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Abstract: In hyperspectral imaging (HSI), stripe noise is one of the most common noise types
that adversely affects its application. Convolutional neural networks (CNNs) have contributed to
state-of-the-art performance in HSI destriping given their powerful feature extraction and learning
capabilities. However, it is difficult to obtain paired training samples for real data. Most CNN
destriping methods construct a paired training dataset with simulated stripe noise for network
training. However, when the stripe noise of real data is complex, destriping performance of the
model is constrained. To solve this problem, this study proposes a real HSI stripe removal method
using a toward real HSI stripe removal via direction constraint hierarchical feature cascade network
(TRS-DCHC). TRS-DCHC uses the stripe noise extract subnetwork to extract stripe patterns from
real stripe-containing HSI data and incorporates clean images to form paired training samples.
The destriping subnetwork advantageously utilizes a wavelet transform to explicitly decompose
stripe and stripe-free components. It also adopts multi-scale feature dense connections and feature
fusion to enrich feature information and deeply mine the discriminate features of stripe and stripe-
free components. Our experiments on both simulated and real data of various loads showed that
TRS-DCHC features better performance in both simulated and real data compared with state-of-the-
art method.

Keywords: deep convolutional neural network (CNN); hyperspectral image; stripe noise removal;
wavelet transform

1. Introduction

With the continuous expansion of remote sensing image applications, the demand for
hyperspectral imaging (HSI) applications is also increasing, especially in the domains of
land cover classification, specific target detection and recognition, environmental monitor-
ing, and precision agriculture [1–4]. HSI data have many bands, and are highly susceptible
to interference during the imaging process by a series of degradation phenomena, such as
thermal noise, impulse noise, stripe noise, and dead lines. These factors cause numerous
adverse effects on his data processing, and the real spectral information is critically dam-
aged, which constrains the application of HSI data. Therefore, the improvement of image
quality in HSI data preprocessing is a key link in HSI data processing.

Of the many degradation factors, stripe noise is a common and special type of noise
that usually has line characteristics. The main driver of stripe noise is the instability of
a sensor and the inconsistent response of a sensor unit. For removal of the stripe noise,
many methods have been proposed. Here, we divided the stripe removal methods into
two groups: model-driven destriping method, and data-driven destriping method.
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1.1. Model-Driven Destriping Method

Most of the traditional destriping methods belong to this category of methods. This
kind of method usually designs an optimization model based on the generation mechanism
of HSI stripes and prior knowledge of image processing for destriping [5]. Previously, for
stripe removal, most traditional methods have used hand-crafted features to separate stripe
components and stripe-free components. This allowed for the retrieval of a destriped image
by analysis of the generation mechanism of the stripe based on prior knowledge [6–9].
They mainly used the frequency domain, non-local self-similarity, low rank, and sparse
point of view to design filtering algorithms to perform the destriping operation [10–13].
For instance, Chen et al. [14] proposed a nonlocal tensor-ring approximation HSI denoising
method based on tensor ring decomposition to explore the nonlocal self-similarity and
global spectral correlation. Wei et al. [15] introduced an intra-cluster-structured low-rank
matrix analysis HSI denoising method with automatically assigned rank numbers. Liu
et al. [16] applied a 3D wavelet transform and low-rank model coupled with a group-
sparse prior for pushbroom satellite image stripe removal. Wang et al. [17] focused on HSI
mixed noise removal and constructed a multidirectional low-rank model combined with
spatial-spectral total variation.

The wavelet-based method is a commonly used destriping method for model-driven
destriping methods. Usually, the background of HSI data in the spatial domain is complex,
and it is difficult to separate stripe and stripe-free components. The domain transforms an
image from the spatial to the frequency domain. In the frequency domain, different image
components exhibit different frequency signals, which can be used for effective distinction
between stripe and stripe-free components [18]. Rasti et al. [19] proposed a wavelet-based
sparse reduced-rank regression method for hyperspectral image restoration. Chen et al. [20]
applied principal component analysis (PCA) and wavelet transform to remove noise in
low-energy PCA output channels. Despite the considerable number of destriping methods,
these traditional model-driven approaches are to some extent affected by image priors, and
are limited by a handcrafted feature when the real stripe-contained HSI are more complex.
Thus, these approaches cannot provide good performance in complex situations, and it is
difficult to select and optimize model parameters.

However, these approaches, which had carefully designed handcrafted feature ex-
traction operators based on the essential characteristics of stripes, cannot be used to fully
characterize stripe and stripe-free components. Moreover, when the stripe generation mech-
anism and the feature extraction operator do not fit well enough, the destriping method
applicability is limited.

1.2. Data-Driven Destriping Method

In recent years, researchers have been increasingly focusing on the application of
CNN-based methods for HSI quality improvement. The CNN-based methods show a
powerful feature representation ability due to the addition of the learning ability to the
model itself; massive training data also play a pivotal role. Generally, most current methods
for HSI destriping are based on supervised learning for model training, which requires
a paired training dataset consisting of noisy images and corresponding clean images.
However, it is difficult to acquire paired data [21]. To overcome this problem, synthetic
noise can be added to a clean image to create paired data. Then, the simulated stripe-clean
training pairs can be used to train the destriping network. For example, Cao et al. [22]
proposed a deep spatial-spectral reasoning network for better denoising and restoration
that considers both local and global context information. Zhang et al. [23] introduced a
CNN-based method combining a spatial-spectral gradient image structure information
prior network for HSI hybrid noise removal. Likewise, Zhong et al. [24] added image
gradient information to the network as an auxiliary information to improve the stripe
removal performance. On the other hand, by estimating the noise intensity as the training
data feed to the model, which can efficiently adapt the model performance for noise at
different intensities. Maffei et al. [25] designed a single network with a noise level map as
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input, which can remove noise in an efficient and flexible way. Furthermore, Yuan et al. [26]
estimated the noise intensity through a dedicated subnetwork, which can improve the
denoising ability of the model. Wang et al. [27] performed self-supervision by extracting
noise samples from real data through a noise estimator. Subsequently, they added them
to the clean band images in the data to form a noise-clean paired dataset. This method is
advantageous but limited for determining the noise estimator and may affect extraction
of noise samples. Song et al. [21] introduced a cycleGAN unsupervised stripe removal
network based on a combined wavelet to solve the problem of difficult accessibility to
paired data. Dong et al. [28] applied 3D UNet to combine spatial-spectral representation
learning for HSI denoising. Chang et al. [29] proposed a CNN model with a wavelet, which
achieved satisfactory results in a variety of stripe-type simulation experiments.

As the distribution of stripe noise is spatially random, expanding the receptive field
using multi-scale feature extraction to obtain global features is a commonly used strategy.
Liu et al. [30] proposed a denoising network based on the 3D pyramid dilation convolution
to extract multiscale features. Chang et al. [31] developed HSI-DeNet interspersed with
a dilation convolution layer to expand the receptive field and obtain multiscale features.
Moreover, attention mechanisms have been extensively applied in the domain of com-
puter vision [32–34], thus contributing to the state-of-the-art HSI processing. The attention
mechanism has been broadly applied for HSI classification, semantic segmentation, pan
sharpening, object detection, and change detection [35–39]. In recent years, attention mech-
anisms have also been applied in the image quality improvement domain. Anwar et al. [40]
designed a real image blind denoising network with feature attention for extracting the
dependency of inner channels. Shi et al. [41] applied 3D attention to deep aggregating the
spatial-spectral feature for more efficient denoising.

The CNN-based method for HSI destriping has been extensively studied, yielding
very promising methods and results. At present, most destriping methods are based on
supervised learning, and training samples are generated by adding simulated stripes to
clean samples. However, there is inconsistency between simulated stripes and real stripes
that affects the model performance. This improves model performance in simulation
experiments, but the real data performance remains instable. Notably, a large amount
of real data has not yet been fully mined and utilized. The methods that consider real
noise data used a threshold-based statistical approach to the extraction and estimation
of realistic noise samples [27]. This kind of realistic noise sample extraction strategy is
difficult to optimize, the parameters are complex, and it is more difficult to handle stripe
pattern removal in complex situations. There have been fewer attempts to use the prior
knowledge of the frequency domain to enhance the destriping performance of the model
in a targeted manner.

1.3. Contributes

In response to the aforementioned challenges, this study proposes a solution based
on full use of a large volume of real degraded data. Stripe samples for network training
were obtained from real data samples, and from simulated stripe samples; they were
then combined in synergy for training the samples. Theoretically, this solution enables
the network to bridge the domain difference and break through the barriers between the
simulated and the real stripe samples; moreover, it allows the model to exhibit better
destriping performance on real data.

Thus, a real hyperspectral image stripe removal via a direction constraint hierarchical
feature cascade network (TRS-DCHC) is proposed. The main innovations of TRS-DCHC
can be summarized as follows:

• The training stripe samples for TRS-DCHC are both realistic and simulated data. On
one hand, the model can process stripes with unknown distribution and structure. On
the other hand, there is no need to thoroughly design the complicated stripe generation
method; moreover, a blind destriping dataset can be obtained.
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• In the stripe sample extraction and generation part, we mainly focus on spatial context
information by adopting the strategy of extrapolating from local to global, and by
proposing a constraint on the direction extraction strategy of points and lines, and
lines and surfaces that extracts stripe samples from a global perspective.

• In the stripe removal part, we propose a multi-scale dense hierarchical feature cas-
cading wavelet network through multi-scale feature extraction and multilevel feature
fusion to obtain abundant information flow for the stripe component. In particular,
we use the discrete wavelet transform (DWT) to explicitly decompose the input data
into different frequency information as network input. This strategy combines the
prior knowledge of an image with deep learning, which is more suitable for stripe
removal. Moreover, it can alleviate the challenge of training, reduce information loss,
and maintain spectrum consistency.

The remaining part of the manuscript is structured as follows. A systematic review
of the HSI data stripe removal methods is described in Section 2. Details of the proposed
destriping network are presented in Section 3. The experimental results and discussion are
provided in Section 4. The main findings and the conclusions are summarized in Section 5.

2. Materials and Methods

In this section, we introduce the HSI degradation formula and describe the proposed
TRS-DCHC in detail. As illustrated in Figure 1, the unified HSI destriping algorithm can be
divided into two modules: a direction-constrained stripe adaptive extraction subnetwork,
and a wavelet-based hierarchical feature cascaded destriping subnetwork.

Figure 1. Flowchart of the proposed TRS-DCHC. RB denotes the residual block, DCSC denotes the
direction constrained spatial context module, and MsRB denotes the multi-scale residual block.

2.1. HSI Degradation Formula

HSI spaceborne systems are susceptible to interference caused by environment-related
and instrumental factors during the imaging process, which produce stripe noise. Generally,
the HSI stripe noise model can be expressed as

Y = C + S (1)

where Y denotes an observed three-dimensional (3D) HSI cube of size W × H × B, and
W, H, and B denote the width, height, and band number of the HSI cube, respectively. C
is a stripe-free component and S denotes a stripe component. The goal of destriping is to
obtain the restored stripe-free component. Moreover, all the stripes should be empirically
considered as additive components.

The models trained by simulated stripe-clean pairs can achieve satisfactory results in
simulation experiments; however, the stripes are more complex than the simulated stripes
in real situations, and when the real situation is inconsistent with the simulated stripe, the
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trained model cannot be well migrated to real situations. This limits their application in
real situations.

2.2. Direction Constrained Stripe Adaptive Unsupervised Extraction Subnetwork

To improve the destriping ability of the model, we take full advantage of large volumes
of real noisy data. In particular, we extract stripe samples from real data and change the
single stripe-clean training paired construction mode to generate a specific distribution of
simulated stripe samples. The direction-constrained stripe adaptive extraction subnetwork
adopts a local-to-global, point-to-line, and line-to-surface strategy, leading to unsupervised
adaptive extraction of stripe patterns in real data; the structure of the extraction subnetwork
as shown in Figure 2a.

Figure 2. Flowchart of the proposed direction constrained stripe adaptive extraction subnetwork.
The arrow box denotes the feature map extracted by image spatial recurrent neural network (IRNN).
(a) Direction constrained stripe adaptive extraction subnetwork. (b) Direction constraint spatial
context module (DCSC). (c) Spatial context aggregation residual block (SCARB). (d) Multi-direction
awarded local to global module (MDL2G).

The direction-constrained stripe adaptive extraction subnetwork consists of a con-
volution layer (Conv), ReLU layer, residual block (RB), and direction-constrained spatial
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context module (DCSC). The DCSC structure is shown in Figure 2b, and is composed of
two modules: a spatial context aggregation residual block (SCARB), and a multi-direction
awarded local to global module (MDL2G), as displayed in Figure 2c,d. We use structures
such as image spatial recurrent neural network (IRNN) [42] to aggregate the spatial context
information with two stages of recurrent translations in a local to global manner. To this
end, we apply four fixed directions to accurately capture stripe patterns from real data.

We designed the MDL2G module using the aforementioned IRNN architecture. The
MDL2G retrieves global context information by executing a four-direction-aware IRNN
twice and the feature extraction process of the IRNN, as shown in Figure 3. In the first
stage, the information in the four directions (up, left, down, right) of each position in the
input feature map is recursively obtained through a 1 × 1 convolution. Then, the output
feature map (denoted as F), which collects each position for contextual information in the
horizontal and vertical directions, and the recurrent convolution operation is repeated for F
in the second stage. After the convolution operation (embedded in the first two stages), the
global context information of the feature map can be obtained to realize the extraction of
global feature information from the local to the global context.

Figure 3. Schematic illustration of the extraction of two-round IRNN architectural global contextual
features in two stages using a local to global strategy.

Moreover, to obtain and learn spatial context information more specifically, we also
designed another branch. This step was required to further extract the discriminate stripe
feature using the sigmoid function and to directly generate the attention map of the input
feature map. The latter can be used as guidance information. Moreover, it can provide
auxiliary information for more accurate extraction of stripe patterns.

As the data with real stripes do not contain corresponding ground truth data, they
are unsupervised in the real stripe sample extraction process. Hence, the model cannot be
trained by calculating the loss between the network output and ground truth as supervised
learning. Rudin et al. [43] has demonstrated that the total variation (TV) of noise-contained
images is larger than that of clean images. Owing to this, we used TV loss as the loss
function of the extraction subnetwork during the training process. As the extraction
subnetwork is aimed to generate stripe patterns from real stripe-contained data, which
are more complex and random than simulated stripes, it does not concentrate on the
consistency between the extracted stripe and the stripe on the real image. Therefore, it can
be constrained by TV loss, which is calculated by

LTV = ‖∇h I‖2
2 + ‖∇v I‖2

2 (2)

where I denotes the image subtracted by the input image to the output one, and ∇h and
∇v are the horizontal direction gradient and vertical direction gradient, respectively.

2.3. Wavelet-Based Hierarchical Feature Cascaded Destriping Subnetwork

HSI data have a highly complex background and contain rich spectral information
It is challenging to effectively distinguish stripe patterns and ground objects, thereby,
hampering the HSI stripe removal. Features at different levels and frequency represent
different types of information. Low-level features represent more specific features, whereas
high-level features are more abstract. The fusion of features at different levels can enable
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the network to learn more discriminating features that distinguish the patterns (stripe or
strip-free).

2.3.1. Wavelet Decomposition

It should be noted that the input data of the wavelet-based direction-constrained
stripe adaptive extraction subnetwork are no longer the original image data, but wavelet
sub-bands (coefficients) [44] after DWT. Image data can be explicitly decomposed from the
spatial domain transform to the frequency domain into different frequency information
through wavelet transformation. This removes the complexity in the calculation and
information loss. Here, we utilize the Haar wavelet transform as the mapping method
between the image data and frequency domain. Let I denote the input image data, the Haar
wavelet transform which decomposes I into four sub-band images through four bandpass
filters: approximation of image (LL), horizontal detail (LH), vertical detail (HL), and
diagonal detail (HH) bands [45]. Given the orthogonality of the DWT filter, the image can
be reconstructed by the inverse wavelet transform (IWT). As stripe patterns usually emerge
with certain directional characteristics, they exhibit certain performance in fixed coefficients
after DWT operation. As shown in Figure 4, stripe patterns show notable performance in
vertical coefficients, but insignificant in the horizontal and diagonal coefficients. Owing
to this, we combine DWT with CNN to provide prior information for the extraction
subnetwork and to ultimately improve the efficiency of extracting stripe patterns.

Figure 4. Illustration of DWT. (a) Degraded image, (b) Extraction results of the image in different
coefficients after DWT. The upper left is LL, the lower left is HL, the upper right is LH, and the lower
right is HH.

2.3.2. Multi-Scale Hierarchical Feature Fusion

Multi-scale feature extraction and residual learning are widely used for the remote
sensing image processing. In the wavelet-based hierarchical feature cascaded destriping
subnetwork, we use dense connections to better retain detailed information to reduce
the information loss in the feature extraction process. Further, MsRB applies inter-layer
multi-scale feature aggregation to obtain multi-scale features to enhance the information
extraction ability, which is beneficial for improving the destriping performance.

Specifically, we use a two-stage structure to extract and fusion multiscale features in
MsRB. The input feature F passes through convolutional layers with kernel sizes of 3 × 3,
5 × 5, and 7 × 7, and retrieves features F3_1, F5_1, and F7_1, respectively. Then, concentrate
operation is performed on F3_1, F5_1, and F7_1, and the concentrate result is passed through
the convolutional layer with kernel sizes of 3 × 3, 5 × 5, and 7 × 7 to perform feature
extraction again to obtain F3_2, F5_2, and F7_2; this operation is performed iteratively.
Through two multi-scale feature extracts and feature fusion, MsRB can learn the primary
features of the input feature. A global skip connection is introduced to prevent gradient
explosion and feature information loss. As the depth of the network increases, the extracted
features become more abstract and more significant. Therefore, the fusion of features at
different levels can provide richer feature information and mine more representative and
discriminatory information.
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The mean square error (MSE) is then introduced as the loss function for the destriping
subnetwork, which is defined as

LD =
1

2n

n

∑
i=1
‖Xi− Ri‖2 (3)

where n denotes the number of batches, X denotes the clean image, and R is the de-
striped image.

3. Experimental Results and Discussion

To evaluate the effectiveness of the proposed method, we provide the details of
the training data and verification data, while also providing training parameter settings,
evaluation indicators, and ablation experiments. We conducted experiments on simulated
and real stripe contained data with different loads and compared them with various
representative methods.

3.1. Experimental Datasets and Parameter Setting

We selected 22 Chinese GaoFen-5 (GF-5) hyperspectral satellite images as the real
stripe-containing dataset for stripe pattern extraction; the images measured 2008 × 2083.
The GF-5 satellite is an advanced hyperspectral imager (AHSI) with visible and near-
infrared (VNIR) and shortwave infrared (SWIR) sensors [46]. GeoFen-5 is a polar-orbiting
satellite of the China High-Resolution Earth Observation System (CHEOS) belonging to
the China National Space Administration; it was launched in 2018 [47]. The VNIR sensor
has 150 bands, and the SWIR has 180 bands. Figure 5 shows a segment of the real data for
the stripe extraction used in this study. Moreover, we selected the Washington DC Mall his
dataset (WDC) as the training and simulation test data. For the real data experiment, we
selected the GF-5 data, Chinese ZhuHai-1 hyperspectral satellite (ZhuHai-1) data, Earth
Observing-1 (EO-1) image data, and HYDICE UrbhisHSI data as the test data in the real
data experiment. The Table 1 list the characteristic of the datasets mentioned above. At
the data processing stage, foremost, we normalized the real stripe-containing data and the
WDC data to (0, 1), and then cut the data into sub-cubes of size 64 × 64 × 10; the rotation
and flip operation were performed for data augmentation. Shuffle is performed before
entering the next epoch. The total loss of the TRS-DCHC can be defined as

Ltotal = λLTV + LD (4)

The proposed method was implemented on a Python 3.6 environment with the Pytorch
package and NVIDIA Tesla V100 GPU. For the training phase, the ADAM solver [48] was
applied as the optimizer with β = (0.9, 0.999), and the learning rate was fixed at 0.0001. The
epoch was set as 300 with batch size = 64, λ set as 0.01 empirical.

Table 1. Characteristic of The Experimental Datasets.

Dataset

WDC GF-5 ZhuHai-1 EO-1 Urban

Size 1208 × 307 × 191
2008 × 2083 ×

150/2008 × 2083
× 180

512 × 512 × 32 200 × 200 × 210 307 × 307 × 210

Sensor Hydice AHSI CMOS Hyperion Hydice
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Figure 5. (a–d) GF-5 data used in this article for stripe pattern extraction; (e–h) stripe patterns
extracted from real stripe-contained data by direction constrained stripe adaptive unsupervised
extraction subnetwork.

In addition, to evaluate the effectiveness of the proposed TRS-DCHC (The code is
available in https://github.com/November666/TRS-DCHC (accessed on 12 December
2021)) method, we selected current state-of-the-art methods, that is, ASSTV [49], LRTV [50],
NGMeet [51], LRMR [52], TDL [53], HSI-DeNet [31], and SGIDN [24], for comparison. For
the accurate comparison, the evaluation indices, peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM) [54] indices were used for the simulated experimental destriped
image quantitative assessment. For the real experiment, there was no reference, thereby
constraining quantitative evaluation. To overcome this constraint, we used no-reference
indices (an inverse coefficient of variation (ICV) [55] and the mean relative deviation
(MRD) [56]) to quantitatively evaluate the effect of destriping. Furthermore, we performed
land-cover mapping on the destriped image to verify the destriping performance.

3.2. Simulated Data Experimental Results and Analysis

In the simulated experiment, we designed a variety of stripe types to confirm the
destriping performance of the TRS-DCHC method, and designed three simulated stripe
patterns as follows:

Case 1 (Period Stripe): the stripe intensities obey a normal distribution with standard
deviation σ = 25; in different bands, the intensities are the same.

Case 2 (Random stripe): the stripe intensities obey a normal distribution with random
standard deviation σ ∈ [10, 49], and in different bands, the intensities are different.

Case 3 (Stripe noise and dead lines): added stripe noise and dead lines obey the normal
distribution with random standard deviation σ = 20.

The evaluation results are shown in Table 2. We also show the destriping results
without incorporated real data (denoted as DCHC) and incorporated real data but without
wavelet (denoted as TRS-DCHC-noW). The best results are indicated in bold. The simulated
destriping results are displayed in Figures 6–8 with pseudo color images (bands: 57, 27,
and 17). In Case 1, LRTV has a good processing effect (see Figure 6). Moreover, Figure 6e,f)
shows that LRMR, TDL, and NGMeet are not very effective in processing periodic stripe
noise, and there are still large areas of stripe residue. In particular, NGMeet also introduces
the problem of spectral loss. The stripe removal ability of ASSTV was better than that of
the previously mentioned methods. It exhibits some suppression impact on stripes, but the
impact is limited. Figure 6g shows considerable stripe noise that has not been completely

https://github.com/November666/TRS-DCHC
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removed. Considering the CNN-based methods, HSI-DeNet and SGIDN have prominent
processing effects on stripes, which can remove nearly all stripes, but the consistency of the
spectral information of the destriped image is poor; especially for HSI-DeNet where there is
loss of detail (see Figure 6h for details). TRS-DCHC stands out with promising advantages
in stripe removal, as it can remove all stripes and can achieve satisfactory results in the
recovery of the destriped image, which is basically the same as the original image.

Table 2. Quantitative Evaluation of Simulated Experiments.

Case 1 Case 2 Case 3

MPSNR MSSIM MPSNR MSSIM MPSNR MSSIM

LRTV [50] 30.21 0.8206 29.26 0.7661 25.37 0.6427
LRMR [52] 27.27 0.7102 28.91 0.7850 26.54 0.6771
TDL [53] 27.51 0.7099 27.81 0.7364 26.16 0.6555

NGMeet [51] 28.06 0.7434 33.64 0.8565 33.76 0.8703
ASSTV [49] 29.36 0.7542 32.63 0.8423 33.61 0.8626

HSI-DeNet [31] 36.17 0.9128 34.69 0.8974 33.84 0.8741
SGIDN [24] 35.97 0.9036 35.85 0.9002 34.33 0.8846

DCHC 42.83 0.9786 36.07 0.9013 36.86 0.9025
TRS-DCHC-noW 42.21 0.9675 35.63 0.8942 36.07 0.8870

TRS-DCHC 43.04 0.9867 36.22 0.9170 36.91 0.9078

Figure 6. Destriping result of Case 1 (period stripe noise).

The results of Case 2 are shown in Figure 7. As can be seen, LRTV can partially
alleviate stripe noise, but it cannot completely suppress it. Moreover, a problem of large
spectral changes emerges as shown in Figure 7c. Although LRMR has a small loss of
spectral information, it cannot completely remove all stripe noise, as seen from Figure 7d.
The destriped result of TDL, similar to LRTV, is displayed in Figure 7e. It suffers from the
same problem of incomplete stripe removal and the loss of spectral information. NGMeet
has a prominent effect on stripe removal by removing nearly all stripes, but it also destroys
the original spectral information of ground features, as shown in Figure 7f. ASSTV removes
a large area of stripe, and the spectral information is retained better; however, the stripe
residues are not completely suppressed in some areas, as can be seen in Figure 7g. Figure 7h
demonstrates that the HSI-DeNet has no prominent stripe residues, but the balance between
stripe removal and image restoration is plagued. In particular, the processed image has a
certain amount of blur and loss of detail. The destriping performance of SGIDN is good;
however, there are a few areas where details are not completely restored (see Figure 7i).
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The TRS-DCHC can provide relatively satisfactory results in stripe removing and image
recovery as the stripe is nearly completely removed, and the spectral information is close
to the original image with minimal loss.

Figure 7. Destriping result of Case 2 (random stripe noise).

Figure 8. Destriping result of Case 3 (mixed stripe noise).

Figure 8 shows that for Case 3, the stripe noise mixed with dead lines hampers the
stripe removal. LRTV, LRMR, and TDL do not perform well on the stripe-mixed dead lines.
In particular, LRTV also triggers the loss of spectral information, as shown in Figure 8c–e.
NGMeet has a strong inhibitory effect on stripe, but it shows nearly no efficiency in the
treatment of the dead lines. Moreover, it cannot provide an obvious repair effect on the
dead lines, as indicated by Figure 8f. Likewise, ASSTV has a significant inhibitory effect on
stripes, but it does not eliminate the dead lines. At the same time, the spectral information
is affected to some extent, as shown in Figure 8g. HSI-DeNet has a good suppression
effect on stripe and the dead lines. Figure 8h demonstrates that most of the stripes can be
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removed, but a small part of the stripe remains. In terms of the dead lines, HSI-DeNet can
also provide a better restoration effect; however, the overall spectral information of the
restored image changed. SGIDN has a prominent effect on the processing of stripe noise.
There is no large area of stripe residue, except for a small part of the stripe that has not been
well processed. The dead lines can also be better repaired and the spectral of the repaired
image can be obtained. A better retention is identified, as shown in Figure 8i. TRS-DCHC
not only has the ability to remove stripes, but it can also repair dead lines with satisfactory
results, as shown in Figure 8j.

From the index evaluate results, as reported in Table 2, the DCHC and TRS-DCHC
-noW can also provide a better destriping performance. However, the overall index of TRS-
DCHC was the best, the performance was relatively stable, the processing of various stripes
was with facility, and the repair performance was also ideal. Both visual comparison and
quantitative comparison proved the superiority and the efficiency of TRS-DCHC compared
to previous approaches.

3.3. Real Data Experimental Results and Analysis

Examination of the destriping performance on real data is a more realistic way to
evaluate the effectiveness of the method. To this end, we considered a real data experiment
and selected seven scenes of the HSI data with different loads (GF-5, Zhuhai-1, Hyperion
EO-1, and HYDICE Urban datasets) to confirm the effectiveness and competitiveness of the
TRS-DCHC method. These real data contain various levels of complex stripes and hybrid
noise, which represent complex state-of-the art challenges for HSI destriping methods. We
selected an area of 10 × 10 to calculate MRD and ICV. The evaluation results are shown in
Table 3; similarly, we also report the quantitative evaluate results of DCHC and TRS-DCHC-
noW. Therein, the best results for each scene are marked in bold, and the second-best results
are marked in blue.

Table 3. Quantitative Evaluation Results for Real Data Experiments.

Images Index
Methods

LRTV LRMR TDL NGMeet ASSTV HSI-
DeNet SGIDN DCHC TRS-DCHC-

noW TRS-DCHC

GF-5
Scene 1

MRD 1.763 1.787 2.490 3.731 1.706 3.309 1.605 3.830 3.508 3.599
ICV 8.031 8.685 8.428 6.915 7.924 5.906 7.767 12.141 11.505 13.341

GF-5
Scene 2

MRD 0.778 0.555 3.218 3.838 1.002 1.101 1.506 0.539 0.630 0.522
ICV 2.590 2.772 2.912 3.334 2.333 2.226 1.945 3.326 3.491 3.863

GF-5
Scene 3

MRD 4.368 2.904 2.929 2.523 2.196 5.129 7.428 4.020 3.334 3.623
ICV 5.393 3.723 3.747 4.062 2.863 3.441 6.493 2.408 3.590 3.317

Zhuhai-1
Scene 1

MRD 1.804 2.176 1.961 1.539 1.382 1.415 2.697 2.052 1.126 0.960
ICV 5.335 4.996 4.525 4.872 5.170 4.434 4.012 5.120 5.377 5.443

Zhuhai-1
Scene 2

MRD 2.813 1.680 1.308 1.672 1.539 0.820 4.384 1.374 1.283 1.134
ICV 3.607 3.913 4.260 4.765 4.475 4.368 5.261 4.310 4.235 5.484

Hyperion
EO-1

MRD 2.160 2.663 2.788 2.383 2.738 3.185 2.929 2.532 2.193 2.375
ICV 2.507 1.854 2.102 2.044 1.978 2.606 1.953 2.672 2.598 2.714

HYDICE
Urban

MRD 2.209 2.292 3.011 3.177 1.878 1.936 1.986 2.044 1.895 1.779
ICV 0.785 0.779 0.8992 0.729 0.754 1.118 0.688 0.795 1.051 1.387

3.3.1. GF-5 HSI Dataset

We selected two scenes of GF-5 data for the real data experiment corrupted by mixed
stripe and random noises. The destriped results are presented in Figures 9 and 10. Some
unobvious stripe residues or spectral loss areas are marked by the red eclipse.

For scene 1 with 512 × 512 × 180 size, the original image contained many stripes,
and the noise level is strong. The experimental results show that although LRTV can
suppress a portion of the stripe noise (see Figure 9b), the structure and texture of the
stripe-free component of the image itself are destroyed. LRMR and TDL are not effective



Remote Sens. 2022, 14, 467 13 of 23

with stripe removal, as can be seen in Figure 9c,d. After the NGMeet processing, most
of the stripe noise is removed over land, but the residuals of strip noise are evident over
the water body. A small fraction of strips is not completely removed, and the spectral
information of the destriped image also differs from that of the original image, as illustrated
in Figure 9e. Further, Figure 9f shows that the ASSTV method has a good inhibitory effect
on the stripe; the striped result has prominent noise residue. Although the HSI-DeNet
can effectively alleviate the stripe noise, the spectral information of the restored image is
modified. Moreover, the over-smoothing phenomenon emerges as shown in Figure 9g.
After the SGIDN processing, the stripe was more effectively suppressed, but some spectral
information was lost as indicated in Figure 9h. Figure 9i illustrates that the TRS-DCHC
method achieved a satisfactory result, while the spectral information of the destriped image
and the details and texture of the ground object remain intact.

Figure 9. Destriped results on GF-5 of scenes 1 with false color image (band: 70, 15, 90). (a) De-
graded image. (b) LRTV. (c) LRMR. (d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN.
(i) TRS-DCHC.

For scene 2, the data were severely disturbed by mixed noise with stripe and random
noises. As shown in Figure 10, the LRTV removes most of the stripe; only a small fraction
of stripes remains. However, the spectral information is different from that of the original
image. The LRMR and TDL methods can remove a portion of the stripes, but the effect is
not evident as seen from Figure 10b–d. Further, Figure 10e shows that the NGMeet exhibits
a more distinct destriping performance. However, there are still unremoved stripes over
homogeneous areas, such as water bodies. Although ASSTV can remove most of the stripes,
the destriped result is not satisfactory as it destroys the homogeneity of the water body
(see Figure 10f). For the HSI-DeNet, the problem of over-smoothing is still evident, thereby
highlighting unsatisfactory performance as displayed in Figure 10g. SGIDN can remove
most of the stripe noise and random noise, but a minor fraction of noise remains. Moreover,
Figure 10h shows that the spectral information is lost, especially when the color difference
of the land part is emphasized. The TRS-DCHC method provides satisfactory results
and has a better suppression effect on stripe noise. At the same time, the recovery image
spectrum information is recovered well, and the details of the ground object remain intact.
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Figure 10. Destriped results on GF-5 of scenes 2 with false color image (band: 140, 1, 60). (a) De-
graded image. (b) LRTV. (c) LRMR. (d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN.
(i) TRS-DCHC.

3.3.2. Zhuhai-1 Dataset

The Zhuhai-1 data had considerable stripe noise. We selected two scenes of size
512 × 512 as the experimental data. The stripes in scene 1 have different lengths and ran-
dom widths, while the distribution is relatively sparse. These features meet the requirement
for the method evaluation. The experimental results show (Figure 11) that the contrast
method used in this study has varying degrees of inhibition on the stripes; some stripes
remain. After the LRTV processing, numerous stripes remain. Meanwhile, LRMR, TDL,
and NGMeet are not sufficiently stringent for stripe processing, as shown in Figure 11b–e.
The ASSTV can suppress a part of the stripe, but stripes which are too intense exert only
minor positive effect, while some portion of the stripe remains. The HSI-DeNet can effec-
tively remove most stripes, but the loss of details and excessive smoothness emerge as a
drawback. The SGIDN can inhibit a part of the stripe but cannot completely remove stripe
noise, as shown in Figure 11h. After the TRS-DCHC processing, almost all stripe noise can
be removed, while the original spatial and spectral information is better preserved.

For scene 2, a small and dense stripe is shown in Figure 12. Most parts of this stripe are
hidden in the background and indistinguishable. LRTV efficiently removes most stripes,
and it also leads to the loss of spectral information. LRMR and TDL cannot achieve a good
processing effect on scene 2, and many stripes remain, as shown in Figure 12b–d. For
NGMeet, a portion of the stripe is suppressed, but it is not sufficiently stringent given the
emerged interference from the stripe. For ASSTV, most of the stripe can be removed well
and the spectral information can be better preserved. However, there are some dense and
small stripe residues, as demonstrated in Figure 12f. Figure 12g shows that HSI-DeNet
removes stripes, but causes spectral loss. Similarly, SGIDN has a strong removal effect on
stripe noise in scene 2, but some spectral loss inevitably occurs, as indicated by Figure 12h.
TRS-DCHC can achieve better results, and the spectral information of the restored image is
retained to a greater extent.
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Figure 11. Destriped results on Zhuihai-1 of scenes 1. (a) Degraded image. (b) LRTV. (c) LRMR.
(d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN. (i) TRS-DCHC.

Figure 12. Destriped results on Zhuihai-1 of scenes 2. (a) Degraded image. (b) LRTV. (c) LRMR.
(d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN. (i) TRS-DCHC.

3.3.3. Hyperion EO-1 Dataset

The Hyperion EO-1 data have considerable stripe noise, random noise, and dead
lines. The size of our experimental data was 200 × 200 × 210. The LRTV method still
yields a considerably large area of residual noise, as shown in Figure 13b. LRMR and
TDL have a certain significant effect on random noise, but the removal effect on stripe
noise and dead lines is unsatisfactory, as indicated by Figure 13c,d. NGMeet can remove
large-scale interference factors to a large extent, with only a small amount of unremoved
noise, as shown in Figure 13e. Figure 13f illustrates that the ASSTV method has a good
suppression effect on stripe noise and dead lines, but its ability to remove random noise is
limited. As clearly indicated by Figure 13g, HSI-DeNet can remove nearly all noise, but it
inevitably triggers smoothness-related problems. Similarly, SGIDN suffers from a severe
over-smoothing problem, and the repair of the dead line interference area is incomplete, as
shown in Figure 13h. Figure 13i illustrates the TRS-DHC good performance, where stripe
noise, random noise, and dead lines are removed.
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Figure 13. Destriped results on Hyperion EO-1 with band 2. (a) Degraded image. (b) LRTV. (c) LRMR.
(d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN. (i) TRS-DCHC.

3.3.4. HYDICE Urban Data Set

The experimental data measured 306× 306× 210; the degradation factors were mainly
stripe and Gaussian noise. The stripe removal results for band 1 are shown in Figure 14.
In particular, Figure 14b clearly shows that the LRTD cannot completely remove stripe
noise. Although LRMR can suppress only a portion of the stripe noise, it triggers a loss
of some details (see Figure 14c). Similarly, Figure 14d shows that the TDL can have a
certain effect on stripe removal, but the effect is ambiguous. The NGMeet can effectively
remove stripe noise, but the spectral information of some ground features is lost. It exhibits
over-smoothing to some extent, as shown in Figure 14e. After the ASSTV process, the
stripes can be strongly suppressed, but they are not completely removed as displayed in
Figure 14f. For HSI-DeNet, although stripe noise can be completely removed, it causes
more serious loss of spatial information. Notably, the houses and road structures in the
upper left are greatly smoothed, which is different from the original structure, as shown in
Figure 14g. Similarly, the SGIDN removes most of the stripes, but triggers the loss of the
ground structure, as indicated by Figure 14h. By contrast, the TRS-DCHC provides notably
satisfactory results as it can completely remove stripe noise, while the original features and
structure are better preserved.

Figure 14. Destriped results on HYDICE Urban with band 1. (a) Degraded image. (b) LRTV. (c) LRMR.
(d) TDL. (e) NGMeet. (f) ASSTV. (g) HSI-DeNet. (h) SGIDN. (i) TRS-DCHC.
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The experimental results of real data indicate that LRTV, LRMR, TDL, NGMeet, and
ASSTV can achieve destriping performance more or less on real stripe contained data.
However, the selection of parameters during the experiment directly affects the destriping
performance. The optimal parameters are more difficult to determine, and most of them
use empirical values. For instance, if the parameters required by the LRTV were too low,
the stripe removal performance would not be satisfactory. If it is set too high, it will damage
the spectral and structural information and will directly affect the destriped result. It is
difficult to achieve a balance between stripe removal and retention of spectral information.
Despite the deep learning methods represented by HSI-DeNet and SGIDN that have strong
feature extraction and learning capabilities, the stripe performance is not sufficiently stable.
It exhibited variable processing capabilities driven by the type of data with emerged stripes.
The TRS-DCHC method can process a wide range of different forms and types of noise.
It is important to note that this study incorporates stripe noise derived from real data in
the model training process, which is more complicated and sophisticated than Gaussian
distributed noise. This incorporation strengthens the model capabilities for noise removal
regardless of the type of noise. Our results provide the evidence that it was beneficial to
use real data noise in model training.

4. Discussion

The TRS-DCHC utilizes a training strategy that combines real and simulated data and
adds DWT to the network to explicitly decompose stripe patterns and stripe-free patterns,
which is beneficial for improving the destriping performance. In this section, we conduct
experiments while discussing and analyzing the effectiveness of adding real data training
and DWT to the improvement of TRS-DCHC destriping ability. Furthermore, we also
analyze the direction constrained stripe adaptive unsupervised extraction subnetwork and
computation time of the TRS-DCHC.

4.1. Effectiveness toward Real Data Training Strategy

As reported in Tables 1 and 2, the DCHC have conspicuous destriping performance,
but not good as TRS-DCHC. For a more intuitive discussion on whether we can improve
the performance of the network in the actual application process after incorporating real
data, we compare the destriping performances of DCHC and TRS-DCHC using another set
of Zhuhai-1 data as the experimental input to evaluate the effectiveness of the real data
training strategy. The results are shown in Figure 15. The experimental results indicate
that both TRS-DCHC and DCHC can remove interference stripes very well, and can
completely retain the stripe-free component, while the spectral and structural information
is completely restored. However, the enlarged picture indicates that the recovery ability of
TRS-DCHC is better than that of DCHC, especially in the homogeneous area. Moreover,
the result of the TRS-DCHC is more rigorously restored, while the result of the DCHC
has little noise interference. For a more elaborate comparison, Figure 16 shows the mean
cross-profile of the destriping result. Furthermore, Figure 16b,c demonstrate that after the
destriping, the reconstruction profile of the TRS-DCHC is smoother, and the horizontal
mean cross-profile shows that the TRS-DCHC yields a more effective destriping result.
The experimental results show that the DCHC can also destripe the processing of real
data to some extent. At the same time, it also proves that the stripe patterns of the real
data during the training process can enhance the model’s ability to process sophisticated
stripe patterns. Thus, the model ability to destripe noise in the actual application process is
evidently improved. Therefore, incorporating a real data strategy is certainly effective and
has practical significance for improving the destriping effect.
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Figure 15. Results for effectiveness toward real data training strategy.

Figure 16. Mean cross profile analysis. The horizontal axis shows the line number of the image, and
the vertical axis denotes the mean intensity value of the image.

4.2. Effectiveness of DWT

Here, we discuss the influence of the DWT. The destriping performance of TRS-
DCHC-noW in simulated, and real data are reported in Tables 1 and 2. To evaluate the
DWT positive effects on the destriping effect of the model and the recovery of spectral
information, we use Case 2 in the simulation experiment as an example. Note that we refer
to the model without DWT and IWT as TRS-DCHC-noW (Figure 17). The experimental
results clearly show that both TRS-DCHC-noW and TRS-DCHC can remove stripe noise.
However, the spectral information loss of the striped image of TRS-DCHC-noW was greater.
By contrast, the TRS-DCHC preserves more complete spectral information. Figure 17e
shows the pixel value in each band of the pixel at (100,100) and indicates that the result
of TRC-DCHC is closer to the original pixel value. Based on this, we can deduce that
adding DWT to CNN is beneficial for the destriping performance and for the repair effect
of the model.

4.3. Analysis of Direction Constrained Stripe Adaptive Unsupervised Extraction Subnetwork

The stripe noise extracted from real stripe-contained data can improve the destriping
performance of the TRS-DCHC as displayed in Section 4.1. In this section, we discuss the
stripe extraction subnetwork. Figure 5 shown the stripe extracted from real data. Here, we
use real data image for experiments and compare the output of the sub-network with real
data, as shown in Figure 18. As shown in Figure 18, the spatial position distribution of the
extracted noise is basically the same as that of the original noise, as shown by the red arrow,
which shows that the sub-network has good strip noise extraction ability.
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Figure 17. Results for effectiveness of DWT.

Figure 18. Results for direction constrained stripe adaptive unsupervised extraction subnetwork.

4.4. The Time Costs

This section compares the destriping time costs of different methods. All experiments
were performed on a PC with Windows 10, 32 GB RAM, and an NVIDIA GeForce gtx2080
Ti GPU. Here, Case 2 from the simulation data experiment is taken as an example for the
analysis. The size of the data is 200 × 200 × 191, and the time costs of each method are
displayed in Table 4. According to Table 4, we can see the deep learning-based methods
have lower time cost than traditional methods. The HSI-DeNet takes the least time, the
TRS-DCHC method consumes the almost same time as the SGIDN method.

Table 4. Time costs of difference destriping methods.

Methods

LRTV LRMR TDL NGMeet ASSTV HSI-DeNet SGIDN TRS-DCHC

Time costs (s) 35.7 74.4 21.3 46.7 23.6 4.6 8.4 8.2
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5. Conclusions

In this study, we proposed a novel method, namely a multi-scale hierarchical feature
cascade network for HSI data destriping, that adopts stripe noise extracted from real
data for model training. Our method is composed of two subnetworks: a direction-
constrained stripe adaptive unsupervised extraction subnetwork, and a wavelet-based
hierarchical feature cascaded destriping subnetwork. The stripe extraction subnetwork,
which uses direction constraints to extrapolate stripe patterns from the local to the global,
is utilized to extract the intrinsic stripe noise for real stripe-contaminated spaceborne
hyperspectral imaging data. Notably, the extracted stripe noise was not generated by a noise
generation model with a known distribution. Its statistical distribution and noise structure
were diverse, complex, and unknown. The wavelet-based hierarchical feature cascaded
destriping subnetwork explicitly decomposed stripe and stripe-free components by DWT
to reduce the information loss of stripe-free components. Note that dense connection and
hierarchical feature fusion were applied to minimize the information loss and integrate
different levels of feature semantics. Both aspects improved the stripe removal effect. We
used a variety of simulations and multiple sets of real satellite data with different loads
and confirmed that the proposed method has superior performance in stripe suppression
and image repair compared with previous methods. We also showed that in contrast to the
single stripe generation method, adding stripe noise to the training data is beneficial for the
stripe removal performance of the model. As a result, the model efficiently processes the
various stripe types in real data. However, the performance of the TRS-DCHC still has some
shortcomings that need to be further studied and resolved. In particular, future studies
should focus on how to improve the precision and controllability of the stripe extraction
subnetwork. In future studies, an unsupervised method can be used to enable the stripe
extraction subnetwork to achieve the most efficient destriping and image restoration.
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Abbreviations

HSI hyperspectral imaging
CNNs convolutional neural networks

TRS-DCHC
toward real HSI stripe removal via direction constraint hierarchical feature
cascade network

PCA principal component analysis
DWT discrete wavelet transform
DCSC direction constraint spatial context module
SCARB spatial context aggregation residual block
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MDL2G multi-direction awarded local to global module
IRNN image spatial recurrent neural network
TV total variation
LL approximation of DWT image
LH horizontal detail
HL vertical detail
HH diagonal detail
MSE mean square error
GF-5 GaoFen-5
AHSI advanced hyperspectral imager
VNIR visible and near-infrared
SWIR shortwave infrared
CHEOS China High-Resolution Earth Observation System
WDC Washington DC Mall HSI dataset
ZhuHai-1 Chinese ZhuHai-1 hyperspectral satellite
EO-1 Earth Observing-1
ASSTV anisotropic spectral-spatial total variation
LRTV total-variation-regularized low-rank matrix factorization
NGMeet non-local meets global
LRMR low-rank matrix recovery
TDL tensor dictionary learning
HSI-DeNet hyperspectral image restoration via convolutional neural
SGIDN Satellite-ground integrated destriping network
PSNR peak signal-to-noise ratio
SSIM structural similarity
ICV inverse coefficient of variation
MRD mean relative deviation
DCHC the TRS-DCHC without incorporated real data
TRS-DCHC-noW the TRS-DCHC without DWT
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