choice of parameters was based on the underlying process, as well
as on the abstract model and the data model.

The holistic quality model for semantic point clouds focused on the characteristics of
semantic segmentation; the characteristics of geometric creation must also be taken into
account. Crucial for the semantic segmentation are the accuracy and reliability with which
a point cloud was split into semantic segments. In particular, the human influences on the
GT point clouds are usually not considered. The initial semantic knowledge in a GT point
cloud is always given by a human. The quality of the knowledge is a variable quantity. It
depends on the motivation, training, perception and carefulness of the annotator. One way
to keep these individual influences low is to use multiple independent annotators and a
unique CD, and to train the annotators well. The use of different segmentation tools, as
well as the degree of individualization, have a measurable impact on the final point cloud.
The more individualization a tool allows, the better a single semantic segmentation can be.
However, this has the disadvantage that the segmentation performance can vary.

The created quality model allows the comparison of publicly available semantic point
cloud datasets. The analysis of a selection of publicly available point clouds has shown that,
in particular, parameters for the GT correctness and GT precision are usually not provided
and therefore a comparison is not possible. This is a central weakness, which has to be
addressed in the current practice so that realistic semantics can be represented in a point
cloud. Our quality model contributes to the improvement of GT point clouds.

In future, a distinction of the general model is necessary and an adaptation to data-
based algorithms is to be recommended. The current quality model is only designed
for indoor applications due to the complexity of the semantic environment and must be
adapted for outdoor applications. It is conceivable that the data-based algorithms can be
understood even better if the characteristics of the input data (point cloud) are described.
Based on the determined characteristics of the input data and algorithm response, an
objective performance comparison can be achieved.
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Appendix A. Class Definition

The CD for the examples is shown in Table A1. A level is assigned to each class. A
super-class is always fully divided into sub-classes. The class description is kept brief and
provides relations between the classes.

Table A1. Class definition.

Level Class Definition

L0 furniture
Furniture includes objects that have contact with the floor and
stand in the room. Objects that do not belong to the class chair
or table cannot be furniture. The class can be further subdivided.

L1 table
The table class consists of all the points that describe/contain
the table legs, the lower frame of the table, the table top and the
adjustable feet.

L1 chair The class chair consists of all the points that describe the seat,
backrest, tubular frame and rubber feet.

L0 floor
The floor class consists of all points describing the flat floor and
small edges and floor inlets (maintenance flaps). The floor can
be considered a plane with a deviation of 50 mm.

L0 scanning artifacts

The scanning artifacts class consists of all points that describe
objects lying on the ground—for example, cables. Furthermore,
this includes all points that are caused by measurement errors
(phantom points), reflection of the objects and gap closures due
to the evaluation software. Multiple reflections can also occur.

Appendix B. Time Required for Semantic Segmentation

Table A2 shows the actual processing time in relation to the maximum processing
time. The maximum time required in minutes for each point cloud is equal to 100%. The
percentages can only be compared within one point cloud. The data are only valid for the
comparison of the example described in Section 4.1.4. For other investigations, the ordinary
times in minutes must be used.

Table A2. Actual processing time in relation to the maximum processing time.

Lab Room
No. RGB I R RGB I R

1 12.5% 12.5% 41.7% 41.2% 46.4% 49.0%
2 14.2% 11.7% 64.2% 27.8% 33.5% 34.0%
3 12.5% 12.5% 100% - - -
4 10.0% 10.8% 94.2% 32.5% 42.3% 100.0%
5 9.2% - 35.8% 33.5% 51.5% 46.4%
6 19.2% - 37.5% 23.2% 30.9% 30.9%
7 - 12.5% 75.0% 61.9% 61.9% 61,9%
8 - 15,8% 25.0% 46.1% 46.4% 15.5%
9 10.8% 13.3% 20.8% 41.2% 43.8% 51.5%

Avg. 13.0% 12.7% 54.8% 38.0% 44.6% 48.6%

Appendix C. Correctness and Precision for Multiple Annotations

Tables A3–A5 show the parameter PP for all classes of the CD from Appendix A.
Tables A6–A8 contain the parameter RP of all annotations.
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Table A3. Precision for the datasets Lab and Room, semantically segmented by Recap.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 99.8% 95.9% 98.7% 91.7% 99.9% 96.4% 97.6% 89.7%
2 99.6% 91.7% 96.0% 97.8% 77.0% 99.8% 94.0% 98.5%
3 100.0% 85.9% 97.3% 17.7% - - - -
4 99.7% 97.9% 99.5% 88.2% 99.9% 95.6% 97.4% 87.5%
5 100.0% 93.4% 99.4% 47.4% 99.8% 94.1% 96.9% 77.5%
6 99.9% 97.0% 85.7% 81.1% 99.8% 94.3% 97.6% 33.9%
7 100.0% 96.6% 99.0% 74.3% 99.2% 94.7% 96.2% 82.7%
8 99.8% 99.2% 99.9% 76.4% 99.9% 92.7% 96.7% 90.4%
9 99.5% 99.8% 99.9% 77.6% 99.5% 90.9% 97.0% 95.0%

Table A4. Precision for the datasets Lab and Room, semantically segmented by PCCT RGB.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 99.7% 93.9% 86.2% 40.5% 99.6% 77.9% 93.7% 51.3%
2 99.7% 88.5% 86.9% 41.7% 99.6% 79.1% 92.8% 43.7%
3 99.7% 83.3% 77.1% 29.9% - - - -
4 99.7% 94.6% 86.6% 41.0% 99.7% 80.9% 93.4% 61.4%
5 99.7% 91.6% 83.2% 47.4% 99.7% 82.7% 95.2% 41.7%
6 99.7% 84.2% 95.2% 24.0% 99.7% 77.3% 88.9% 43.4%
7 - - - - 99.3% 74.0% 93.5% 48.5%
8 - - - - 99.7% 78.4% 93.9% 56.0%
9 99.7% 93.9% 80.8% 38.1% 99.5% 80.4% 93.6% 49.9%

Table A5. Precision for the datasets Lab and Room, semantically segmented by PCCT I.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 99.7% 93.8% 86.8% 38.5% 99.7% 73.9% 95.3% 26.7%
2 99.7% 93.8% 85.3% 39.8% 99.4% 82.1% 89.8% 42.0%
3 99.7% 81.9% 82.2% 21.7% - - - -
4 99.7% 93.6% 89.0% 37.8% 99.7% 77.7% 90.3% 33.3%
5 - - - - 99.7% 82.7% 95.2% 41.7%
6 - - - - 99.6% 76.8% 91.5% 30.1%
7 99.8% 77.0% 75.8% 37.7% 99.3% 70.7% 91.0% 20.6%
8 99.7% 94.2% 87.5% 38.0% 99.7% 77.3% 92.6% 35.5%
9 99.7% 83.5% 90.9% 35.5% 99.2% 75.7% 92.7% 30.8%

Table A6. Recall for the datasets Lab and Room, semantically segmented by Recap.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 100.0% 98.9% 99.8% 62.0% 100.0% 98.0% 99.2% 75.9%
2 100.0% 99.9% 99.8% 46.4% 100.0% 97.6% 96.5% 76.2%
3 99.5 % 90.7% 94.0% 80.1% - - - -
4 100.0% 98.3% 99.7% 67.0% 100.0% 99.0% 99.4% 74.0%
5 99.6% 98.5% 99.0% 69.8% 99.9% 99.1% 97.1% 66.7%
6 99.9% 70.4% 99.8% 74.8% 100.0% 49.6% 98.7% 71.1%
7 99.8% 97.8% 99.8% 79.1% 100.0% 97.9% 98.3% 42.3%
8 100.0% 96.4% 99.2% 77.1% 99.9% 99.3% 99.6% 64.4%
9 100.0% 96.0% 99.1% 57.2% 100.0% 99.4% 99.5% 51.1%
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Table A7. Recall for the datasets Lab and Room, semantically segmented by PCCT RGB.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 99.9% 80.5% 96.0% 26.3% 99.8% 83.0% 88.6% 54.4%
2 99.9% 84.6% 95.4% 19.3% 99.8% 68.2% 92.7% 46.6%
3 99.9% 83.6% 95.6% 20.4% - - - -
4 99.9% 84.8% 95.6% 22.2% 99.8% 80.4% 94.2% 55.9%
5 99.8% 84.6% 95.2% 18.1% 99.8% 50.8% 91.7% 64.0%
6 99.7% 93.5% 87.3% 32.6% 99.8% 69.7% 96.2% 29.2%
7 - - - - 99.8% 68.2% 91.9% 44.2%
8 - - - - 99.8% 87.1% 91.5% 52.7%
9 99.9% 84.8% 95.0% 15.2% 99.8% 77.2% 91.2% 49.4%

Table A8. Recall for the datasets Lab and Room, semantically segmented by PCCT I.

Lab Room
No. Floor Chair Table Scan. Artif. Floor Chair Table Scan. Artif.

1 99.9% 83.8% 96.1% 22.0% 99.8% 46.2% 88.5% 54.7%
2 99.9% 83.2% 96.6% 20.0% 99.8% 57.1% 90.6% 45.3%
3 99.8% 85.1% 90.0% 29.6% - - - -
4 99.9% 84.3% 95.8% 23.6% 99.8% 80.4% 86.4% 39.0%
5 - - - - 99.8% 74.7% 90.6% 52.0%
6 - - - - 99.8% 65.4% 87.7% 38.0%
7 99.0% 84.0% 95.5% 15.1% 99.8% 56.4% 85.8% 26.5%
8 99.9% 83.7% 96.2% 21.6% 99.8% 81.4% 85.8% 43.5%
9 99.9% 87.6% 95.5% 24.3% 99.8% 61.4% 86.2% 37.6%
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Appendix D. Point cloud dataset comparison

Figure A1. Point cloud dataset comparison. Example: Point cloud as model.
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