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Abstract: Remote sensing satellite images with a high spatial and temporal resolution play a crucial
role in Earth science applications. However, due to technology and cost constraints, it is difficult
for a single satellite to achieve both a high spatial resolution and high temporal resolution. The
spatiotemporal fusion method is a cost-effective solution for generating a dense temporal data
resolution with a high spatial resolution. In recent years, spatiotemporal image fusion based on
deep learning has received wide attention. In this article, a spatiotemporal fusion method based
on multiscale feature extraction and a spatial channel attention mechanism is proposed. Firstly, the
method uses a multiscale mechanism to fully utilize the structural features in the images. Then
a novel attention mechanism is used to capture both spatial and channel information; finally, the
rich features and spatial and channel information are used to fuse the images. Experimental results
obtained from two datasets show that the proposed method outperforms existing fusion methods in
both subjective and objective evaluations.

Keywords: spatiotemporal fusion; remote sensing image; attention mechanism; generative multiscale

1. Introduction

With the development and progress of sensor technology, applications of remote
sensing (RS) images in scientific research and human activities have become increasingly
extensive [1,2]. For example, air pollution prediction [3], the automated detection of intra-
urban surface water [4], the prediction of nitrogen accumulation in wheat [5], vegetation
detection, land use detection [6], and other field applications have been carried out. Some
research areas and applications require RS images with a high temporal and spatial reso-
lution. Unfortunately, due to technology and other limitations, no single satellite sensor
can currently provide global coverage with a high spatial resolution and high temporal
resolution at the same time [7,8]. The increasing availability of RS data makes it possible to
merge multi-sensor data [9]. Therefore, many spatiotemporal fusion algorithms have been
proposed to alleviate this issue. The term ’spatiotemporal fusion algorithm’ refers to the
algorithmic fusion of at least two data sources with similar spectral ranges to generate data
with more information than the original data sources [10,11]. These spatiotemporal fusion
algorithms have been proven to be cost effective and useful [7].

Spatiotemporal data fusion techniques have developed rapidly in recent years, and
the existing spatiotemporal data fusion methods can be broadly classified into several cate-
gories according to the types of algorithms used. The weighting function-based approach
predicts the pixels in a high-resolution image by combining information from all input
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images using some manual weighting functions. The spatiotemporal adaptive reflection
fusion model (STARFM) [12] is the first proposed and most widely used weighting function-
based model. STARFM divides pixels in low-resolution images into two categories, the
first of which is pixels containing only one land cover type. Then, it is assumed that the
change in reflectance is the same in the low-resolution images and the high-resolution
images. In this case, the pixel changes of the low-resolution images can be added directly
to the pixels of the high-resolution images to obtain the prediction result. In the other
category, when a pixel consists of a mixture of different land cover types, the prediction
result is obtained by a function that assigns a higher weight to the purer coarse pixels
based on the information of the adjacent fine pixels [13]. Obviously, STARFM does not
apply to heterogeneous regions, and an enhanced spatiotemporal adaptive reflection fusion
model [14] improves the accuracy of prediction in heterogeneous regions by introducing a
conversion factor based on STARFM that measures the rate of change in reflection for each
category instead of the fixed constant rate of change in reflection [15]. The main differences
between weighting function-based methods are the design of the relationship between
high-resolution images and low-resolution images and the rules used to determine the
weights [16].

In addition, there are many methods based on decomposition. Unmixing-based mod-
els use linear spectral mixing theory to decompose pixels in low-resolution images and
predict pixels in high-resolution images. The multisensor multiresolution technique [17]
proposed by Zhukov et al. is perhaps the first decomposition-based model for spatiotem-
poral fusion. The spatial and temporal data fusion approach improves the performance by
separating the end element reflectance of the input and predicted dates in a sliding window
to estimate the reflectance change, then applying the estimated change to a high-resolution
image of the reference date to obtain the prediction [18]. The modified spatial and temporal
data fusion approach [19] uses adaptive windows to further improve the performance on
top of STDFA. Both types of models mentioned above are based on a single algorithm,
but there are also spatiotemporal models based on multiple algorithms that combine the
advantages of multiple algorithms. For instance, the flexible spatiotemporal data fusion
method (FSDAF) combines the ideas of separation-based and weighting function-based
methods and spatial interpolation [13]. FSDAF can obtain good predictions for landscapes
with heterogeneity and abrupt land cover changes occurring between input images and
predictions. Sub-pixel class fraction change information [20], as proposed by Li et al., can
identify the image reflectance changes from different sources and improve the prediction
accuracy. These traditional methods have achieved good results in some applications [21],
such as surface temperature detection [22,23] and leaf area index detection [24]. However,
these algorithms empirically make certain assumptions, which makes it difficult to take all
cases into account, and in addition some algorithms are sensitive to data quality, making it
difficult to obtain a more stable performance.

Recently, learning-based methods have developed more rapidly. Instead of obtaining
predictions based on certain assumptions, they learn to extract some abstract features
from the acquired historical data and then use these features to reconstruct the generated
prediction images. Learning-based methods are mainly divided into dictionary-based
learning methods and machine-based learning methods. Dictionary-based methods es-
tablish correspondence between high-resolution images and low-resolution images based
on structural similarity to capture the main features in the prediction, including changes
in land cover types. The sparse representation-based spatiotemporal reflectance fusion
model [25] was probably the first to introduce dictionary pair learning techniques from
natural image super-resolution to spatiotemporal data fusion. The hierarchical spatiotem-
poral adaptive fusion model [26] and compressed sensing for spatiotemporal fusion [27]
further improve the prediction quality. However, the dictionary-based pair approach uses
sparse coding, which has the advantage of being able to predict changes in land cover and
changes in phenology along with a high computational complexity; therefore, this reduces
its applicability [16].
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With the development of deep neural network (DNN) and graphics processing unit
(GPU) parallel computing [28], convolutional neural network (CNN) -based methods
have come to be widely used in speech recognition [29] and computer vision tasks [30]
due to their powerful expressive power. Several researchers have tried to apply CNN
to spatiotemporal fusion, and spatiotemporal fusion using deep convolutional neural
networks has demonstrated the effectiveness of the use of super-resolution techniques in
the field of spatiotemporal fusion [31]. The two-stream convolutional neural network for
spatiotemporal image fusion [32] performs fusion at the pixel level and can preserve rich
texture details. The deep convolutional spatiotemporal fusion network (DCSTFN) [16] uses
CNN to extract the main frame and background information from high-resolution images
and high-frequency components from low-resolution images [33], and the two extracted
features are fused and reconstructed to obtain the prediction results. A convolutional neural
network with multiscale and attention mechanisms (AMNet) [34] improved accuracy using
a spatial attention mechanism. To further improve the generalization ability and prediction
accuracy of the model, Tan proposed an enhanced deep convolutional spatiotemporal
fusion network (EDCSFTN) [35], where the relationship between the input and output was
obtained entirely by network learning, further improving its accuracy.

However, the existing algorithms still have limitations. First, RS images contain rich
feature information, and the feature extraction capability may be limited when using only
the convolutional layer of a single sensing field of view. Second, some methods do not
fully utilize inter-channel information or spatial information. Solving these outstanding
problems may enable us to effectively improve the accuracy of reconstructed images. In
this paper, a multiscale method combining channel and spatial attention mechanisms
for spatiotemporal fusion is proposed to try to alleviate these two problems. The main
contributions of our work are summarized as follows:

(1) A multiscale feature extraction (MFE) module for spatiotemporal fusion, which com-
bines the feature depth extraction features of different perception fields to enhance
the feature extraction ability of the network, is proposed.

(2) A spatial channel attention mechanism (SCA), which can focus on the relationship
between channels and the relationship between spaces at the same time, is proposed.

(3) A new compound loss function is proposed; this considers the proportion of L1
loss and mean square error (MSE) in different training periods to better optimize
the network.

The rest of this article is organized as follows. Section 2 introduces related research
work. Section 3 elaborates on the proposed network structure. Section 4 gives the experi-
mental details and analysis and describes the experimental results. Section 5 is a summary
of this article.

2. Related Work

In recent years, DNN-based spatiotemporal fusion algorithms have received increasing
attention. DCSTFN uses CNN for feature extraction and fusion at the pixel level based
on the linearity assumption, while EDCSFTN discards the linearity assumption based on
DCSTFN and fuses at the feature level to improve performance and robustness. AMNet
uses multiple networks to collaboratively generate fused images. These methods simply
stack CNNs in the feature extraction part, which may limit the performance of the model.
Deeper networks can learn richer feature information and correlation mappings, while deep
residual learning for image recognition (ResNet) [36] makes it easier to train deep networks.
Aggregated residual transformations for deep neural networks (ResNext) [37] redesigned
the residual block of ResNet, which uses a homogeneous multi-branch architecture to
obtain a better performance while maintaining the model complexity. Inception-ResNet
and the impact of residual connections on learning (Inception) [38] and deep learning with
depthwise separable convolutions (Xception) [39] extended the width of the network and
significantly reduced the computational effort of the model while ensuring its performance.
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The attention mechanism has recently been widely used in various computer vision
tasks, which can be interpreted as a method of biasing the allocation of available resources
to the most informative part of the input signal [40]. Among these, the squeeze-and-
excitation network (SENET) [40] can learn the relationship between channels, has achieved
remarkable results in image classification, and has been widely used. SENET first uses the
squeeze operation for global information embedding and then uses the excitation operation
for learning inter-channel relationships. Subsequently, BAM [41] and CBAM [42] tried to
introduce the position information between the features by using a larger sized data core,
but the convolution could only obtain a partial perception field of view, while its capture of
spatial information was limited. The non-local method [43] has become a more popular
spatial attention method recently because it can capture global spatial information, but its
huge overhead makes its application range limited.

3. Methods

The proposed method uses a group of image pairs as references. The acquisition time
of the reference image is denoted as T0, while the acquisition time of the predicted image
is denoted as T1. The Landsat image at T0 is denoted as L0, the corresponding MODIS
(Moderate Resolution Imaging Spectroradiometer) image is denoted as M0, the Landsat
image at T1 is denoted as L1, and the corresponding MODIS image is denoted as M1. L1p
represents the fusion result of the proposed method. Given L0, M0, and M1, the proposed
method needs to try its best to obtain the closest L1p to L1.

3.1. Overall Architecture

As shown in Figure 1, the proposed method can be expressed as:

L1p = Mre(MSCA(MMFE(Cov(L0, MO, M1)))...) (1)

where Mre(.) denotes the reconstruction operation—that is, the 3-layer two-dimensional
convolution operation. MSCA(.) denotes the spatial and channel attention. MMFE(.) rep-
resents the multiscale feature extraction. Conv(.) denotes the convolution operation. ...
denotes repeating the following operations several times. After connecting L1, M0, and
M1 in the channel dimensions, they are used as inputs to perform shallow feature extrac-
tion through a layer of convolution; after that, they use the MFE module to extract more
complex features. Then, the extracted complex features are captured by the SCA to obtain
the relationship between the space and the relationship between the channels to obtain
better spectral quality and spatial features. Finally, the fusion image is obtained through
the reconstruction operation.

The existing spatiotemporal fusion methods all use the spatial information of high-
resolution images L0 from the reference date and the temporal information of low-resolution
images M0 and M1 [7]. Because the spatial information that M0 and M1 can provide is very
limited, most of the details in the final generated image should come from the “fine” image
L0 of the reference date, so it is important to maintain the high-frequency information in
L0 and extract more features. Deep high-resolution representation learning for human
pose estimation (HRNET) [44] maintains the resolution across the entire network and
achieves good results. Therefore, the proposed model does not use the classical structure of
downsampling, upsampling, and image reconstruction, but rather maintains the resolution
in the whole network structure to obtain as much high-frequency information as possible.
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Figure 1. Proposed network, where Conv+ReLu represents the convolution operation followed by
the ReLu activation function, SCA represents the proposed spatial channel attention module, MFE
represents the proposed multiscale feature extraction module, and Conv represents the convolu-
tion operation.

3.2. Multiscale Feature Extraction Block

Inspired by Inception and feature pyramid networks for object detection (FPN) [45],
we designed a multi-scale feature extraction module with stronger feature extraction
capabilities. As Figure 2 shows, MFE has three branches. From bottom to top, rgw branches
use 1, 2, and 3 ResNext modules, respectively. The more residual blocks are used, the
deeper the network is. The deeper the network is, the larger the perception field is, and the
richer the feature semantic information is, the less texture details will be retained [45]. To
retain more semantic information and texture information at the same time, we sum the
features with a smaller perceptual field of view extracted by a branch and the input as a
new input and use more residual modules to obtain features with a larger perceptual field
of view. Finally, the sum of the features with different perception fields extracted from the
three branches is used as the output.

Figure 2. The proposed MFE module, where “⊕” denotes the element-wise sum.

ResNext improves the residual block of ResNet to obtain a better performance with
fewer parameters. Therefore, many computer vision tasks use the structure shown in
Figure 3a. However, the network structure is designed for high-level visual tasks of image
recognition and cannot be directly applied to low-vision tasks such as image fusion. In
order to make the residual network more suitable for a spatiotemporal fusion task, we
made the following changes: (1) The batch normalization (BN) layer is removed. Although
the regularization method helps to train the deep network and accelerate the convergence,
it may destroy the original contrast information of the image, resulting in poor fusion
results [35]. (2) The activation part after summation is deleted and leaky-Relu is selected
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as the active function. In the residual network, it is very important to avoid changing the
signal transmission of the identity mapping process, so we delete the activation operation
after the summation operation. In the residual module, Leaky-ReLU is more friendly to
negative signals than ReLu, so it is selected as the activation function [46].

Figure 3. Comparison of ResNext blocks. “⊕” denotes element-wise sum, while Conv(G) denotes
group convolution operation.

3.3. Spatial Channel Attention Block

Attention mechanism have a wide range of applications to improve performance in
computer vision tasks, such as pan sharpening and super-resolution. We try to use the
attention mechanism to improve the results of spatiotemporal fusion. Channel attention
only considers the relationship between channels and ignores the relationship between
spatial locations. The relationship between rows in an image is not completely independent,
the relationship between columns should not be completely independent, and this spatial
location information is crucial for improving the quality of fused images. Therefore, the
use of the SCA module for acquiring spatial location information at a small cost while
learning inter-channel relationships is proposed. An observer can view an object from
three different perspectives: front, left, and top. Similar to the observer, SCA obtains the
relationships between rows, columns, and channels in three dimensions: height, width,
and channels. The attention mechanism SENET, which has become very popular under
computational power constraints, is used to obtain the relationships in a certain dimension,
and it offers significant performance gains in exchange for lower computational costs.
Figure 4a shows the SENET working mechanism in detail. If the process of capturing
channel relationships is abstracted as a blue module, SENET can be depicted as shown
in Figure 4b. Figure 4c shows the SCA mechanism in detail: the relationship acquisition
between channels is consistent with SENET; the dimensional order of the input is changed;
and then the squeeze-and-excitation mechanism is used to learn the weights between rows,
the weights between columns, and the weights between channels. Finally, these three
weights are multiplied with the input to obtain the result.
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Figure 4. SENET and the proposed SCA module, where “Tran” indicates an operation that changes
the order of the input dimensions and C, H, and W represent the number of channels, height, and
width of the feature map, respectively.

3.4. Compound Loss Function

The loss function is also an important factor affecting the fusion result. Using only a
simple single loss function, such as MSE or L1, it is difficult to optimize the parameters well
and obtain a high-quality fusion image. Using only the MSE loss function will generate a
relatively smooth fusion image and will lead to losing a lot of edge information, because it
is sensitive to larger outliers but not so sensitive to smaller outliers. Using L1 loss alone can
lead to insufficient training and severe spectral noise. Some researchers have tried to use a
compound loss function including perceptual loss [47] and achieved good results. However,
this requires the help of a specific pre-training network, which requires additional time
costs, while the result of image reconstruction also depends on the quality of the pre-trained
network. In response to the above problems, we propose a novel compound loss function
as Equation (2).

Lp = kLmse + (1− k)L1 + αLssim (2)

where K is the weight factor of L1 loss, which changes with the advance of the training. The
initial value is 0, which is equivalent to using L1 + αLssim to optimize rgw network. With
the increase in training, k gradually increases to 1, which represents the use of Lmse + αLssim
for the optimization of the network. In the experiment, each batch was set to grow by 0.02.
α is a factor that controls the weight of Lssim loss, which is set to 0.8 based on experience.
The structural similarity (SSIM) [48] index comprehensively evaluates the similarity of
two images from the brightness, contrast, and structure. Multi-scale structural similarity
(MS-SSIM) has a higher accuracy by evaluating SSIM at a multi-scale level. MS-SSIM is
often used as an evaluation index in image reconstruction models, and its value is from 0
to 1. The closer it is to 1, the more similar the two images are [49]. It can be expressed as
Equation (3):

Lssim = 1−MS-SSIM (3)

SSIM can be denoted as Equation (4),

SSIM(x, y) =

(
2δxδy + C1

)(
2ηxy + C2

)(
δ2

x + δ2
y + C1

)(
η2

x + η2
y + C2

) (4)

where x and y represent the target image and the predicted image, respectively; δx and δy
are the mean values of the target image and the predicted image, respectively; η2

x and η2
y
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are the variances of the image; ηxy represents the covariance of the image x and y; C1 and
C2 are two variables that maintain the stability.

4. Experiments
4.1. Datasets

A classic scene in spatiotemporal data fusion is the fusion of Landsat and MODIS
images. Landsat images have a spatial resolution of 30 m and a return visit time of
16 days [50]. MODIS can cover most of the Earth every day, but it obtains data with a
spatial resolution of only 250 to 1000 m [50]. In this experiment, the LEVEL-2 product of
Landsat 8 OLI (which has undergone preliminary radiation calibration and atmospheric
correction) and the 8-day composite data MOD09A1 of MODIS are used, and the four bands
of blue, green, red, and near-infrared (NIR) are used for fusion. To verify the generality
of the proposed model, we selected areas in Shandong and Guangdong for experiments.
Guangdong is in a coastal area, and its humid climate makes the surface of the region
covered by clouds most of the time, so there are few data available for reference use after
screening. The climate of Shandong is relatively drier than that of Guangdong and more
cloud-free or less cloudy images are available, meaning that the dataset of Shandong is of
higher quality and the heterogeneity is lower compared with that of Guangdong. For the
study area in Shandong, the coordinates in the Landsat Global Reference System (WRS) are
represented as P122R034 and the area corresponding to h27v05 in the MODIS Sinusoidal
Tile Grid. For the study area in Guangdong, the coordinates in the WRS are represented
as P123R043 and the area corresponding to h28v06 in the MODIS Sinusoidal Tile Grid.
The image selection period is from 1 January 2013 to 31 December 2017. The Landsat
8 image requires a cloud coverage rate of less than 5%, and each scene is cropped to a
size of 4800× 4800 (to avoid the part at the edge with no data). Considering that there
are more eligible MODIS data, we choose the one closest to the date of Landsat image
acquisition. The corresponding MODIS image is reprojected with a spatial resolution
of 480 m and then cropped to the same area as the Landsat image with an image size
of 300× 300. The cropped Landsat image and the corresponding MODIS image are a
data pair. Finally, the Landsat and MODIS data pairs are grouped, with each group
containing two Landsat and two MODIS images. Fourteen groups are chosen for each
area, and the groups are then randomly divided into a training set and a test set. The
training set is 10 sets of data, and the test set is 4 sets of data (the Landsat image data
can be downloaded at https://earthexplorer.usgs.gov/; the MODIS image data can be
downloaded at https://ladsweb.modaps.eosdis.nasa.gov/search/order/4/MOD09A1--61
/2013-01-01..2017-12-31/DB/).

4.2. Experiment Settings

We use the following spatiotemporal fusion methods as references, including STARFM
based on the weighted function algorithm, FSDAF based on hybrid, DCSTFN, AMNet,
and EDCSTFN.

For quantitative evaluation, the following indicators are used to measure the results:
spectral angle mapper (SAM) [51], relative dimensionless integrated global error (ER-
GAS) [52], correlation coefficient (CC), and MS-SSIM. Among these, the closer the SAM
and ERGAS indexes are to 0, the closer the fusion image is to the real image. The closer the
CC and MS-SSIM indicators are to 1, the closer the fusion image is to the real image.

Input settings: M0 and M1 are upsampled to the same resolution as the Landsat image
using a bilinear interpolation method, and then with L1 in the channel dimension Concat
as an input.

Network settings: The size of the convolution kernel in the “Conv + ReLu” module is
3, the step size is 1, and the output channel is 24. Three pairs of MFE and SCA are used.
In the MFE module, all ResNext networks use the same settings. The three convolution
operations of the ResNext network are as follows: cov (24, 30, 1), cov (30, 30, 3, g = 10), and
cov (30, 24, 1). The parameters in brackets represent the input channel, output channel,

https://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/4/MOD09A1--61/2013-01-01..2017-12-31/DB/
https://ladsweb.modaps.eosdis.nasa.gov/search/order/4/MOD09A1--61/2013-01-01..2017-12-31/DB/
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and convolution core size in turn. G is the number of group convolutions. In the SCA
module, the squeeze multiplier of SENET is set to 4 in the target inter-channel relationship
branch. The squeeze multiplier of SENET in both the target inter-row relationship and
target inter-column relationship branches is set to 32. The reconstruction module uses
three-layer convolution; the convolution core size is 3; and the channels are set to 24, 12,
and 4, respectively.

Training and testing settings: Inputting the entire image into the network for process-
ing requires a large memory, which is unnecessary and not economical. It is economical
and feasible to divide MODIS and Landsat images into small patch input networks in
combination with hardware conditions. The patch size during training is set to 30, and the
sliding step size is set to 25. The patch size during prediction is set to 30, and the sliding
step size is set to 30. The initial learning rate is set to 0.001, and a total of 70 epochs are
trained. To optimize the network training parameters, we choose the Adam optimized
stochastic gradient descent method. The experiment is implemented using PyTorch, and
all experiments are performed with the same two GeForce RTX 2080Ti GPUs.

4.3. Results and Discussion
4.3.1. Quantitative Evaluation Comparison

The average value of each evaluation index of the fusion results is calculated separately
and used as a representative of the method performance. The evaluation results of the
Shandong dataset are shown in Table 1, and the evaluation results of the Guangdong
dataset are shown in Table 2.

Table 1. Quantitative assessment of different spatiotemporal fusion methods for the Shandong dataset.

Method SAM ERGAS CC SSIM

STARFM 15.4670 4.6295 0.5015 0.4190
FSDAF 13.2381 5. 0802 0.5086 0.4875
DCSTFN 7.48822 12.8310 0.6221 0.5795
AMNet 6.5622 7.3988 0.6989 0.6802
EDCSTFN 4.5044 7.2595 0.7338 0.7656
Proposed 4.1487 4.1963 0.7554 0.7922

Table 2. Quantitative assessment of different spatiotemporal fusion methods for the Guangdong dataset.

Method SAM ERGAS CC SSIM

STARFM 13.7664 10.7797 0.3931 0.4337
FSDAF 12.9959 13.1992 0.3659 0.4186
DCSTFN 4.25483 8.89167 0.7449 0.8021
AMNet 3.5521 5.1040 0.7761 0.8466
EDCSTFN 3.7535 8.0302 0.7790 0.8339
Proposed 3.3246 5.0842 0.7862 0.8646

From Tables 1 and 2, it is easy to find that the fusion results of FSDAF are better
than those of STARFM, which may be due to the better performance results of FSDAF
for heterogeneous regions. DCSTFN has a larger improvement than FSDAF, which may
benefit from the stronger representation capability of CNN. The relationship between the
input and output in AMNet and EDCSTFN models is completely learned by the network,
rather than based on some assumptions; thus, there is a more significant improvement in
the fusion results compared to DCSTFN. AMNet performs better than EDCSTFN in the
Shandong dataset, but AMNet slightly outperforms EDCSTFN in the Guangdong region,
probably due to the contrast caused by the complexity of the topography in the Guangdong
dataset. The proposed method uses the MFE and SCA modules to effectively analyze the
complex spatial information of the images and capture inter-channel information, which
plays a positive role in the fusion results; therefore, it performs better in objective metrics.
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4.3.2. Visual Comparison

In order to visualize the performance comparison of each algorithm, we intercepted
the same area of 300× 300 in the fusion results of different algorithms under the same
test case and magnified the area of 100× 100 twice to compare the details. To verify the
performance and robustness of the method, we selected areas with different land cover
types on different data sets; the selected areas had rich color information and texture
information. For the Shandong dataset, we selected a building area with rich spectral
information; for the Guangdong dataset, we selected a mountainous area with rich spectral
information. For the Shandong region, Figure 5 shows a sample with time 20160310 as the
reference data and time 20160326 as the target data, and the fusion results were compared
as shown in Figure 6. For the Guangdong region, Figure 7 shows a sample with time
20141015 as the reference data and time 20150119 as the target data, and the fusion results
are compared as shown in Figure 8.

(a) (b)

(c) (d)

Figure 5. A sample demonstration of the subjective performance comparison of the Shandong dataset.
(a) L0. (b) M0. (c) L1. (d) M1.

From the zoomed area in the upper left corner of the fusion results in Figure 6, it
can be clearly seen that STARFM and FSDAF are richer in their color performance but
poorer in texture details, and there are large differences with the real image. In particular,
STARFM has obvious mosaic patches. DCSTFN, AMNet, and EDCSTFN are better at retaining
texture information, but they all exhibit a “lighter” color representation. Our proposed
method not only retains texture details better but also is closer to the real image in terms of
spectral information.

It is easy to see from the enlarged area in the upper left corner of the fusion results of each
experiment in Figure 8: STARFM and FSADF are equally bad in terms of texture information
retention, and STARFM can barely see the texture information. In DCSTFN, AMNet, and
EDCSTFN, the texture information is well preserved and the mountain contours can be seen,
but DCSTFN has almost no spectral information, and AMNet and EDCSTFN retain only a
very small amount of information in the lower right corner. Our proposed model outperforms
other algorithms in terms of both spectral information retention and texture detail retention.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Visual evaluation of different spatiotemporal fusion methods for Shandong datasets at 20160326.
(a) Ground truth. (b) STARFM. (c) FSDAF. (d) DCSTFN. (e) AMNet. (f) EDCSTFN. (g) Proposed.

(a) (b)

(c) (d)

Figure 7. A sample demonstration of the subjective performance comparison of the Guangdong
dataset. (a) L0. (b) M0. (c) L1. (d) M1.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Visual evaluation of different spatiotemporal fusion methods for Guangdong datasets at
20150119 moment. (a) Ground truth. (b) STARFM. (c) FSDAF. (d) DCSTFN. (e) AMNet. (f) EDCSTFN.
(g) Proposed.

In summary, the fusion results of our proposed method are closer to those of the real
image, both in terms of texture detail information and spectral information.

4.3.3. Computational Efficiency Comparison

We compared the DNN-based models in the benchmark experiments in two dimen-
sions, model parameters and floating points of operations (FLOPs); the results are shown in
Table 3. Parameters represent the number of parameters that the model needs to learn. In
FLOPs(G), G represents 1× 106, and FLOPs is used to measure the computational complex-
ity of the model. From Table 3, we can find that our proposed model is much lower than
the other methods in terms of the number of parameters and FLOPs, where the number of
parameters is only half that of EDCSTFN and the difference between FLOPs and DCSTFN
is more than 10 times. It can be considered that our proposed model is more advantageous
in terms of its computational complexity.

Table 3. Comparison of model computational efficiency.

Method Parameters FLOPs (G)

DCSTFN 408,961 150.481
AMNet 633,452 97.974
EDCSTFN 281,764 64.918
Proposed 133,420 10.684

Reference ↓ ↓

4.3.4. Comparison of Residual Graphs

To further verify the effectiveness of the proposed method, the residual image experi-
ment is set up by selecting regions in the visual comparison experiment. The residual image
is the real image subtracted from the fused image pixel by pixel, and the average value of
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each band is taken. Theoretically, the closer the fused image is to the real image, the less
content appears on the residual image. The results of the comparison of residual image for
the Shandong and Guangdong datasets are shown in Figures 9 and 10, respectively. As can
be seen in Figure 9, the residual map of the proposed method has less texture. In Figure 10,
the residual maps of the last three DNN-based methods are similar, and a closer look shows
that the residual maps of our proposed method are generally smoother, meaning that the
proposed method has the best fusion effect. In general, the DNN-based methods generally
outperform the traditional algorithms.

(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison of residual images in Shandong 20160326 scene. (a) STARFM. (b) FSDAF.
(c) DCSTFN. (d) AMNet. (e) EDCSTFN. (f) Proposed.

4.3.5. Ablation Experiments

We performed ablation experiments on the Guangdong data set to demonstrate the
effectiveness of the proposed module. To verify the effect of each module, we first designed
the basic network structure as a comparison. The basic network uses SENET instead of the
proposed SCA module, and the loss function is L1 + Lssim. Lp represents the compound
loss function we proposed. +BN means adding the BN layer to the network, +SCA means
replacing SENET with the proposed SCA module, and +Lp means replacing the loss
function in the base network with the proposed loss function. the results are shown in
Table 4.

From the comparison of experiment 1 and experiment 2, it can be found that the
BN layer is not suitable for spatiotemporal fusion tasks because it destroys the internal
connection of the image. The comparison of experiment 1 and experiment 3 can verify that
the SCA module can acquire certain spatial information while learning the relationship
between channels, thereby improving the performance. The comparison between experi-
ment 3 and experiment 4 can verify that the proposed composite loss function can more
effectively optimize the network and improve its performance.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Comparison of residual images in Guangdong 20150119 scene. (a) STARFM. (b) FSDAF.
(c) DCSTFN. (d) AMNet. (e) EDCSTFN. (f) Proposed.

Table 4. Performance evaluation of different module structures on the Guangdong dataset.

ID Method SAM ERGAS CC SSIM

1 Base 3.3795 4.9559 0.7811 0.8531
2 Base + BN 3.6224 4.5479 0.7732 0.8494
3 Base + SCA 3.4346 4.5991 0.7841 0.861
4 Base + SCA + Lp 3.3246 5.0842 0.7862 0.8646

4.3.6. Sensitivity of the Method to the Amount of Training Data

To explore the sensitivity of the proposed method to the training data, we compared
the performance of AMNet, EDCSTFN, and the proposed method with 3, 5, and 8 sets of
training data, respectively, on the Shandong dataset. The comparison results are shown in
Tables 5–7.

Table 5. Quantitative assessment of different algorithms using 3 sets of training data in the Shan-
dong dataset.

Method SAM ERGAS CC SSIM

AMNet 4.9110 7.2776 0.7199 0.7360
EDCSTFN 4.8423 9.9645 0.7274 0.7296
Proposed 4.8621 7.2593 0.7267 0.7437

Table 6. Quantitative assessment of different algorithms using 5 sets of training data in the Shan-
dong dataset.

Method SAM ERGAS CC SSIM

AMNet 4.7582 7.5967 0.7294 0.7583
EDCSTFN 4.5671 6.9118 0.7362 0.7587
Proposed 4.4496 5.4320 0.7518 0.7939
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Table 7. Quantitative assessment of different algorithms using 8 sets of training data in the Shan-
dong dataset.

Method SAM ERGAS CC SSIM

AMNet 7.8941 10.6959 0.6721 0.6390
EDCSTFN 4.2838 6.5594 0.7388 0.7676
Proposed 4.3316 6.0588 0.7453 0.7841

From Tables 1 and 5–7, it can be seen that in the case of different training groups, the
performance of DNN-based methods has different degrees of impact, and the proposed
method has considerable competitiveness. The corresponding data for each algorithm in
Tables 5 and 6 show that the performance obtained using five sets of training data is better
than that obtained using three sets of training data, where the proposed method has the
largest increase, probably because three sets of training data are too few for the method,
which limits its performance. The corresponding data for AMNet in Tables 6 and 7 have
large fluctuations, while EDCSTFN and the proposed method show only small changes.
From Tables 1 and 7, it can be found that the performance of each algorithm fluctuates less.

4.4. Discussion

The experimental data of the Shandong and Guangdong regions shows that our
proposed model has a better prediction accuracy and better visual effects than other
methods. The regional geologies of Shandong and Guangdong are quite different, and
the proposed model still maintains a good performance, which shows that it has better
robustness. These superiorities may be due to the fact that the multiscale mechanism
can extract more complex features and the attention mechanism focuses on both the
relationships between channels and the spatial relationships. In the proposed method, the
relationship between the fusion result and the input is obtained entirely by the network
learning, without relying on specific assumptions. The proposed method can effectively
capture spectral information and texture features.

Despite these improvements in our approach, there are still some areas where our
work could be improved. The quality of the dataset is not high enough. For example, in
areas such as Guangdong, dates in the majority of the year have cloud coverage, and it is
difficult to collect enough high-quality data. In addition, there is limited ability to capture
changes in scenarios where the land cover changes drastically in a short period of time. In
the future, we will consider the better preprocessing of the data, such as cloud processing,
and at the same time will work to collect higher-quality data and investigate methods to
better capture changes.

5. Conclusions

In this paper, a multiscale mechanism that can learn complex features in image is
used, and the use of a novel attention mechanism for capturing both spatial and channel
information is proposed. Additionally, the use of a new composite loss function which can
successfully obtain higher-quality fusion results is proposed. Comparative experiments
on different regional datasets as well as ablation experiments validate the effectiveness of
this method. Future work will continue to focus on the retention of structural information
and additionally consider the use of Generative Adversarial Network (GAN) structures for
spatiotemporal fusion.

Author Contributions: Conceptualization, D.L.; Data curation, G.R.; Funding acquisition, D.L.;
Investigation, L.Z.; Project administration, D.L.; Software, G.R.; Supervision, W.L.; Validation, D.L.;
Writing—original draft, G.R.; Writing—review and editing, D.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos.
61972060, U1713213, and 62027827), National Key Research and Development Program of China



Remote Sens. 2022, 14, 461 16 of 18

(No. 2019YFE0110800), Natural Science Foundation of Chongqing (Nos. cstc2020jcyj-zdxmX0025,
cstc2019cxcylirc-td0270).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the fact that the data have been
pre-processed and involve laboratory intellectual property rights.

Acknowledgments: The authors would like to thank all members of Chongqing Key Laboratory of
Image Cognition for their kindness and help.

Conflicts of Interest: We declare that we have no financial and personal relationships with other
people or organizations that could inappropriately influence our work. There is no professional or
other personal interest of any nature or kind in any product, service, and/or company that could
be construed as influencing the position presented in, or the review of, the manuscript entitled,
“A Pansharpening Generative Adversarial Network with Multilevel Structure Enhancement and a
Multistream Fusion Architecture”.

References
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