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Abstract: The fusion of image data from multiple sensors is crucial for many applications. However,
there are significant nonlinear intensity deformations between images from different kinds of sensors,
leading to matching failure. To address this need, this paper proposes an effective coarse-to-fine
matching method for multimodal remote sensing images (3MRS). In the coarse matching stage,
feature points are first detected on a maximum moment map calculated with a phase congruency
model. Then, feature description is conducted using an index map constructed by finding the index
of the maximum value in all orientations of convolved images obtained using a set of log-Gabor
filters. At last, several matches are built through image matching and outlier removal, which can
be used to estimate a reliable affine transformation model between the images. In the stage of fine
matching, we develop a novel template matching method based on the log-Gabor convolution image
sequence and match the template features with a 3D phase correlation matching strategy, given
that the initial correspondences are achieved with the estimated transformation. Results show that
compared with SIFT, and three state-of-the-art methods designed for multimodal image matching,
PSO-SIFT, HAPCG, and RIFT, only 3MRS successfully matched all six types of multimodal remote
sensing image pairs: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and
day–night, with each including ten different image pairs. On average, the number of correct matches
(NCM) of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and RIFT
for the successfully matched image pairs of each method. In terms of accuracy, the root-mean-square
error of correct matches for 3MRS, SIFT, PSO-SIFT, HAPCG, and RIFT are 1.47, 1.98, 1.79, 2.83, and
2.45 pixels, respectively, revealing that 3MRS got the highest accuracy. Even though the total running
time of 3MRS was the longest, the efficiency for obtaining one correct match is the highest considering
the most significant number of matches. The source code of 3MRS and the experimental datasets and
detailed results are publicly available.

Keywords: multimodal image matching; nonlinear intensity deformations; coarse-to-fine matching
strategy; reliable transformation estimation; phase congruency

1. Introduction

With the fast development of sensor manufacture and space delivery technology, a
multiple platform Earth observation system has been formed, providing various remote
sensing data of different spatial, spectral resolutions, and different modalities. The various
datasets, including the optical, infrared, LiDAR, and SAR data, encode different aspects of
information and compensate for each other.

The joint use of the multimodal images from different types of sensor data can benefit
many applications, such as change detection [1–4], object detection [5–7], and land use and
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land cover [8–12]. A fundamental prerequisite for the joint use of multimodal images is
image matching, which finds accurate correspondences on two or more images with over-
lapped areas. Although image matching has been studied for decades, reliable matching
of multimodal images is still a challenging problem considering the involved significant
nonlinear intensity deformations (NID). Therefore, it is crucial to accomplish the task of
multimodal remote sensing images matching accurately and robustly.

Current multimodal image matching methods can be roughly classified into three cat-
egories: area-based, feature-based, and learning-based methods [13]. In terms of learning-
based methods, even though deep learning is a promising technology and some works
obtained good results on their datasets [14–17], these methods can hardly be applied to
real applications now. Firstly, there are no large-scale and universal multimodal image
sets for the training process. Secondly, deep neural networks usually require enormous
computing resources and have low efficiency. These limitations restrain the application of
learning-based methods in the field of multimodal remote sensing image matching.

Area-based methods, also called template matching, complete the matching process
by checking the similarity between two selected template areas. Generally, the traditional
area-based methods use the intensity information of images, such as NCC [18] and MI [19].
However, NCC can hardly handle NID, seriously declining its performance. MI shows
robustness to NID because of the utilization of statistical information of image intensity
distribution, but it is easy to fall into local optima due to ignoring the influence of neighbor-
ing pixels. A few studies recently found that the geometric structures and shape features
stayed stable across different modal images and proposed using the information to conduct
multimodal image matching. Based on HOG [20], Ye et al. [21] proposed the HOPC descrip-
tor by using phase congruency [22] features instead of gradient features, achieving good
performance on multimodal image matching. However, both HOG and HOPC descriptors
are characterized in a sparse sampling grid, so they are difficult to capture the detailed
structural information in the image. With this in mind, Ye et al. [23] further proposed
the channel feature of orientated gradients (CFOG). CFOG constructs descriptors in a
pixel-by-pixel manner, enhancing the ability to describe detailed structures in images, and
its matching performance is significantly better than sparse feature descriptors. Based on
CFOG, Fan et al. [24] developed an angle weighted orientation gradients (AWOG) descrip-
tor by distributing the gradient value into two most related orientations and proposed
to use three-dimensional phase correlation as a similarity metric, significantly improving
the matching performance. However, regardless of the good performance area-based
methods achieved, they have a high requirement for the initial matching positions. The
matching performance will decrease dramatically if the initial input has a large deviation
with the correct matching point. Additionally, the area-based methods are sensitive to scale
change and image rotation, so the geometric deformations need to be eliminated roughly
in advance, limiting its versatility in various applications.

Feature-based methods detect salient features on the images and match them based
on the similarity of the feature descriptors. One of the representative feature-based meth-
ods is scale-invariant feature transform (SIFT) [25], widely applied to matching optical
remote sensing images considering its good robustness to scale and illumination change
and rotation. However, SIFT tends to fail when there is a large NID between the image
pair. Towards the matching of multi-source remote sensing images, Ma et al. [26] proposed
the PSO-SIFT algorithm, which optimizes the way of calculation of image gradients to
increase the robustness to intensity difference and introduce an enhanced matching strat-
egy using multiple aspects of information of the feature points to increase the number
of image correspondences. To accomplish the task of multimodal remote sensing image
matching, Yao et al. [27] put forward the histogram of absolute phase consistency gradients
(HAPCG) algorithm. They first used an anisotropic filter to preprocess images, constructing
an anisotropic weighted moment equation based on image phase consistency. Then, they
extended the phase consistency model, built an absolute phase consistency orientation
gradient, and established the HAPCG descriptor. Relatively robust matching of multimodal
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images is achieved with HAPCG. To increase the robustness to large NID, Li et al. [28]
proposed a radiation-variation insensitive feature transform (RIFT) algorithm that employs
phase congruency and introduces a maximum index map (MIM) descriptor. They first
detected the salient corner and edge feature points on the phase congruency map and
then constructed the MIM descriptor based on a log-Gabor convolution image sequence,
obtaining superior performance than SIFT. In a word, feature-based methods demonstrate
more flexibility in multimodal remote sensing image matching considering the good resis-
tance against scale change and image rotation and low requirements for initial image pose
conditions. However, the repetition rate of directly extracted feature points is relatively
low because of the large NID between multimodal images. For example, the inlier ratio for
RIFT is only about 15~20%. Moreover, the accuracy of feature-based methods is always
lower than area-based methods, considering the unstable localization accuracy of feature
points.

In this paper, we propose a coarse-to-fine multimodal remote sensing image matching
method (3MRS) based on the 2D phase congruency model to overcome the large NID. In
the stage of coarse matching, feature points are detected on a maximum moment map
computed from multi-scale and multi-oriented phase congruency (PC) images, considering
the map can reflect the apparent corner and edge features. Then, feature description is
conducted by finding an index map for fast and effective image matching. Finally, the fast
sample consensus (FSC) algorithm [29] is employed to remove the outliers. Besides, the
coarse affine transformation model between images can be estimated based on the obtained
correspondences. In the stage of fine matching, we proposed a novel template feature
based on the log-Gabor convolution image sequence to rematch the extracted feature
points and use a 3D phase correlation as the similarity measure, significantly improving
the matching rate of extracted feature points and obtaining a more significant number of
correspondences with high accuracy. Since the template feature is built on the log-Gabor
convolution image sequence obtained during the coarse matching process, there is no extra
time cost, improving the computation efficiency. To testify the performance of 3MRS, we
compare the results of 3MRS with four state-of-the-art multimodal remote sensing image
matching methods: SIFT, PSO-SIFT, HAPCG, and RIFT, on six types of multimodal image
datasets: optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and
day–night and each type of dataset contains ten image pairs. Results reveal that 3MRS
successfully matches all image pairs. Besides, 3MRS obtains 1365 correct matches on
average and an accuracy of 1.47 pixels, while those of the corresponding best results of the
comparative methods are 313 correct matches and 2.45 pixels, respectively, demonstrating
significant performance improvement.

This study is structured as follows: Section 2 gives the principle of our proposed
method, 3MRS. Section 3 presents the experiments and results concerning 3MRS. Section 4
discusses several important aspects related to 3MRS. Finally, this study is concluded in
Section 5.

2. Methodology

Even though the coarse-to-fine framework has been studied and applied to matching
same or different source optical satellite images [30–32], it is barely applied to tackle
the matching of multimodal remote sensing imagery. Therefore, we propose the 3MRS
algorithm to explore the potential of fulfilling the task with a coarse-to-fine pipeline. Unlike
the exact source of optical satellite images, there is a large NID between the multimodal
images. The core is to ensure that each stage of the method is robust to NID.

Following this thought, we conduct coarse and fine matching based on 2D phase
congruency considering its high invariance to NID. Specifically, we detect feature points on
a maximum moment map calculated from the multi-scale and multi-oriented PC images and
construct the feature descriptor by applying a distributed histogram method on an index
map calculated from convolved images of all orientations. After that, feature matching
and mismatch elimination are performed to obtain a few reliable matches, which can be
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used to estimate the rough affine transformation model between images. In the stage of
fine matching, taking the positions predicted through the estimated transformation model,
we construct template features from the multi-oriented log-Gabor convolution sequences
calculated using both even-symmetric and odd-symmetric log-Gabor filters and further
convolve the template features with a 3D Gaussian-like kernel. Then, 3D phase correlation
matching is applied to build correspondences, and outlier removal is employed to refine
the matches. In detail, the pipeline of 3MRS is given in Figure 1.
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2.1. Coarse Matching

The goal of coarse matching is to provide an affine transformation model between
images for the following optimization process, which can be estimated by a few reliable
matches. In detail, the coarse matching process mainly contains the two steps of feature
detection and feature description, in which the 2D phase congruency model is adopted
considering its good robustness against different image conditions.

2.1.1. Point Feature Detection

Phase congruency (PC) [22] is applied for feature points detection. Given a 2D image
I(x, y), the 2D PC model can be expressed as follows:
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PC(x, y) = ∑s ∑o wo(x)bAso(x, y)∆Φso(x, y)− Tc
∑s ∑o Aso(x, y) + ε

(1)

where wo(x) is a weighted function; Aso(x, y) and Φso(x, y) are the amplitude component
and phase component of I(x, y) at scale s and orientation o, respectively; T compensates
the noise; ε is a small value; and b·c is a truncation function, the value is itself when it is
larger than 0; otherwise, the value is 0. Note that Aso(x, y) and Φso(x, y) can be calculated
with the even-symmetric and odd-symmetric responses obtained through convolving the
image I(x, y) with an even-symmetric and an odd-symmetric 2D log-Gabor filter [33],
respectively.

Compared with image gradients, the PC map has much better noise resistance.
Figure 2 demonstrates the computed gradient maps and PC maps of an optical aerial
image with/without noises. We can see that, with the presence of large amounts of noises,
the image gradient is so severely affected by noises that the gradient map can hardly reflect
any useful information, while the PC map is much less affected by noises and keeps the
image structures well.
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Figure 2. Performance of gradients and PC with the presence of noises: (a,d) are the images
with/without noises; (b,e) are the computed gradient maps on (a,d); and (c,f) are the computed PC
maps on (a,d), respectively.

Then, the feature points are detected based on a PC measure. Following the moment
analysis algorithm [34], the principal axis Φ corresponds to the minimum moment mΦ and
indicated feature direction. While the axis corresponds to the maximum moment MΦ is
perpendicular to the principal axis. The magnitude of the MΦ and mΦ can be calculated as
follows:

Φ =
1
2

arctan
(

B
A− C

)
(2)
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MΦ =
1
2

(
C + A +

√
B2 + (A− C)2

)
(3)

mΦ =
1
2

(
C + A−

√
B2 + (A− C)2

)
(4)

where

A = ∑
o
(PC(θo) cos(θo))

2 (5)

B = 2 ∑
o
(PC(θo) cos(θo))(PC(θo) sin(θo)) (6)

C = ∑
o
(PC(θo) sin(θo))

2 (7)

where PC(θo) is the PC map under the orientation of θo.
Theoretically, the minimum moment map mψ represents the corner map and the

maximum moment map Mψ represents the edge map of the image. However, the PC
corner map is a strict subset of the PC edge map [22]. Thus, this provides a simplified
way to integrate edge and corner information of the image. Namely, we do not detect
corner features on mψ and only detect features on Mψ which includes both corner and edge
features. Moreover, the FAST algorithm [35] is applied on Mψ to obtain a large number of
distinctive features.

Figure 3 gives the feature extraction results on a pair of optical-depth images.
Figure 3b,c show the feature points extracted by applying the FAST algorithm on the
original image and the PC map, respectively. We can see that the feature points obtained
from using the original images are very sparse and unstable under the presence of NID. In
contrast, lots of reliable corner and edge feature points with good distribution are detected
based on the maximum moment maps, proving the excellent invariance of the PC measure
to NID.
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2.1.2. Index-Map-Based Feature Description

After obtaining the feature points, a feature descriptor is needed for each point to
increase the feature discrimination and robustness against changes such as NID and rotation.
Here, an index map is applied based on the log-Gabor convolution sequence. Moreover,
the map is used for feature description. Given that the sequence has been obtained during
the generation of the PC maps, the construction of the index map only needs very few
calculations and time. Precisely, for each orientation o, the amplitude components at all
scales are summed up to obtain a log-Gabor layer Ao(x, y).

Ao(x, y) =
N

∑
s=1

Aso(x, y) (8)

A log-Gabor convolution sequence can be built by arranging the log-Gabor layers at
all orientations. Then, the index map is constructed by searching the index of the maximum
value in all orientations:

indexMap(x, y) = OI(max(Ao(x, y))) (9)
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where max(·) is applied to locate the maximum value in a sequence of convolved images,
and OI(·) is used to get the index of the maximum value in the image sequence. Figure 4
demonstrates the generation process of an index map of a typical optical aerial image. Then,
we construct the feature descriptor using a distributed histogram method similar to SIFT
on the obtained index map.
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After obtaining the feature descriptors, the nearest neighbor matching strategy is
applied to obtain the initial correspondences, and the FSC algorithm is employed to
eliminate outliers. Based on the obtained matches, the affine transformation model between
images is calculated, which can be applied to provide initial correspondence locations for
the following fine matching.

2.2. Fine Matching

Even though a few correct matches can be achieved in the coarse matching, the
matching rate is low, and most of the extracted distinctive feature points are wasted. Besides,
the accuracy of the matches is limited by that of the detected feature points. Therefore, we
proposed a novel template-based method to refine the initial matching result. As displayed
in Figure 5, the initial correspondences for all extracted feature points are firstly calculated
using the affine transformation parameters obtained in coarse matching. Then, we take the
initial correspondences as input and compute a template feature based on a window image
centered at the initial predicted location. Finally, we match the template features with a 3D
phase correlation measure and remove the outliers with the FSC algorithm. In this way, the
number and accuracy of the obtained matches are significantly improved.
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2.2.1. Template Feature Construction

Similar to the other template-based methods, we first open a same-size window on
each of the candidate images. Then, we build a feature vector based on the log-Gabor
convolution image sequence, which is calculated using both even-symmetric and odd-
symmetric log-Gabor filters for each pixel in the window. Unlike the index map, which
only utilizes the index information, we employ the whole sequence that contains more
detailed structural information, increasing the feature distinguishability. Specially, we
simply arrange the log-Gabor convolution sequence in the order of orientation in the
z-direction, and a cube-like 3D image displayed in Figure 6b can be obtained. Since the
log-Gabor convolution sequence has been obtained during the generation process of PC
maps, no more time is required for this step.

After that, a 3D Gaussian-like kernel is applied to the 3D image cube to reduce the
influence of local distortions caused by geometric and intensity deformation. Precisely, the
3D Gaussian-like kernel consisted of a 2D Gaussian kernel in the xy plane whose diameter
and standard deviations are 3 pixels and 0.5, respectively, and a kernel of dz = [1, 3, 1]T in
the z-direction. This process can be described with the following equations:

Aσ
o (x, y) = gσ

xy ∗ Ao(x, y) (10)

To(x, y) = dz ∗ Aσ
o (x, y) (11)

where Ao(x, y) is the 3D image feature obtained from arranging the log-Gabor layer images
in a specific order, gσ

xy is a Gaussian kernel in the xy plane, dz is a kernel in the z-direction,
and To(x, y) is the template feature after filtering.

At last, we conduct normalization on the z-direction to further increase the robustness
of the feature vector. Specifically, the L2 norm is used to normalize the feature vector, which
can be expressed as follows:

Ti(x, y) =
Ti(x, y)√

∑6
i=1|Ti(x, y)|2 + ε

(12)

where ε is a small constant value.
The feature vectors of the pixels in the window form the template feature, which is

still a 3D image cube. Figure 6 displays the generation process of a template feature.
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2.2.2. 3D Phase Correlation Matching

Considering the template feature is three-dimensional, much computation is required
when using the traditional space-based similarity metric, such as SSD and NCC. Therefore,
we utilized the 3D phase correlation instead, which has been proven to have high efficiency
and keep high matching accuracy [24,36,37].



Remote Sens. 2022, 14, 478 10 of 23

Given that tr(x, y, z) and ts(x, y, z) are the template features of the reference image
and sensed image, respectively, their geometric relationship is as follows:

tr(x, y, z) = ts(x− x0, y− y0, z) (13)

where (x0, y0) is the offset between two image windows, and z is the dimensionality of the
template feature.

Tr(u, v, w) and Ts(u, v, w) can be obtained by performing a 3D fast Fourier transform
of tr(x, y, z) and ts(x, y, z). Moreover, their correlation can be expressed as follows according
to the Fourier shift theorem:

Tr(u, v, w) = Ts(u, v, w)e−i(ux0+vy0)
→
γ (14)

where
→
γ is a 3D unit vector. Specifically, their cross-power spectrum can be expressed as

follows:
Tr(u, v, w)Ts(u, v, w)∗ = e−i(ux0+vy0)

→
γ (15)

where ∗ denotes complex conjugate.
Then, a correlation function δ(x− x0, y− y0) can be obtained by conducting inverse

Fourier transform to the cross-power spectrum. Generally, the peak position of the cor-
relation function will appear in (x0, y0). Therefore, the matching point can be found by
searching the local maximum of the following equation:

F−1(Tr(u, v, w)Ts(u, v, w)∗
)
= δ(x− x0, y− y0)

→
γ (16)

where F−1(·) represents the inverse transform of the 3D fast Fourier transform.
The size of the template window can significantly affect the matching performance.

Considering the complex change between multimodal images, we use a relatively larger
size than that in same-modal image matching, which is 101 × 101 pixels in this study, to
ensure the matching accuracy and robustness. At last, the FSC algorithm is used for outlier
removal.

3. Experiments and Results

In order to verify the superior of 3MRS, we compare it with four state-of-the-art
algorithms: SIFT, PSO-SIFT, HAPCG, and RIFT. For a fair comparison, the codes of the
comparative methods provided by the authors are applied, and the parameters are set
according to the recommendations of the providers.

3.1. Data Description

The CoFSM datasets provided by Yao et al. [27] are used, including six types of
multimodal image pairs: optical–optical, optical–infrared, optical–depth, optical–map,
optical–SAR, and day–night. There are significant NID and slight geometric differences
due to different time phases, lighting conditions, and sensor differences between the image
pairs. Each type of image pair contains ten image pairs, and each image pair has about
10 to 30 high-precision correspondences manually selected by the provider. Note that the
correspondences can be used to estimate the true transformation model H of the image
pair, which are taken as ground truth for the following evaluation process.

3.2. Evaluation Indices

To comprehensively testify the proposed method, we present large amounts of quali-
tative and quantitative experimental results. For quantitative evaluation, four indices are
utilized, which are success ratio (SR), the number of correct matches (NCM), root mean
square error (RMSE), and the running time.
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1. SR refers to the ratio of the number of successfully matched image pairs to the total
number of image pairs in a type of image pair. This index reflects the robustness of a
matching method to a specific type of multimodal image pair.

2. To count the number of correct matches, we first use the obtained matches to estimate
a transformation between an image pair. Then, the matches with residual errors
of less than three pixels are taken as correct matches, and the number of correct
matches is NCM. Additionally, the image pair with NCM smaller than three is deemed
a matching failure. Considering the significant NID between multimodal remote
sensing images, three pixels are a relatively strict threshold.

3. Taking the correct matches as input, the coordinates (x1, y1) on one image can be
converted to

(
x′1, y′1

)
on the other image of the image pair using H. If the coordinates

of the corresponding matching point of (x1, y1) are (x2, y2), RMSE can be calculated
with (17). RMSE reflects the matching accuracy of the correct matches. The smaller
the value of RMSE, the higher the accuracy. In addition, the image pairs with RMSE
larger than five are deemed a matching failure.

RMSE =

√
1

NCM ∑NCM
i=1

[(
xi′

1 − xi
2

)2
+
(

yi′
1 − yi

2

)2
]

(17)

[
xi′

1 , yi′
1 , 1
]T

= H·
[

xi
1, yi

1, 1
]T

(18)

4. With respect to efficiency, we not only count the total running time Ttotal but also the
time Tone used for obtaining one correct match. Specifically, Tone can be calculated as
follows:

Tone =
Ttotal
NCM

(19)

3.3. Qualitative Results

We selected one representative image pair from each of the six types of multimodal
image datasets and visualized their experimental results. These image pairs contain
various significant NID due to the time phase or imaging mechanism. Therefore, it is
very challenging to match these image pairs automatically. Figure 7 shows the comparative
visualization matching results of SIFT, PSO-SIFT, HAPCG, RIFT, and 3MRS.
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From the results of Figure 7, we can see that SIFT almost failed in all image pairs
except for a few matches of image pairs of optical–infrared images. The reason can be that
there are no large NID between the optical and infrared images, while the NID is significant
between the other types of multimodal image pairs. HAPCG matched five of the six types
of multimodal image pairs and failed to match the optical and map images. PSO-SIFT
successfully matched the image pairs of optical–optical, optical–infrared, optical–depth,
and day–night image pairs; a few matches for the image pair of optical–SAR ultimately
failed to match the optical–map pair. However, we can see that the matches of the optical–
SAR are incorrect. These results indicate that HAPCG and PSO-SIFT have resistance to
NID to some extent but cannot handle the matching of all types of multimodal remote
sensing image pairs. On the contrary, RIFT effectively matched all image pairs and obtained
considerable matches, demonstrating that RIFT has good robustness against various types
of NID. However, the successfully matched points still took a relatively small percentage
of all extracted feature points, and the other feature points were wasted. Based on the
correct matches obtained from coarse matching, 3MRS calculates the transformation model
between the image pair and further matches the unmatched feature points with a template
matching strategy, significantly improving the matching rate of extracted feature points
and thus obtaining more corrected matches than all the competed methods. Besides, the
matches of 3MRS have the best distribution among all methods.

Apart from the visualization results of image matching, we also displayed the registra-
tion and fusion results of the image pairs with the obtained matches of our proposed 3MRS
algorithm in Figure 8. Accurate registration and fusion can be achieved when the matches
have high precision and even distribution. From the results, all the image pairs are well
registered, proving that the obtained matches of 3MRS have excellent quality in accuracy
and distribution.
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Figure 8. The registration (left) and fusion (right) results with the matches obtained by 3MRS, where
the first two columns are a pair, and the last two columns are another pair: (a–f) correspond to
optical–optical, optical–infrared, optical–depth, optical–map, optical–SAR, and day–night image
pairs.

3.4. Quantitative Results

The quantitative results on all 60 image pairs in terms of the four indices are given
in this section. Table 1 presents the results of SR for all methods. As we can see, SIFT had
the worst SR on all types of image pairs and ultimately failed on the optical–depth and
optical–SAR image pairs. PSO-SIFT obtained a better SR on the optical–infrared image
pair with an SR of 90%. However, it had similar performance with SIFT for the other types
of image pairs. HAPCG successfully matched the optical–infrared data set with an SR of
100%, but it performed slightly worse on the optical–map, optical–SAR, and day–night
data sets, all at 70%. RIFT performed much better on all types of image pairs, with an SR
of 90% for the optical–SAR image pairs and 100% for all the other types of image pairs,
while 3MRS successfully matched all image pairs, demonstrating excellent robustness in
multimodal remote sensing image matching.

Table 1. Comparisons on SR metric.

Method
SR/%

Optical–Optical Optical–Infrared Optical–Depth Optical–Map Optical–SAR Day–Night

SIFT 80 30 0 40 0 50

PSO-SIFT 60 90 10 40 0 40

HAPCG 90 100 90 70 70 70

RIFT 100 100 100 100 90 100

3MRS 100 100 100 100 100 100
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Figure 9 presents the results of NCM. We can see that SIFT and PSO-SIFT performed
the worst, obtaining very few matches on all image pair categories. HAPCG was similar to
RIFT, where RIFT performed more stable and had larger NCM than HAPCG in most cases.
Notably, HAPCG failed to match the 4th pair of optical–optical, the 10th pair of optical–
depth image pairs, the 1st, 4th, and 8th pairs of optical–map image sets, the 1st, 2nd, and
7th pairs of optical–SAR image sets, and the 5th, 6th, and 9th pairs of the day–night image
sets, while RIFT successfully matched all these image pairs. Moreover, the NCM of 3MRS
had noticeable improvement compared with all the comparative methods. Particularly, the
NCM of 3MRS was 164.47, 123.91, 4.88, and 4.33 times that of SIFT, PSO-SIFT, HAPCG, and
RIFT for the successfully matched image pairs of each method.
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Figure 9. Comparisons on the NCM metrics.

Considering the accuracy, the root-mean-square error of NCM for 3MRS, RIFT, HAPCG,
PSO-SIFT, and SIFT are 1.47, 2.45, 2.83, 1.79, and 1.98 pixels, respectively. Specifically,
Figure 10 gives the detailed comparative results of RMSE. For better visualization, we
added a failed line in the subfigures; the value of RMSE would be on the line when the
situation of matching failure appears. The results show that SIFT still performed the worst,
failing to match in many image pairs and having the largest RMSE on the successfully
matched image pairs. PSO-SIFT had high matching accuracy on some image pairs, such as
the 2nd and 10th pairs of the optical–optical image sets, even higher than 3MRS. However,
it failed a lot, and its performance declined dramatically on the other types of image pairs,
especially the optical–depth and optical–SAR image sets. The performance of HAPCG was
quite unstable, while that of RIFT was much more stable and better than HAPCG. The
RMSE of 3MRS is always the smallest, demonstrating high accuracy with a value between
0.5 and 2 pixels. Even though most of the RMSEs of the image pairs are smaller than 2,
there are several unexpected cases. Significantly, the RMSE of the 10th image pair of the
optical–infrared is 3.37 pixels, those of the 1st and 3rd image pairs of the optical–SAR image
pairs are 4.35 pixels and 2.67 pixels, and those of the 1st and 7th pairs of the day–night are
2.91 pixels and 3.32 pixels, respectively. After checking with these image pairs, we found
that these images cover many areas with less texture or structural information, including
the water or woodland areas, significantly increasing the matching difficulty.
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Figure 10. Comparisons of the RMSE metrics. Note that the matching failure cases are drawn onto
the failed line.

Table 2 gives the comparative results of the running time t. As we can see, 3MRS costs
the longest time, which is about three times of RIFT. However, if we distribute the whole
time Ttotal onto the time Tone used for obtaining one match, 3MRS has the highest efficiency,
which only needs 12.54ms for one match. RIFT is on the same level as 3MRS, slightly faster
than HAPCG. PSO-SIFT had the lowest efficiency and took 163.46ms for one match, about
13 times of 3MRS.

Table 2. Comparisons of the time metric.

Method SIFT PSO-SIFT HAPCG RIFT 3MRS

Ttotal (s) 48.44 108.05 509.83 355.56 1027.32

Tone (ms) 97.27 163.46 30.39 19.25 12.54

4. Discussion
4.1. Performance Analysis

From the qualitative and quantitative results, we can see that SIFT can match the
optical images with temporal differences, but it can hardly be applied to other types of
multimodal datasets. Compared with SIFT, PSO-SIFT performs well on optical–infrared
image pairs, but its performance decreases dramatically on the image pairs with severe
NID such as the optical–depth and optical–SAR image pairs. HAPCG handles the NID
much better than SIFT and PSO-SIFT, but its performance is quite unstable. Even though
RIFT shows a high success matching rate, it wastes lots of the extracted feature points, and
its accuracy is relatively low. In contrast, 3MRS demonstrates high robustness to various
multimodal remote sensing image pairs with different NID, obtaining the most significant
number of correct matches with high accuracy.

In terms of SIFT, the main reason why it performs poorly on multimodal remote
sensing image datasets is that it uses image gradients as the basis of feature detection
and description, considering that the gradient information is sensitive to NID and noises.
Therefore, the repetition rate of detected feature points on different images is relatively
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low, the estimated primary orientation during feature description can be wrong, leading to
inaccurate feature descriptor construction. For PSO-SIFT, it uses the second derivatives,
improving the orientation estimation accuracy and performing well on optical–infrared im-
age pairs. However, it cannot handle large NID, so its performance dramatically decreases
when applied to optical–SAR and optical–depth image pairs. The thought of HAPCG
is similar to SIFT, and the most significant difference is that HAPCG uses phase congru-
ency rather than gradient information for image matching. It detects feature points on an
anisotropic weighted moment graph using the Harris algorithm and constructs feature
descriptors based on the phase congruency model. Even though it performs better than
SIFT, its robustness to different kinds of NID and matching accuracy is still relatively low.
In addition, the main orientation estimated by HAPCG is inaccurate in many situations
due to the large NID, further decreasing its performance. Unlike HAPCG, RIFT does not
calculate the main orientation directly. It constructs a feature descriptor based on a MIM
feature map which is calculated using the phase congruency information and achieves
orientation invariance by analyzing the influence of different orientation angles on the MIM
feature. Even though RIFT has a highly successful matching rate, its accuracy is similar to
HAPCG. Different from the above methods, 3MRS employs a coarse-to-fine matching strat-
egy, where the coarse and fine matching stages have high robustness against NID. Based
on phase congruency, 3MRS first utilizes the index information of the maximum value
in all orientations of convolved images in the stage of coarse matching for fast matching,
which is similar to RIFT. The rough transformation between the images can be estimated
with the obtained few matches, which can be used to estimate the initial correspondences
for all extracted feature points. Then, in the fine matching stage, we construct a template
feature using the whole convolution image sequence rather than the index information,
significantly improving the feature description ability. Under this framework, many feature
points that are not matched during coarse matching are matched in the fine matching
process, significantly improving the feature utilization rate and obtaining more correct
matches. Moreover, the matches have high accuracy benefiting from the well-structured
template features and 3D phase correlation similarity measure.

4.2. The Influence of Coarse Matching on the Final Result

As described before, the fine matching process is conducted on the basis of coarse
matching, and this section discusses the effectiveness of coarse matching and the influence
of the result of coarse matching on the subsequent fine matching process. Generally, the area-
based fine matching requires a relatively good initial predicted matching location, and the
initial correspondences are computed based on the transformation model calculated from
the matches obtained from coarse matching. Theoretically, three high-accuracy matches
are enough for calculating the affine transformation between an image pair, and more
accurate transformation parameters are supposed to be achieved using large amounts of
high-accuracy matches with the least square method. Nevertheless, when less than three
matches are obtained during coarse matching, we cannot calculate the transformation
between the image pair and carry out the subsequent fine matching process. Figure 11
shows the detailed experimental results of coarse matching on all experimental image
pairs, and Table 3 gives the average statistical results of NCMs and RMSEs for each type
of multimodal image pair. Results show that hundreds of NCM can be obtained for each
image pair, with the average of NCM of each type of image pair larger than 300, the least
number of NCM more than 100, and the most significant number of NCM larger than
1200. Besides, the RMSE of correct matches of most image pairs lies between 1.5 and
3.5 pixels, demonstrating high accuracy. These large amounts of high-precision matches
can be reliably applied to estimate the transformation and provide initial correspondences
for the following fine matching process.
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Figure 11. Coarse matching results of 3MRS on the NCM (a) and RMSE metrics (b).

Table 3. Average results of NCM and RMSE in Figure 11 for each type of image pair.

Criteria Optical–Optical Optical–Infrared Optical–Depth Optical–Map Optical–SAR Day–Night

NCMave 542 548 560 503 321 351

RMSEave 2.19 2.25 2.20 2.43 3.40 2.71

There may be situations where enough matches are obtained, but significant errors
involve the matches, leading to inaccurate estimation of image transformation. For example,
the RMSE of the matches obtained from the coarse matching for the first image pair of
optical and SAR images is 9.84 pixels; we deemed it a matching failure considering its
value is larger than five. In this case, the initial predictions would severely violate the
accurate locations. However, our method can still find correct correspondences. After
the fine matching process, the RMSE improves to within four pixels, an acceptable range.
Figure 12 demonstrates the registration checkboard images before and after fine matching.
We can see that the wrong registration result is corrected using the proposed fine matching
strategy. Therefore, our fine matching method has good robustness against the relatively
bad coarse matching result.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 

  
(a) (b) 

Figure 11. Coarse matching results of 3MRS on the NCM (a) and RMSE metrics (b). 

Table 3. Average results of NCM and RMSE in Figure 11 for each type of image pair. 

Criteria Optical–Optical Optical–Infrared Optical–Depth Optical–Map Optical–SAR Day–Night 
NCMave 542 548 560 503 321 351 
RMSEave 2.19 2.25 2.20 2.43 3.40 2.71 

There may be situations where enough matches are obtained, but significant errors 
involve the matches, leading to inaccurate estimation of image transformation. For exam-
ple, the RMSE of the matches obtained from the coarse matching for the first image pair 
of optical and SAR images is 9.84 pixels; we deemed it a matching failure considering its 
value is larger than five. In this case, the initial predictions would severely violate the 
accurate locations. However, our method can still find correct correspondences. After the 
fine matching process, the RMSE improves to within four pixels, an acceptable range. Fig-
ure 12 demonstrates the registration checkboard images before and after fine matching. 
We can see that the wrong registration result is corrected using the proposed fine match-
ing strategy. Therefore, our fine matching method has good robustness against the rela-
tively bad coarse matching result. 

  
(a) (b) 

Figure 12. Registration checkboard overlays before (a) and after (b) fine matching. 

  

1 2 3 4 5 6 7 8 9 10
Image pair

0

200

400

600

800

1000

1200

N
C

M

optical-optical
optical-infrared
optical-depth
optical-map
optical-SAR
day-night

1 2 3 4 5 6 7 8 9 10
Image pair

0

1

2

3

4

5

6

7

8

9

10
optical-optical
optical-infrared
optical-depth
optical-map
optical-SAR
day-night

Figure 12. Registration checkboard overlays before (a) and after (b) fine matching.



Remote Sens. 2022, 14, 478 19 of 23

4.3. Performance of 3MRS with Respect to Rotation and Scale Change

3MRS is designed for handling various types of nonlinear intensity differences, and
the experimental datasets have no obvious geometric deformations. In terms of rotation,
it will affect the performance of both the stages of coarse matching and fine matching.
During the process of coarse matching, feature description is conducted using an index
map constructed by finding the index of the maximum value in all orientations of convolved
images obtained using a set of log-Gabor filters. For each orientation of the convolved
image, the employed log-Gabor filters have a specific direction. Specifically, we apply six
directions (0◦, 30◦, 60◦, 90◦, 120◦, and 150◦) of log-Gabor filters to convolve the original
image. If rotation change exists between an image pair, the relative orientations between
the two images and the same direction of the log-Gabor filter would be different. Even the
convolved images of the same images with different rotation angles would be different
using the exact orientation of the log-Gabor filter. As a result, the constructed feature map
(as displayed in Figure 13), which uses the information of convolved images explicitly, will
also be different.

Moreover, the rotation will affect the feature construction and matching process of fine
matching. The temple feature cannot handle rotation, considering that the feature is also
built based on the log-Gabor convolution image sequence. Besides, the 3D PC matching
strategy is also sensitive to rotation: the larger the rotation angle, the less distinctive the
peak value of the 3D phase correlation function. The peak value will not be detected if the
rotation is significant and the matching process fails.
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When the rotation angle is not large, there is still considerable overlap between the
image pair and our feature descriptor is built based on statistics, increasing the image
matching success rate. Therefore, we tested the robustness of 3MRS against rotation. A large
number of experiments show that the performance of 3MRS will not decline significantly
when the rotation is less than 20 degrees between the image pair, even though 3MRS does
not consider the rotation explicitly. Figure 14 gives the matching and registration results
under 10 and 17 degrees rotation angles, respectively. We can see that the number of
matches decreases with the increase in rotation, but lots of correct matches are obtained.
Moreover, we can still obtain a good registration result. Thus, 3MRS has good robustness
against slight rotation.
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In terms of scale change, since 3MRS does not apply any scale-resistance strategies
such as scale-space construction, it shows less robustness against scale change. The features
constructed reflect distinctive information under different image contents at different
scales. Besides, the 3D phase correlation matching strategy cannot handle scale change
either. However, 3MRS still shows some robustness against scale change. As displayed in
Figure 15, when the scale is slightly different, such as no more than 30 percent, relatively
good matching results can still be achieved. The reason can be that the sizes of the window
image used for constructing the feature descriptor in the coarse matching process and
building temple feature in the fine matching process are relatively large. There is still
extensive overlap between the image pair, enabling the success of image matching.
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In real applications, relatively accurate prior information is available such as orbital
position and attitude or rational polynomial coefficients (RPC) parameters provided with
the remote sensing images. With this information, the geometric differences in scale
and rotation angle between images can be calculated and roughly eliminated in advance.
Therefore, 3MRS can be applied to real engineering applications.

5. Conclusions

Aiming to tackle the severe NID between multimodal remote sensing images, this
paper proposed a novel and effective coarse-to-fine method, 3MRS, to match multimodal
remote-sensed images. Firstly, feature extraction is conducted by calculating the maximum
moment map from the 2D phase congruency model, and feature description is performed
on an index map of all orientations of log-Gabor filter-convolved images. Then, feature
match and outlier removal are conducted to complete image matching. Moreover, the
obtained high accuracy matches are used to estimate a reliable transformation between
the image pair. After that, the estimated transformation is used to predict the initial
correspondences, which are further optimized using a newly developed template matching
method that builds features from the log-Gabor convolution image sequence and employs
a 3D phase correlation matching method.

According to the results of a large number of different types of multimodal images,
the superiority of 3MRS on robustness, number of correct matches, and matching accuracy
is proved through comparing it with four state-of-the-art matching methods, SIFT, PSO-
SIFT, HAPGC, and RIFT. In detail, SIFT obtains the worst performance on all indices,
revealing that it can hardly match multimodal remote sensing images. This is because the
feature descriptors of SIFT are constructed based on the gradients, and there are significant
differences in gradient direction and gradient magnitude between the two images due to
NID. PSO-SIFT was initially designed to match optical–optical and optical–infrared image
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pairs, and its resistance to NID is also limited. HAPCG has improved considerably more
than SIFT and PSO-SIFT, but its performance is quite unstable. RIFT shows good robustness
to different conditions of multimodal images and obtains many matches with relatively
high accuracy. However, the matching rate of the extracted feature points is still low, and
most of the feature points are unmatched.

On the contrary, 3MRS successfully matches all experimental image pairs and obtains
the most significant correct matches with the highest accuracy. Moreover, 3MRS has
the highest matching efficiency for obtaining a correct match. Therefore, it can be well
applied to the task of multimodal remote sensing image matching. However, 3MRS cannot
handle large geometric deformations such as rotation, and we will focus on improving the
robustness of geometric changes in the future.
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