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Abstract: Estimates of migratory waterbirds population provide the essential scientific basis to
guide the conservation of coastal wetlands, which are heavily modified and threatened by economic
development. New equipment and technology have been increasingly introduced in protected areas
to expand the monitoring efforts, among which video surveillance and other unmanned devices are
widely used in coastal wetlands. However, the massive amount of video records brings the dual
challenge of storage and analysis. Manual analysis methods are time-consuming and error-prone,
representing a significant bottleneck to rapid data processing and dissemination and application of
results. Recently, video processing with deep learning has emerged as a solution, but its ability to
accurately identify and count waterbirds across habitat types (e.g., mudflat, saltmarsh, and open
water) is untested in coastal environments. In this study, we developed a two-step automatic
waterbird monitoring framework. The first step involves automatic video segmentation, selection,
processing, and mosaicking video footages into panorama images covering the entire monitoring
area, which are subjected to the second step of counting and density estimation using a depth
density estimation network (DDE). We tested the effectiveness and performance of the framework
in Tiaozini, Jiangsu Province, China, which is a restored wetland, providing key high-tide roosting
ground for migratory waterbirds in the East Asian–Australasian flyway. The results showed that
our approach achieved an accuracy of 85.59%, outperforming many other popular deep learning
algorithms. Furthermore, the standard error of our model was very small (se = 0.0004), suggesting
the high stability of the method. The framework is computing effective—it takes about one minute to
process a theme covering the entire site using a high-performance desktop computer. These results
demonstrate that our framework can extract ecologically meaningful data and information from
video surveillance footages accurately to assist biodiversity monitoring, fulfilling the gap in the
efficient use of existing monitoring equipment deployed in protected areas.

Keywords: automated density estimation; deep learning; panorama images; migratory waterbirds;
coastal wetland
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1. Introduction

Sound wildlife and habitat conservation policies and effective practices depend on
timely and reliable species monitoring data [1–3]. Species monitoring has become one of the
critical responsibilities of conservation personnel in protected areas [4,5]. The traditional
ground survey is an essential means of species monitoring. However, it is time-consuming,
laborious, and difficult to standardize [6,7], potentially leading to biased datasets [8]. In
recent years, emerging technologies, such as airborne and spaceborne imagery, biotelemetry,
real-time static and video surveillance, and passive acoustic recording [9], have drastically
increased data collection capacity with improved efficiency [10] and accuracy [11,12] by
reducing operational costs and expanding coverage relative to conventional methods,
thereby offering new opportunities for conservation studies at local, regional, and global
scales. Ecology and conservation are now in the era of big data [13,14].

Real-time video surveillance devices have many advantages in assisting species sur-
veys such as remote and nonintrusive observation, real-time monitoring, cloud storage, and
playback convenience [15,16]. High-definition monitoring equipment installed in protected
areas provides many conveniences and advantages for discovering new species, monitoring
the behavior of specific species, investigating the home range of animals and their habitat
use patterns [17,18], preventing illegal trading, and promoting public awareness [19]. In
the past decade, to reduce the cost, labor, and logistics of observations, more managers of
protected areas around the world are installing high-definition video surveillance equip-
ment to assist in the daily management of protected areas [20,21]. Video surveillance is
particularly useful for wetland ecosystems, where access is often restricted.

The essence of video data is a massive volume (e.g., in terabytes and petabytes) of
time-series images [22]. While the increasing amount of data allows unprecedented insights
on conservation biology and ecology [14], it also brings the dual challenges of storage and
analysis [23], and there is currently a mismatch between the ever-growing volume of raw
materials (e.g., video and audio records, images) and our ability to process, analyze, and
interpret data to inform conservation [24], which could lead to the loss of a large amount
of data [25]. Central challenges for data analysis are large data volume and high data het-
erogeneity (e.g., multisources, and variable quality and uncertainty), which precludes the
traditional likelihood-based modeling approaches due to high computation demands [23]
Machine learning (ML), a likelihood-free approach, can automatically generate predictive
models by detecting and extracting patterns in data without presumptions concerning
structure data [24]. In the past two decades, various machine learning approaches (e.g.,
ANN—artificial neural networks, RF—random forest, and SVM—support vector machine)
have been applied in ecology and conservation for studies such as clustering and classi-
fication [25]. Deep learning (DL) or deep neural network (DNN), a family of ML models
involving ANN with multiple hidden layers [26], has emerged as a promising approach
to link big data and conservation and ecology [25], and became the preferred solution for
automated image-based (e.g., video) and signal-based (e.g., audio) data analysis [26,27].
Researchers are now beginning to apply DL to automatically extract scalable ecological
insights from complex nonlinear data such as noisy videos and acoustic data [28]. Examples
include automated species identification (reviewed by [29]), animal behavior ecology [30],
environmental monitoring and ecological modeling [25], genomics [31], and phylogenetics.

Many migratory waterbirds in the East Asian–Australasian flyway (EAAF), a region
with 37 countries stretching from Russian Tundra to the coasts of Australia and New
Zealand, are a global conservation priority because anthropogenic pressures, such as loss
and degradation of habitats, interruption of migratory routes, overexploitation, and global
climate change, have threatened their continuing existence [32–34]. Therefore, monitoring
the wader populations at significant sites within EAAF is an urgent task for establishing and
evaluating conservation policies and actions [35,36]. However, in addition to weak contrast
with the background, varied body size, and clustering distribution [37], the transient nature
of migration at these sites poses a great challenge for accurate estimation of the waterbird
abundance and distribution using a particular site with traditional point counts or line



Remote Sens. 2022, 14, 514 3 of 17

transects. Surveys based upon a “snapshot” of waterbird abundance could potentially
bring bias in population estimations. Given the successful applications of DL in crowd
density estimation using surveillance video [38], and the rapid development of DL theory
for processing infrared camera, aerial, and satellite images [39–41], this study aims to
evaluate the potential of DL in monitoring the abundance and distribution of migratory
waterbirds. Taking advantage of the large volumes of accumulated surveillance video data
from a recently constructed roosting site, we developed a two-step automatic waterbird
monitoring framework for generating high-frequency waterbird density maps to unlock
the potential of DL in migratory waterbird monitoring. Our approach could contribute to
the modernization of collecting wildlife abundance and distribution data by connecting
ecologists and computing scientists.

2. Materials and Methods
2.1. Study Site

We conducted this study on a 50 ha restored site, named “TZN720” within the Tiaozini
coastal wetland in Dongtai City, Jiangsu Province, China (Figure 1a,b). TZN720 was an
aquaculture pond before 2019 but was converted to wetland managed specifically as high-
tide roosting habitat for migratory waterbirds. Tiaozini coastal wetland has a total area of
about 333 km2, consists of mainly intertidal wetlands and aquaculture ponds (Figure 1b).
The Tiaozini coastal wetland area is inscribed in the World Heritage List as part of the
migratory bird sanctuaries along the Yellow Sea–Bohai Gulf of China. The wetland system
is an irreplaceable and indispensable hub for over 400 bird species and critical for the
over 50 million migratory birds moving along the East Asian–Australasian flyway [42],
including the critically endangered spoon-billed sandpiper (Calidris pygmaea), endangered
spotted greenshank (Tringa guttifer), and black-faced spoonbill (Platalea minor) [43,44].

Figure 1. Overview of the Tiaozini wetland. The red point in (a) is a key staging site for migratory
waterbirds, located in the east coast of Dongtai City, Jiangsu Province, China. The study site TZN720,
the red square in (b), is a restored wetland and the monitoring site within the Tiaozini wetland; the
red dots in (c) show the location of the 10 surveillance cameras; (d) shows the setup of a surveillance
camera; and (e) is a panoramic view of TZN720 obtained from the cameras.
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Along the elevation gradient, TZN720 has four types of habitat with different microto-
pography: low levee bank, shallow grass area, shallow water area, and deep water area
(Figure 1e). The water level has been kept mostly constant with occasional water exchange
with the sea during high tide. The nearest distance from the site to the intertidal zone,
where the waterbirds feed, is less than 0.3 km, and the longest distance is no more than
0.9 km, providing an ideal roosting area for waterbirds during high tide [45].

Ten billiard video surveillance cameras from Dahua (DH-SD-49D412U-HN, Zhejiang,
China) were installed at TZN720 (Figure 1c) in 2021 and have been monitoring the site
since, accumulating extensive video footage. The ONVIF (Open Network Video Interface
Forum) cameras are visible and accessible via IP addresses. Each camera is fixed at 1.70 m
from the ground and has a maximum zoom range of 60 times, enabling clear bird images.
The camera can be rotated 360◦ horizontally and from −45◦ to 90◦ vertically. It can also
operate from −40◦ to 40◦ Celsius or in an environment with up to 93% humidity.

2.2. Build a Bird Population Counting Dataset

As shown in Figure 2, in order to carry out neural network training, we need to make
a bird population counting dataset. The dataset will be introduced from the following three
processes: data collection, filtering, and annotation.

Figure 2. Samples of the dataset. We show two samples (a,b) from the dataset, where each sample
consists of the original image (upper) and the ground truth (lower).

2.2.1. Dataset Collection

PyCharm 3.2.2021 [46], an integrated development environment for Python, was used
to call the video track from randomly setup tours to obtain a video that contains information
about the entire scene. We used OpenCV [47] to obtain the keyframes, which were named
according to the number. The length of video captured in one panorama is four seconds,
and each second is composed of thirty frames of images, a total of 120 images. After the
test, key image frames of fixed sequence (19, 26, 33, 41, 49, 56, 63, 71, 79, 86, 92, 99, 106,
110, 116) were extracted from the video. Finally, we mosaicked the keyframes in matrix
order with the photos captured from the video stream to obtain a panoramic photo of the
entire site.

The data feature complexity is high because of the highly frequent interhabitat move-
ments of birds and the change of weather as well. Therefore, to obtain a dataset suitable
for neural network training, it is necessary to filter the camera’s large amount of data. To
obtain data sets of different scenes and scales, the camera’s focal length, angle, and shooting
scene were diversified when collecting data. To obtain a variety of data sets, we randomly
sampled these ten cameras to ensure the diversity of the panorama image datasets we
obtained (Figure 1c) between 1 June and 9 August.

2.2.2. Data Filtering

To make a dataset for neural network training, it is necessary to filter the camera’s
large amount of data. To improve the quality of the dataset, we selected samples with high
image quality from all datasets to form the final data set, which is mainly based on the
following three steps:

A. Image resolution: Because the image features are not apparent, the image mosaic is
incomplete, and some data are lost, so the images with a resolution lower than 4k in
the dataset are removed.



Remote Sens. 2022, 14, 514 5 of 17

B. Image sharpness: Since the images collected by the camera in the rotation process are
affected by motion blur, it is necessary to remove the samples with unclear photos in
the data set.

C. Data statistical characteristics: To ensure the rationality of data set distribution and
the effectiveness of neural network training, it is necessary to reasonably allocate the
number of samples with different number scales in the data set. We removed the
pictures with less than 10 targets in the dataset and screened the images with a larger
number of scales (ranging from 50 to 20,000) to ensure a reasonable distribution of
the dataset.

2.2.3. Data Annotation

We developed an annotation tool for bird population counting. As shown in Figure 3,
a point was placed at the center position of a target and the coordinates of the point were
saved, representing a bird. Panoramic images are generally long. However, desktop
computers have limited display size, and it is difficult to directly annotate panorama
images using a desktop computer. Therefore, we preprocessed all samples in the data set to
improve the labeling efficiency and reduce the labeling cost. The preprocessing procedure
is divided into three steps.

Figure 3. The interface of the annotation tool. Every bird in an image is marked as a red dot, and the
coordinated points are saved for further counting.

A. Determining the minimum unit of image clipping: The input size of the density esti-
mation module designed in this method is fixed at 1024 × 768, which can ensure the
computational efficiency of the algorithm and retain the valuable feature information
of the image as much as possible.

B. Resizing the original image: The size of the original image is not regular. The
length range is 4k~30k, and the width is 1k~1.2k. It cannot be cut into multiple
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1024 × 768 images. Therefore, it is necessary to resize the original image and round it
to a multiple of 1024 × 768.

C. Clipping the resized image: After three steps of clipping preprocessing, the original
dataset is clipped into many small images of 1024 × 768, which improves the labeling
efficiency, and the labeled label information can be mapped to the original data
through the corresponding relationship between file name and image size.

2.3. Build a Panorama Bird Population Counting Network

As shown in Figure 4, the network’s input is a panoramic “RGB“ image, and the
output is a density map showing the bird distribution within the monitoring area. The
process of network construction consists of three steps.

Figure 4. The architecture of panorama bird population counting network. It consists of three parts,
the green part is the image cropping module, the blue part is the depth density estimation network,
and the purple part is the concat operation module.

First, the input image is automatically cropped into n pending images with the size
of 1024 × 768 through the image clipping module. Second, the depth density estimation
network (DDE) estimates the bird density of the clipped images. Third, the concat operation
module (COM) splices the generated density images into a panoramic bird density map for
the entire site and calculates the total bird abundance.

2.3.1. Image Clipping Module

Due to the uncertainty of rotation parameters of image acquisition equipment, the
size of image data obtained is not fixed. Therefore, we first scale the size of the image so
that the pixel length of the picture is the integer multiplication 1024 and the pixel width of
the picture is the integer multiplication 768, and then the image is cut into clips with the
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same size, 1024 × 768. We designed an automatic clipping method to obtain N minimum
processing image units. The formula follows:

N =


a =

{ ⌊ x
x0

⌋
, m =

∣∣∣ x
x0
−
⌊ x

x0

⌋∣∣∣, m� 0.5
y = λy0

b =

{ ⌈ x
x0

⌉
, m =

∣∣∣ x
x0
−
⌊ x

x0

⌋∣∣∣, m < 0.5
y = λy0

(1)

where N is the minimum number of processing units x after cropping, y is the real pixel
value of the input image, x0 is a fixed length of 1024 pixels, y0 is a height of 768 pixels.
Input images of actual pixel values are divided by 1024 (number of fixed pixel values); the
whole integer input image of actual pixel values is divided by 1024 (number of static pixel
values), recorded, and replaced with the entire integer b. The actual pixel value of the input
image m is divided by 1024, which results in the fixed pixel value remainder λ. This is used
to adjust the size of the y-direction proportion.

2.3.2. Depth Density Estimation Network

Many waterbirds are small and congregate into flocks during foraging and roost-
ing [48]. To determine the number of flocks in a given image, we first generate a density
map based on the experience gained from crowd counting. Relative to the total number of
birds, the density map can show the spatial distribution of birds in a given image. We use
an adaptive Gaussian blur algorithm to generate density map labels. The process mainly
includes two parts: image annotation display and image conversion and representation.
First, a two-dimensional matrix with the exact resolution as the original image is gener-
ated. Then the coordinates are transformed by the input and output resolution ratio. The
transformed label coordinate xi is then set to 1 by the delta function, which is given as:

I(x) = ∑N
i=1 δ(x− xi) (2)

Next, we convolve the two-dimensional Gaussian kernel with the delta function.
However, the xi of the different samples are not completely independent; they are related
to each other due to perspective distortion. Therefore, we must consider the problem of
perspective deformation when dealing with it. Using the K-nearest neighbor algorithm, we
calculate the current sample point xi and the surrounding sample point xi+1 in

M(x) = ∑N
i=1 δ(x− xi) ∗ Gσi (x), with σi = βdi (3)

where di is the average distance corresponding to each xi sample, and β is a scaling
parameter. Through experimentation, we found that the best result is obtained when
β = 0.5.

We propose a neural network model called depth density estimation (DDE) network
for bird density estimation. The DDE model comprises two parts: the front-end feature
extraction and the back-end density map generation. As the background of the image
data is complex, containing information about various objects, we choose to use the deep
residual network with the best effect in the field of image recognition for front-end feature
extraction [49]. The bottomless residual network extends the deep neural network to
152 layers by employing short-circuit connection. It effectively improves the extraction of
image features by neural network and solves the problems of degradation and difficulty
in training and convergence with the deepening of the neural network [49]. The ResNet
network is modified based on the VGG network [50], and the residual unit is added
through the short-circuit mechanism, which alleviates the problem that the deep network
is difficult to train. It has five structures with different depths, among which the ResNet152
deepens the network structure based on ResNet34 and has stronger feature extraction
ability. Considering both the accuracy of the whole network and the execution efficiency
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of the algorithm, we abandoned ResNet152 with the highest accuracy. We chose the
ResNet34 network with high computing speed under the premise of losing a small amount
of accuracy as the front-end feature extraction part to connect with the back-end density
map generation part. We removed ResNet’s entire connection layer. In addition, ResNet34
is pre-trained on ImageNet [51], a ten-million-level dataset, and the weight contains rich
target feature information. Therefore, using this network structure as a feature extraction
network can effectively accelerate the convergence speed of network training.

Dilated convolution increases the receptive field of convolution operation by adding a
hole calculation operation to the convolution core to make the output of each convolution
contain an extensive range of information without a pooling operation. In the ordinary
convolution operation, the size of the convolution core is 3 × 3, and its receptive field is
3 × 3. In the dilated convolution with dilation 1, although the extent of the convolution
core is 3 × 3, the receptive field becomes 7 × 7. The birds in the dataset are small and
individual occlusion is expected; thus, we need more abundant and complete local feature
information to generate the feature map. Therefore, we choose hole convolution as the
main component of the back-end density map generation part. To retain the image feature
information as much as possible, we do not use the pooling layer.

The labeling is a crucial step in neural network training [52]. The reliability of data
labels directly determines the accuracy of supervised learning results. When generating
the dataset label, the dataset uses the label from the population density estimation dataset
for reference. Because ResNet34 uses multiple dimensionality reduction operations in
developing the density map, the size of the density map is 1024 times the size of the original
image; it is therefore necessary to resize the label data. After experimentation, it was found
that after using the resize operation directly, the label difference generates an error, and the
error calculation formula is:

error =
∑M ∑m,n IM(m, n)− numGT

M
(4)

where M is the number of samples in the dataset, (m, n) are the coordinates of image pixel
points, and numGT is the number of birds read directly from the label file.

As shown in Table 1, when the number of downsampling times exceeds four, the
label produces errors that dramatically affect the algorithm’s accuracy. Although the
error is relatively small if the downsampling is less than four times, the number data
to be processed by the algorithm increases with the increase of the output characteristic
graph, and the algorithm is not suitable for convergence. Therefore, two-dimensionality
reduction operations are removed from DDE. The size of the output feature graph is
128 × 96, which not only ensures the convergence speed of the algorithm, but also ensures
the algorithm’s accuracy.

Table 1. Density map label error with different downsampling operations.

Density Map Train Test All

1024 × 768 1495.29 2252.23 3747.52
512 × 384 1495.32 2252.24 3747.56
256 × 192 1515.80 2264.97 3780.77
128 × 96 9226.60 6256.52 15,483.12
64 × 48 53,659.82 28,304.39 81,964.21
32 × 24 126,574.40 65,526.26 192,100.66

2.4. Model Training

We applied the DDE model to the dataset collected from TZN720 to estimate the
abundance of birds staging in this world heritage site. We randomly set 80% of the images
for model training and the remaining 20% for model testing and validation.

DDE was developed using PyTorch 1.8.0. The model is trained in Geforce RTX3090
with 24 GB memory. The initial model specifications were set as follows: learning
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rate = 10 × 10−5, batch size = 1, momentum = 0.95, weight attenuation = 5 × 10 × 10−4,
and 200 epoch for the iteration cycle. It took 18 h to train the model.

2.5. Performance Evaluation

In order to verify the effectiveness of our approach, we calculated the mean absolute
error (MAE) and the root mean square error (RMSE) of our algorithm:

MAE =
1
N ∑N

1 |zi − ẑi| (5)

RMSE =

√
1
N ∑N

1

(
Zi − Ẑi

)2 (6)

where N is the number of images to be tested, Zi is the ground truth (manually labeled by
20 workers, representing the real bird counts in the picture) of the ith image, which is the
model prediction.

While MAE gives an indication of the algorithm’s accuracy, MSE assesses the algo-
rithm’s robustness and stability. To further express the accuracy of the algorithm directly,
we calculated the accuracy of the algorithm defined as:

Errorratio =
∑N

1
(
Zi − Ẑi

)
∑N

1 Ẑi
× 100% (7)

The lower MAE and Errorratio, the greater the accuracy of the algorithm in the test set,
and the lower MSE, the more stable and better adaptability of the algorithm. In addition,
we calculated the model MEA, RMSE, and accuracy with a different sample size of the
testing dataset to illustrate the effectiveness of our method.

To our best knowledge, there is currently no neural network algorithm specifically
applied to bird density estimation, so we compared the performance of our algorithm
with six popular crowd density estimation algorithms. We trained the six algorithms (i.e.,
MCNN [53], MSCNN [54], ECAN [55], MSPNet [56], SANet [57], and CSRNet [58]) with our
bird dataset using the transfer learning method basis on original weights, and compared s.

2.6. Motivating Application: Exploring Daily Movement of Waterbirds by Using High-Frequency
Population Counting

Tidal height is an important factor affecting the habitat of waterbirds in coastal ecosys-
tems [59] and tidal cycle drives the between-habitat movement and foraging behavior of
waterbirds [60]. In order to explore the relationship between bird abundance at roosting
sites and tidal height, we used camera 3 (Figure 1c) to monitor areas with a high concentra-
tion of waterbirds. Between 9 August and 1 October, it is still the peak mitigation season,
and there were a large number of waterbirds that migrated into the Tiaozini coastal area.
We selected 13 days during this period when the high tides could completely submerge the
mudflats—the foraging ground of waterbirds. For each of these 13 days, we generated a
panorama image from 6:00–18:00 at intervals of 5 min. We collected 984 panoramic images
of key habitats in TZN720 and ultimately applied the trained model to estimate the number
of roosting birds.

We also collected the tide data for the same period from the China Maritime Safety Ad-
ministration [61]. We used the Lagrangian interpolation method implemented in Pycharm
(3.3) to fill the gaps in the raw tide data, resulting in a regular time series of tidal height
with an interval of 5 min. For illustrating the relationship between waterbird abundance
and tidal height, R version 4.1.2 was used with the following packages: cowplot_0.9.4 [62],
ggplot2_3.1.0 [63], and RColorBrewer_1.1-2 [64].



Remote Sens. 2022, 14, 514 10 of 17

3. Results
3.1. The Panoramic Bird Population Counting Dataset

The whole dataset covers different camera scenes and has rich feature information.
The dataset contains a total of 935 panoramic images of different sizes (Figure 5). It took
20 people three months to label and count the birds in these images. Manual counting
revealed that there are 787,552 birds in this dataset. The number of birds captured by these
images varied dramatically (mean = the average picture includes 842.30 and SD = 2089,
Figure 6).

Figure 5. The distribution of image resolution and corresponding image quantity in the bird dataset.

Figure 6. The distribution of the number of birds and the corresponding number of training and
testing images.

3.2. Model Performance

The MAE and RMSE of the image processing algorithm are 120.86 and 599.74, re-
spectively. Meanwhile, the average error rate is 14.14%. The image processing rate is
2.12 FPS (frames per second). The average recognition accuracy of the image was 85.59%
(SD = 0.1273, SE = 0.0004). Although it varied with the number of targets in the image, the
average accuracy of the model was comparable for mapping and counting up to 2000 tar-
gets per image, and peaked at 90.92% (SD = 0.0788) when the number of birds in the image
was 800–1000 (Figure 7). The accuracy deteriorated when the number of birds in the image
was greater than 2000 (mean = 78.63% and SD = 0.1382, Figure 7).

Example of model products, including density map and total bird count, are presented
in Figure 8. It is clear that our method has good adaptability to scenes with different sizes,
distinct target density, and congregation patterns.
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Figure 7. Distribution of absolute error rates in each group. The x-axis represents a grouping of
panoramic images of different bird populations of magnitude. The number of birds contained in the
panoramic image has different effects on the accuracy of the model.

Figure 8. Examples of model output of density map and bird counting. We visualize the results
of different orders of magnitude images to demonstrate the adaptability and practicability of our
algorithm: (a–g) represent seven typical samples of different orders of magnitude, each consisting of the
original image (top) and the resultant density map (middle) and total bird count in the image (bottom).
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3.3. Comparison with Other Deep Learning Algorithms

In comparison with other neural network algorithms that were applied in crowd
density estimation, our approach had the lowest MAE of 120.86 and lowest RMSE of 599.74
(Table 2), obviously outperforming the others. Other algorithms have better results in
estimating population density in other studies, but the accuracy decreases when estimating
waterbird populations in this study. Moreover, in terms of computing cost, our approach
was also among the algorithms with high efficiency (Table 2).

Table 2. Comparison with other algorithms: we compared the current mainstream crowd density
estimation algorithms, and our algorithm has the highest accuracy.

Method MAE RMSE Error Rate Error Rate * FPS

MCNN [53] 253.89 751.34 29.72% 21.99% 9.57
MSCNN [54] 330.26 817.51 38.66% 19.31% 1.91
ECAN [55] 322.49 804.82 37.75% 14.35% 1.35

MSPNet [56] 257.30 747.76 30.12% 16.25% 2.41
SANet [57] 207.16 789.65 24.25% 15.43% 2.45

CSRNet [58] 191.02 720.80 22.36% 15.56% 3.87
ResNet34 [49] 120.86 599.74 14.14% – 2.12

* error rate reported from the original study for crowd density estimation.

3.4. Tidal-Driven Waterbird Movement in Tiaozini

The relationship between the number of roosting waterbirds and tidal height is pre-
sented in Figure 8. The estimated number of roosting waterbirds traced the tide dynamics
closely; as the tide rose, so did the number of roosting waterbirds (Figure 9a). However,
the rate of change of the roosting waterbirds at falling tide was dramatically faster than at
rising tide. The birds gathered slowly at rising tide, which suggested that the waterbirds
foraging between tides were likely to linger in the intertidal zone for a longer period of
time. When the tide receded and the mudflats were exposed, the birds tended to leave
the roosting site quickly (Figure 9b). It is worth noting that it takes about 2.5 h to count
75 percent of the birds in this site during a field survey.

Figure 9. The relationship between waterbird abundance at the roosting site and tide height based
on estimations from 984 images extracted from surveillance video data collected for the peak autumn
migratory season (9 August and 1 October). Dots are estimated abundance dashed and lines are gam
smoothed curve. Left panel shows the variation of waterbird abundance (percentage to the total
count) at the roosting site during a tidal cycle. Right panel illustrates the relationship of the number
of waterbirds at the roosting site and tidal heights during periods of rising (dark brown) and falling
(dark blue) tide.



Remote Sens. 2022, 14, 514 13 of 17

4. Discussion
4.1. Overall Accuracy and Innovation

Many previous studies have demonstrated the high performance of using DL for
animal recognition and detection from surveillance videos and estimate wildlife abundance
from static images such as aerial photos and pictures from citizen science smartphone
applications [65–68]. Few studies have documented the efficiency of DL for quantifying
animals from real-time surveillance video [69] despite the recent development on crowd
density estimation (see references in Table 2). By combining video streaming and DL animal
recognition and counting, our proposed framework achieved good accuracy with an overall
error rate of 14.14%. In addition, the DDE module with ResNet34 performed consistently
well for images with diversified bird density and congregation patterns, and the accuracy
for images containing more than 2000 individual birds was 78.63%. This is acceptable for
conservation. These results demonstrate that our approach can realize the full potential of
computer vision for wildlife monitoring and conservation [70].

Previous applications of DL for automatic image processing tend to be of low resolu-
tion [71]. In our study, the image resolution of the data set is more than 4k, and some even
more than 30k. This fine resolution has higher requirements for computing equipment,
which requires Intel(R) Core (TM) i7-8700 CPU and GPU 2080ti or higher. Moreover, with
an increase in image resolution, the model’s ability to extract local information decreases.
We resolved this problem by clipping the large images, which improved the model’s train-
ing and reasoning ability and the model’s attention to the local spatial information of the
original picture.

Once the model was trained, it was efficient to predict the number of waterbirds
presented in an image and produce a density map (average processing rate was 2.12 FPS),
enabling high-frequency abundance estimates. Using the model, we successfully regener-
ated the waterbird movement within a stopover site during a tidal cycle by using 984 images
extracted from surveillance video data. Our results have a clear implication for the data
collection methodology for protected areas as well as for conservation efforts of EAAF,
where monitoring population trends with standardized and coordinated methods are a
priority [36]. Our approach also provides local managers with an automatic system that
can report any change in the behavior of birds that warrants urgent attention, particularly
in remote and underfunded areas where regular patrolling is impossible.

4.2. Limitations and Prospects

Many factors, including pixel size of the monitoring target, the complexity of back-
ground information, the accuracy of the label, and the picture quality of the original image,
affect the accuracy of the model for crowd counting and density mapping [72,73], and, in
particular, the correctness of the label information. This algorithm is a neural network algo-
rithm based on supervised learning, which needs to continuously optimize the parameters
of the algorithm by providing the correct label information corresponding to the samples
for the algorithm. Therefore, the accuracy of sample tag information is directly related to
the accuracy of the algorithm. To ensure that the trained model has comparable prediction
accuracy for real-world scenarios, our training dataset contained images of poor quality,
such as images recorded in rainy, foggy, low-light, and bright-light conditions, which could
affect the performance of the entire model. It is necessary to investigate how these factors
affect prediction power.

Generally, for single image crowd counting, the more targets in an image recognition
unit, the higher the stacking level, and the better the recognition. Previous studies on
crowd density estimation have shown that DL approaches are more suitable for scenarios
with simpler backgrounds with a larger number of targets, which are stacked on top of
each other [74,75]. To estimate the abundance of birds using the constructed wetland at a
given time, the input panoramic images, which capture the entire view of the scene, were
created by mosaicking video frames. Thus, there are areas (e.g., deep waters) with very
few targets due to the clustering distribution of waterbirds in stopover sites [48], which
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could affect the count accuracy of the entire panoramic photo. This may also result in less
precision for more extended panoramic images with more birds (Figure 7). Developing
approaches that are capable of handling imbalanced (in terms of a number of targets in a
scene) training datasets could improve the performance.

Similar to other neural network techniques, training the DL model requires a large
amount of training data (i.e., labeled data) to achieve the model’s generalization [10,48,74,75].
However, creating a training data set can be costly and time-consuming. In this study, it
required 60 person-months to create the training dataset of 935 panoramic images. Data
augmentation, such as image distortion (e.g., shifting, blurring, mirroring, rotation, nearest
neighbor pixel swapping) [76] and transfer learning [77], could potentially reduce the cost
of collecting training data.

In this study, we treated migratory waterbirds as a group and did not distinguish
species. There are situations, such as determining the conservation status of a species,
where distribution and abundance data of the targeted species are required. In addition,
waterbirds may differ in habitat requirement [59,78] and therefore need different conserva-
tion actions. Future research could test the performance of other DL methods, such as target
detection, to distinguish and count different species in panoramic images [79]. In the future,
mesh sampling methods [6] could also be designed using surveillance cameras already
available in reserve to assist in waterbird surveys and to help understand the differences in
habitat selection for different waterbirds in different regions.

5. Conclusions

Estimating wild animal abundance is a central task for ecologists and conservationists
and the accuracy of the estimations is fundamental to answering many ecological and
conservation questions for sound conservation efforts [80]. However, monitoring species
abundance can be costly, time-consuming, and logistically difficult as the occurrence of
animals and their behaviors often vary over broad spatial and temporal scales [8]. The
accurate estimation of the number of migratory waterbirds using a particular stopover site
is particularly challenging due to its transient nature. With the large and ever-increasing
volume of static and video surveillance data, there is a great potential for collaboration
between ecologists and conservationists, and experts in the fields of remote sensing and
computer science to generate scalable ecological knowledge for biodiversity and habitat
conservation. Recent developments in the field of computer vision and DL have given
rise to reliable tools and software of feature extraction for animal recognition, accurate
estimation of populations, understanding animal behavior, and habitat use. In this study,
we developed a two-step automated waterbird monitoring framework. The first step of
image streamlining automatically segments, selects, and mosaics surveillance video into
panoramic images covering the entire monitoring area, which is subjected to the second
step of bird recognition and annotation, and counting and density estimation using a deep
neural network. We applied our system to a constructed wetland to monitor the dynamics
of habitat use by migratory waterbirds in relation to tidal cycles. Our results generated
unprecedented data on the spatial and temporal distributions of waterbirds, revealing a
complete picture showing how waterbirds use the tidal flats across the entire tidal cycle.
These results demonstrated that our approach utilizing surveillance videos can effectively
generate reliable high-frequency estimates of abundance and density maps of waterbirds,
providing rich data for ecological studies and conservation management.
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