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Abstract: Temperature and precipitation are the primary regulators of vegetation phenology in
temperate zones. However, the relative contributions of each factor and their underlying combined
effect on vegetation phenology are much less clear, especially for the grassland of the Tibetan Plateau
To quantify the contribution of each factor and the potential interactions, we conducted redundancy
analysis for grasslands spring phenology on the Tibetan Plateau during 2000–2017. Generally, the
individual contribution of temperature and precipitation to grasslands spring phenology (the start
of growing season (SOS)) was lower, despite a higher correlation coefficient, which further implied
that these factors interact to affect the SOS. The contributions of temperature and precipitation
to the grasslands spring phenology varied across space on the Tibetan Plateau, and these spatial
heterogeneities can be mainly explained by the spatial gradient of long-term average precipitation
during spring over 2000–2017. Specifically, the SOS for meadow was dominated by the mean
temperature in spring (Tspring) in the eastern wetter ecoregion, with an individual contribution of
24.16% (p < 0.05), while it was strongly negatively correlated with the accumulated precipitation
in spring (Pspring) in the western drier ecoregion. Spatially, a 10 mm increase in long-term average
precipitation in spring resulted in an increase in the contribution of Tspring of 2.0% (p < 0.1) for meadow,
while it caused a decrease in the contribution of Pspring of −0.3% (p < 0.05). Similarly, a higher
contribution of Pspring for steppe was found in drier ecoregions. A spatial decrease in precipitation
of 10 mm increased the contribution of Pspring of 1.4% (p < 0.05). Considering these impacts of
precipitation on the relative contribution of warming and precipitation to the SOS, projected climate
change would have a stronger impact on advancing SOS in a relatively moist environment compared
to that of drier areas. Hence, these quantitative interactions and contributions must be included
in current ecosystem models, mostly driven by indicators with the direct and the overall effect in
response to projected climate warming.

Keywords: climate change; spring phenology; individual contribution; interacting effects; Tibetan
Plateau

1. Introduction

Climate change was now documented in all major regions of the world and affected
vegetation structure and function as well as public health [1–4]. As the dominant vegetation
type on the Tibetan Plateau, grassland plays important roles in ecological balance and
provides an important buffer against climate change [5,6], and the grassland phenology
was identified as a key indicator of climate–vegetation interactions and reflects the response
of living systems to climate change [7,8]. In particular, the spring phenology of grassland
can provide insight into higher level dynamics of plant functioning and feedback to climate
change through exchange of energy, the hydrological cycle, and carbon uptake, which is
more relevant to global climate and regional natural environmental changes [9–13].
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Temperature and precipitation are regarded as the primary regulators of plant phe-
nology in the temperate zone. Highly credible evidence shows that global warming and
regional changes in precipitation strongly affected vegetation phenology [12,14–17]. Al-
though there were many studies focused on understanding the mechanisms and influences
of climate warming and regional precipitation on vegetation phenology, there are still a
lot of uncertainties in the responses of the start of growing season (SOS) to these factors.
As proof, Lucht et al. [18] and Xu et al. [19] showed that the growth of vegetation would
be facilitated, because global warming eased climatic constraints. However, according to
Jeong et al. [20], the vegetation spring phenology and preseason mean temperature are
correlated across the Northern Hemisphere with a correlation coefficient varying from −0.3
to −0.7, suggesting that global warming would not necessarily induce greater advance in
SOS. In addition, Yu et al. [13] showed that winter warming could delay vegetation spring
phenology due to the adaptive ability of chilling requirements, while Suonan et al. [21]
showed that winter warming increased the soil temperature, and then advanced spring
leaf out and flowering phenology. Some studies also showed that the daylength could
coregulate the SOS through its interaction with temperature or its influence on the stomata
aperture and photosynthetic active radiation [22,23]. Furthermore, water is also necessary
for plant growth, which indicates that changes in regional precipitation should be an-
other main driving factor that regulate vegetation phenology, particularly in water-limited
areas [9,12,16,24]. However, the SOS’s responses to preseason precipitation were also
diverse. Dai et al. [25] found that precipitation and the first leafing date do not show a
significant negative correlation. Other studies, on the other hand, reported that, in arid
or semiarid regions, preseason precipitation indeed advanced vegetation SOS because it
determines spring water availability [5,9,26]. Moreover, some studies argued that presea-
son precipitation would increase the heat demand and then influence the sensitivity of
SOS to precipitation and temperature [16,27]. That is, along with direct impact, precipita-
tion may exert indirect impacts on SOS. These direct and indirect impacts indicated that
temperature and precipitation would complicatedly interact to affect vegetation SOS. It
is difficult to quantify the individual contributions of temperature and precipitation to
the interannual variation of vegetation phenology because of the nonlinear impacts and
underlying interactions of climate factors.

As the world’s largest plateau, the Tibetan Plateau is considered as one of the most
vulnerable ecosystems because of its typical alpine climate and its strong sensitivity to
climate change [5,9–13]. Although numerous recent studies reported the interannual varia-
tion of SOS and its responses to warming and precipitation [10–13,28], large uncertainties
still exist about the advanced (i.e., earlier) or delayed (i.e., later) pattern of the vegetation
spring phenology and their responses to different factors. For instance, Piao et al. [29]
showed that the spring phenology of alpine meadow would be delayed by the increased
accumulated preseason precipitation occurring in five months before the vegetation onset,
while Shen et al. [30] found that declines in spring precipitation would delay SOS rather
than increase preseason precipitation. Moreover, Yu et al. [13] showed that winter warming
could delay grassland spring phenology on the Tibetan Plateau, while Suonan et al. [21]
showed that asymmetric winter warming advanced plant phenology in alpine meadow.
Furthermore, these explanations were later questioned by some studies that argued that the
vegetation spring phenology was more strongly affected by the interaction of warming and
precipitation than the unitary effect of driving factors [5,9,11,16]. Even so, the interaction
effects of climate factors on vegetation phenology remain poorly understood, and the
individual contribution of each factor to grassland SOS across the Tibetan Plateau is not
yet well understood. Thus, quantitative estimation of the relative contribution of critical
climate factors and their interaction effects on grassland SOS on the Tibetan Plateau is
critical and valuable. In this study, we first analyze how SOS changed in the grassland in
different ecoregions of the Tibetan Plateau. We untangle the individual contribution and
interaction of the mean temperature in winter (Twinter), mean temperature in spring (Tspring),
and the accumulated precipitation in spring (Pspring) for interannual variations in SOS based
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on redundancy analysis and identify temporal-spatial pattern of SOS responses to critical
climate factors on the Tibetan Plateau. This is an important step toward understanding the
mechanistic effects and underlying causes of climate change on vegetation phenology.

2. Materials and Methods
2.1. Study Area

The Tibetan Plateau lies at an average altitude of over 4000 m in southwest China
(Figure 1), with a typical alpine climate environment and unique composition and dis-
tribution of alpine grassland, along with a low level of human interference. Across the
entire plateau, the annual mean temperature varies from −15 ◦C to 10 ◦C, and the an-
nual cumulative precipitation decreases from more than 1000 mm to 50 mm. Recently,
the Tibetan plateau experienced substantial climate change characterized by significant
warming [9–12]. Meanwhile, numerous studies showed that vegetation was highly sensi-
tive to climate changes on the Tibetan Plateau [9,12,15,27]. Hence, climate change and its
increasingly pronounced effects on Tibetan Plateau grassland phenology are becoming an
issue of global concern.
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produced an NDVI (normalized difference vegetation index) dataset by using MODIS 
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Figure 1. Location, ecoregions, and vegetation distribution for Tibetan Plateau. (I) Indicates Eastern
Qinghai–Qilian montane steppe ecoregions; (II) indicates Golog–Nagqu high-cold shrub-meadow
ecoregions; (III) indicates southern Qinghai high cold meadow steppe ecoregions; (IV) indicates
Qiangtang high-cold steppe ecoregions; and (V) indicates Southern Xizang montane shrub-steppe
ecoregions [31]. Pixels with annual maximum normalized difference vegetation index (NDVI) greater
than 0.15 and mean NDVI of July to August larger than 1.35 × NDVI during November to February
are shown.

2.2. Datasets

During the past two decades, the monitoring of vegetation phenology at large-scale
regional units was widely achieved using satellite remote sensing. In this study, we
first produced an NDVI (normalized difference vegetation index) dataset by using MODIS
(moderate resolution imaging spectroradiometer) surface reflectance products with a spatial
resolution of 500 m and a compositional period of 8 days from 2000 to 2017 [32], obtained
from the LPDAAC (land processes distributed active archive center, https://lpdaacsvc.
cr.usgs.gov/appeears/. Accessed 21 April 2021). To match the spatial resolution of the
climatic factors, we then resampled these NDVI datasets to a resolution of 1 km and used
them to determine vegetation SOS.

Information about the meadow and steppe distribution on the Plateau was obtained
from the 1:1,000,000 vegetation map of China [33], created by the Chinese Academy of Sci-

https://lpdaacsvc.cr.usgs.gov/appeears/
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ences, using datasets from field observations, aerial photos, TM (landsat thematic mapper)
and ETM (enhanced thematic mapper) satellite images [34,35]. Climate factors at meteoro-
logical stations, including the mean air temperature (◦C), accumulative precipitation (mm)
in spring (March–May), and the mean air temperature (◦C) in winter (December–February)
were obtained from the China Meteorological Data Service Center. Based on the DEM
(digital elevation model) data with 1 km spatial resolution produced by United States
Geological Survey (USGS) and the 71 meteorological stations with complete records on
the Tibetan Plateau (Figure 1), we calculated the spatial grid distribution of accumulated
precipitation and mean temperature in spring using ANUSPLIN interpolation. Specifically,
considering there were fewer than 2000 meteorological stations, we first employed the
SPLNEA module to calculate the surface fitting parameters and their error covariance.
Based on the latitude, longitude, and elevation information in a grid cell provided by DEM,
the fitted climatic values and corresponding predicted standard error in the grid were then
calculated by using the LAPGRD module [36–38].

2.3. Preprocessing of NDVI Data

Due to the inevitable impact of bare soils, sparsely vegetated grids, atmospheric
contamination, etc., there were still many spurious changes in the NDVI time series [9,34,39].
Hence, to improve the quality of annual NDVI time series, the Savitzky–Golay filter for
NDVI time series was conducted first. Additionally, we only selected pixels that met the
following principles simultaneously to analyze the relative contributions of climate factors
and their underlying combined effect on grassland spring phenology. First, the annual
maximum NDVI must be greater than 0.15, and then the mean NDVI of July to August
must be larger than 1.35 × NDVI during November to February. The spatial distribution of
valid pixels is displayed in Figure 1.

2.4. Estimation of Grassland Spring Phenology

In this section, the 18-year averaged NDVI value with a compositional period of 8 days
was calculated from the entire data set during 2000–2017. Based on this long-term averaged
NDVI time series data, subsequent analysis and calculation were conducted. Specifically,
two different methods were employed to detect the grassland spring phenology on the
Tibetan Plateau.

2.4.1. Calculating the NDVI Thresholds Based on the Relative Rates of Changes

Based on the long-term averaged NDVI time series data, we first calculated the relative
rates of changes of NDVI (NDVI_rate) for each valid pixel (Equation (1)). The dynamic
NDVI threshold for each pixel was defined based on the highest positive relative change
rate; that is, the maximum NDVI_rate corresponding to NDVI is the dynamic NDVI
threshold for detecting SOS (Figure 2).

NDVI_rate(t) = [NDVI(t + 1) − NDVI(t)]/NDVI(t) (1)

where NDVI_rate(t) is the relative rate of change in NDVI, t is the time at 8-day intervals,
and NDVI(t) is the averaged 8-day NDVI value at t time.
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Figure 2. Schematic figures for calculating NDVI thresholds based on relative rates of change for
NDVI time series. NDVI value of each point is mean value of grassland on Tibetan Plateau.

2.4.2. Polyfit Method

The polyfit method was initially applied to determine the vegetation spring phenology
by Piao et al. [29]. Polyfit was widely shown to be one of the most efficient methods for
the extraction of the vegetation phenology [8,29]. In general, the growing season of the
grassland ranges from April to October in most areas of the Tibetan Plateau; that is, the
NDVI value of grassland increased first, and then decreased with the increasing numbered
day of the year during the growing season. Therefore, a 6-degree polynomial with a
least-square analysis can be performed to reconstruct the daily NDVI time series from the
original 8-day NDVI data during January to September. The polynomial function is shown
in Equation (2):

NDVI(t) = a0 + a1 × t + a2 × t2 + a3 × t3 + a4 × t4 + a5 × t5 + a6 × t6 (2)

where NDVI(t) is the NDVI at t time fitted by the polynomial equation. t is the numbered
day of the year. a0, a1, a2, a3, a4, a5, a6 are the fitted coefficient derived from least-square
regression analysis. The multiple linear regression function in MATLAB R2019b was used
to estimate these fitted coefficients.

2.4.3. Harmonic Analysis of Time Series (HANTS) Method

The HANTS method was also used to reconstruct the daily NDVI time series from
the original 8-day NDVI data. HANTS is regarded as an improved algorithm of the fast
Fourier transform (FFT), which was proved to be one of the most efficient methods for the
reconstruction of NDVI time series and the extraction of vegetation phenology [8,40,41].
The points with lower values than the neighbors are filtered during HANTS processing,
and they are then reconstructed following Equation (3):

NDVI(t)= a0 +
n

∑
i=1

ai cos(ωit−ϕi) (3)

where NDVI(t) is the NDVI fitted by the HANTS model, t is the numbered day of the year.
a0 and ai are the fitted coefficient of the HANTS model. n is the frequency, which is set to 1
for the grassland on the Tibetan Plateau. ϕi is the phase of the NDVI time series. ωi is set to
2π in our study because the grassland on the Tibetan Plateau has a unique seasonal cycle.
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Based on the NDVI threshold and the fitted NDVI time series, the grassland SOS was
determined for each pixel and each year. Specifically, the numbered day of the year when
the pixel’s NDVI value was first larger than the calculated NDVI threshold during the
growing season was regarded as the grassland SOS.

2.5. Relationships between SOS and Climate

Generally, it is difficult to quantitatively estimate the individual contributions of tem-
perature and precipitation for the interannual variation in vegetation phenology because
of the nonlinear impacts and underlying interactions of climate factors. In this research,
the redundancy analysis (RDA) was utilized to calculate the independent contribution of
Twinter, Tspring and Pspring to interannual variations in SOS [42,43]. The RDA is regarded as a
direct extension of multiple linear regression and principal component analysis based on
canonical multivariate analyses. Based on this method, multiple response variables could
be regressed on multiple explanatory variables, and the explanation proportion of each
explanatory variable to response variables can be estimated and summarized [44–46]. This
processing of RDA was demonstrated by Eigen analysis in the following equation:

(SyxS−1
xx S′yx − λk I)uk = 0 (4)

where Syx is the covariance matrix among response variables and explanatory variables,
S−1

xx is the standardized explanatory variables’ inverse covariance matrix, λk represents
the eigenvalue of the corresponding axis k, I is unit matrix, and uk is normalized canoni-
cal eigenvectors.

In our study, a detrended correspondence analysis with the turnover units smaller
than three was first conducted to confirm the suitability of an RDA. The adjusted coefficient
of determination obtained from the Hierarchical Partitioning algorithm was regarded as
the independent contribution of Twinter, Tspring and Pspring to interannual variations in SOS
(https://github.com/laijiangshan/rdacca.hp/, Accessed 27 July 2020). Specifically, we first
conducted RDA for each ecoregion and the entire plateau to estimate the contribution of
each factor at the ecoregional scale. Furthermore, the RDA was conducted for each valid
pixel to analyze spatial patterns of relative contribution of each factor and determine the
dominant factor and the proportion of corresponding dominating factors. The Bonferroni
test and Monte Carlo permutation methods (Permutations = 499) were used to analyze the
statistical significance [44,46,47]. In addition, to understand the spatial heterogeneity of
the independent contribution of each factor, we performed linear regression in which the
individual contribution of each climate factor was set to the dependent variable against the
long-term average Pspring and Tspring across the Tibetan Plateau.

3. Results
3.1. Interannual Variations in SOS

Across the Tibetan Plateau, most pixels’ SOS showed an advanced trend (a negative
linear trend) during 2000–2017, despite the spatial heterogeneity of trends in SOS revealed
by the two different methods (Figure 3). That is, the timing of first and mean spring
life history events advanced in time due to climate change. The average SOS of both
methods advanced over about 72.42% of all the study areas, and most pixels advanced
between 0–0.50 days per year−1 during the entire 18-year period (Figure 3c). Spatially, both
methods showed widespread advancing trends over the central and eastern Plateau, while
a slight delayed trend in spring phenology was found in a few areas of the central and
western Plateau. More specifically, 19.80% of pixels advanced significantly (p < 0.05), which
were mainly located in the eastern ecoregions. While the pixels with delayed trend were
discretely distributed across the midwestern region of the Plateau, only 2.25% of pixels
were statistically significant (p < 0.05). These similar proportions and spatial patterns were
also revealed by the two different methods, and the results revealed an advanced trend of
SOS from Polyfit and HANTS at 74.26% of pixels (pixels with a significant advanced trend

https://github.com/laijiangshan/rdacca.hp/
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correspond to 24.58%, p < 0.05, Figure 3a) and 71.81% of pixels (22.03% with a significant
advanced trend, p < 0.05, Figure 3b), respectively.
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With respect to meadows and steppe in different ecoregions, all methods agreed on 
an advanced trend (negative) over the entire study period but without consistent signifi-
cance (Table 1). Specifically, the trends in the multimethod averaged SOS were −0.30 (p < 
0.01) and −0.20 (p < 0.01) days per year−1 for steppe and meadow in the entire plateau, 
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Figure 3. Spatial distribution and frequency statistics of linear trends of grassland spring phenology
(SOS) from Polyfit (a); HANTS (b) and average of two methods (c) during 2000–2017 and frequency
distribution of different trend types for steppe and meadow across different ecoregions (d). A negative
value indicates an advance, and a positive value indicates a delay. Bottom-right and bottom-left insets
in (a–c) show proportion of corresponding trends, indicated by map legend and spatial distribution
of pixels with significantly negative (blue) and positive (red) trends (p < 0.05), respectively. SigD
indicates significantly delayed SOS (p < 0.05). NSigD indicates delayed SOS but not significant
(p > 0.05). NSigA indicates advanced SOS but not significant (p > 0.05). SigA indicates significantly
advanced SOS (p < 0.05). All indicates entire plateau. I, II, III, IV, and V indicate different ecoregions
following Figure 1.

With respect to meadows and steppe in different ecoregions, all methods agreed on an
advanced trend (negative) over the entire study period but without consistent significance
(Table 1). Specifically, the trends in the multimethod averaged SOS were−0.30 (p < 0.01) and
−0.20 (p < 0.01) days per year−1 for steppe and meadow in the entire plateau, respectively.
Regarding the two different models’ results, the trend of SOS for meadow across the entire
plateau estimated from Polyfit was−0.21 (p < 0.01), while the result estimated from HANTS
was slightly lower (Slope = −0.19, p < 0.01). Regarding steppe across the entire plateau,
a similar pattern can be found: the advanced trend of SOS from Polyfit and HANTS was
−0.32 (p < 0.01) and −0.27 (p < 0.01), respectively.
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Table 1. Linear trends in multimethod averaged spring phenology (SOS) for steppe and meadow in
different ecoregions from 2000–2017.

Ecoregions Meadow Steppe

ALL (Entire plateau) −0.20 ** −0.30 **
I (Eastern Qinghai–Qilian montane steppe ecoregion) −0.30 ** −0.82 **
II (Golog–Nagqu high-cold shrub-meadow ecoregion) −0.15 −0.07
III (Southern Qinghai high-cold meadow steppe ecoregion) −0.17 −0.37 **
IV (Qiangtang high-cold steppe ecoregion) −0.02 −0.16
V (Southern Xizang montane shrub-steppe ecoregion) −0.11 −0.11

Bold and symbols ** indicate significance levels at p < 0.05. Trends with no asterisk are not significant (p > 0.10).

Concerning the different ecoregions, 42.88% of meadow and 77.53% of steppe showed
a significant advanced trend (p < 0.05) (Figure 3d), with the mean linear trends of −0.30
(p < 0.01) and −0.82 (p < 0.01) days per year−1 in the I ecoregion in the eastern Tibetan
Plateau. Moreover, the SOS for steppe in the III ecoregion also significantly advanced
by −0.37 days year−1 (p < 0.01) according to the ensemble method, while no statistically
significant trend for meadow in this ecoregion was observed at the p > 0.05 level. No
statistically significant trend in SOS for meadow or steppe was found in IV and V ecoregions,
which resulted from the substantial spatial heterogeneity of the trends in SOS, with a
widespread delayed trend in these ecoregions.

3.2. Responses of SOS to Climate Factors

Across the Plateau, the interannual variations in SOS for meadow were dominated by
Tspring, with an individual contribution of 19.90% (p < 0.05) and partial correlation coefficient
(PCC) of −0.48 (p < 0.05). By contrast, the steppe’s SOS was more strongly affected by the
interactions of precipitation and temperature, with an individual contribution of Pspring and
Tspring of 15.90% (p < 0.1) and 13.30% (p < 0.1), respectively (Table 2). Although higher PCC
values were found between the SOS of steppe and Pspring and Tspring, with a PCC of −0.47
(p < 0.1) and −0.43 (p < 0.1), respectively, the individual contribution of Pspring and Tspring
was still lower.

Table 2. Responses of SOS to Twinter, Tspring, and Pspring for steppe and meadow in different ecoregions.

Meadow Steppe

Twinter Tspring Pspring Twinter Tspring Pspring

Partial correlation coefficient between
SOS and each factor

ALL −0.33 −0.48 ** −0.10 −0.08 −0.47 * −0.43 *
I −0.33 −0.57 ** −0.13 −0.22 −0.37 −0.41 *
II −0.25 −0.35 0.24 −0.60 ** −0.14 −0.15
III −0.31 −0.10 −0.12 −0.38 −0.29 −0.39
IV 0.19 −0.30 −0.58 ** 0.04 −0.53 ** −0.61 **
V 0.28 0.07 −0.13 0.15 −0.06 −0.37

Individual contribution of each factor
from RDA (%)

ALL 6.13 19.90 ** 0.00 0.00 13.30 * 15.90 *
I 2.13 24.16 ** 1.08 0.00 5.52 14.16 *
II 6.55 15.04 * 3.22 31.32 ** 2.09 0.00
III 10.8 0.00 0.00 11.4 * 6.66 5.00
IV 0.00 1.82 18.47 ** 0.00 12.78 * 20.98 **
V 0.89 0.00 0.00 0.00 0.00 5.08

Bold and symbols ** and * indicate significance levels at p < 0.05 and at p < 0.1, respectively. All indicates entire
plateau. I, II, III, IV, and V indicate different ecoregions following Figure 1. Twinter indicates mean temperature in
winter; Tspring indicates mean temperature in spring. Pspring indicates accumulated precipitation in spring. Mean
Twinter, Tspring, and Pspring and SOS were first calculated for each ecoregion and entire plateau. RDA was then
conducted at ecoregional scale.

Spatially, the individual contribution of Twinter, Tspring and Pspring to interannual vari-
ations in SOS revealed a distinct east west disparity (Figure 4). The results showed that
Pspring most strongly dominated vegetation SOS over 18.44% of pixels, which were mainly
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located in the IV ecoregion (Qiangtang high-cold steppe ecoregion) in the western region
of the Plateau. However, Tspring dominated over 12.85%, mainly located in the I ecoregion
(eastern Qinghai–Qilian montane steppe ecoregion) in the eastern part of the Plateau. In
addition, the statistical analysis showed that Twinter has the highest individual contribution
in the central Plateau, with a proportion of 18.94% and 22.78% in the II (Golog–Nagqu
high-cold shrub-meadow ecoregion) and III (southern Qinghai high-cold meadow steppe
ecoregion) ecoregions in the central Plateau, respectively (Figure 4a).
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Figure 4. Spatial patterns of individual contribution of Twinter (a), Tspring (b), and Pspring (c) to
interannual variation in SOS and cumulative contribution of all factors (d). Inset in (a–c) shows
spatial distribution of pixels with significant trend (p < 0.05), and inset in (d) shows proportion
of corresponding accumulated contribution indicated by map legend. I, II, III, IV, and V indicate
different ecoregions following Figure 1.

Across the Tibetan Plateau, the responses of SOS to the interactions of temperature
and precipitation were more prominent for steppe and meadow in the different ecoregions
(Table 2 and Figure 5). Across the I ecoregion, 26.62% of the pixels for meadow were
dominated by Tspring, with an individual contribution of 24.16% (p < 0.05) and PCC of
−0.57 (p < 0.05). By contrast, the SOS of meadow in the IV ecoregion in the western
part of the Plateau was dominated by Pspring, with an individual contribution of 18.47%
(p < 0.05) and PCC of −0.58 (p < 0.05). With respect to the steppe on the Tibetan Plateau,
27.72% of the pixels for steppe in the I ecoregion were dominated by Pspring. The individual
contribution of Pspring to the interannual variations in SOS in this ecoregion was 14.16%
(p < 0.1), and the PCC was −0.41 (p < 0.1). While the interannual variations in SOS
for steppe in the IV ecoregion in the western part of Tibetan Plateau were significantly



Remote Sens. 2022, 14, 517 10 of 18

affected by the underlying interactions of cumulative precipitation and mean temperature
in spring. The individual contribution of Pspring and Tspring to the interannual variations in
SOS was 20.98% (p < 0.05) and 12.78% (p < 0. 1), respectively. The PCC between SOS and
Pspring and Tspring was −0.61 (p < 0.05) and −0.53 (p < 0.05), respectively. These significant
individual contribution and higher PCC indicated that interannual variations in SOS for
steppe exhibited a close relationship with changes in climate conditions, illustrating the
dependence of spring phenology on temperature and precipitation. In other words, an
increase in preseason air temperature or cumulative precipitation would both correspond
to a trend toward an earlier date of SOS. Our study also found that Twinter was the most
significant factor for steppe in the II and III ecoregions in the central Plateau, with an
individual contribution of 31.32% (p < 0.05) and 11.40% (p < 0.1), respectively.
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Figure 5. Spatial distribution of dominant drivers (a) and frequency of each dominating factor (b) in
different ecoregions. Bottom-left inset in (a) shows proportion of corresponding dominating factors.
Dominant drivers were determined by maximum individual contribution at p < 0.05 level. NoSig
indicates that none of these factors was significant (p > 0.05). All indicates entire plateau. I, II, III, IV,
and V indicate different ecoregions following Figure 1.

3.3. Relationship between Individual Contribution and Climate Gradient

The spatial heterogeneities of responses of SOS to each factor can be fully explained
by the long-term average precipitation gradient across the Tibetan Plateau (Figure 6).
Spatially, the SOS of grassland in the Tibetan Plateau was more strongly affected by mean
temperature in the wetter areas (I and II ecoregions), while it was dominated by the
accumulated precipitation during spring in drier areas (IV ecoregion). Considering the
values averaged from the pixels with significant individual contribution at p < 0.05 level
in different ecoregions in the Tibetan Plateau, a 10 mm increase in long-term average
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precipitation in spring responded to an increase in the individual contribution of Tspring
of 1.70% (p < 0.05), while it caused a decrease in an individual contribution of Pspring of
−0.70% (p < 0.1) (Figure 6a). In contrast, among different ecoregions on the Tibetan Plateau,
this pattern linking the relative contribution of each climate factor to long-term average
mean temperature in spring was not found in our study (Figure 6b).
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Figure 6. Variations in individual contribution of each climate factor for grassland spring phenology
to long-term average cumulative precipitation (a) and mean temperature (b) in spring in different
ecoregions across Tibetan Plateau. Bars indicate mean long-term average precipitation or temperature
in spring for each ecoregion. Point and dashed curves represent averaged value of pixels with
significant individual contribution at p < 0.05 level for each ecoregion listed in right y-axis labels.
Solid line represents linear regression of individual contribution of each climate factor to long-term
average precipitation or temperature. p value denotes significance. NoSig indicates that slope is not
significant at p ≥ 0.05 level. I, II, III, IV, and V indicate different ecoregions following Figure 1.

Furthermore, this similar pattern of the impacts of long-term average cumulative
precipitation on the contribution of each climate factor to the SOS among the different
vegetation types was found (Figure 7). Specifically, a 10 mm increase in long-term average
precipitation in spring resulted in an increase in the individual contribution of Tspring of 2.0%
(p < 0.05) to the SOS of meadow, while it caused a decrease in the individual contribution
of Pspring of −0.30% (p < 0.1) (Figure 7a). Regarding steppe across the different ecoregions
of the Tibetan plateau, these similar spatial variations were also found, with the sensitivity
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of individual contribution of Tspring and Pspring to the long-term average precipitation in
spring of 0.07% mm−1 and −0.14% mm−1, respectively (Figure 7c).
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95% confidence interval. p value denotes significance. NoSig indicates that slope is not significant
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4. Discussion
4.1. Interacting Effects of Temperature and Precipitation on Spring Phenology

Variability, particularly variability in temperature and precipitation, unequivocally
affected the vegetation phenology on the Tibetan Plateau [5,9,12,15,27,28]. However, the
relative contribution of each factor and the underlying combined effect on vegetation
phenology received much less attention. In this study, we found that the individual con-
tribution of temperature and precipitation to spring phenology was lower, despite the
higher correlation coefficient consistently shown by most previous studies. More impor-
tantly, individual contribution of temperature and precipitation to interannual variations
in SOS revealed a distinct east west disparity across the Tibetan Plateau, which can be
fully explained by long-term average precipitation gradient over the entire study period.
This spatial pattern of the quantitative contribution of temperature and precipitation to
interannual variations in spring phenology further confirmed the stronger interactions of
precipitation and temperature and indicated underlying mechanisms of the responses of
ecological functions of vegetation to climate change.
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With increasing temperature and precipitation [28,48], all methods in our study agreed
on an advanced trend in SOS for meadow and steppe on the Tibetan Plateau during
2000–2017 despite the spatial heterogeneity, with an advanced SOS across most of the
Plateau and a discretely distributed and delayed SOS in the midwestern region of the Ti-
betan Plateau. These complex trends in grassland spring phenology are generally supported
by recent studies [28,30,49–51]. Most previous studies consistently showed that the increas-
ing spring temperature was the major dominant driver of SOS advances [11,15,17,27,28,52].
However, the individual contribution of temperature and precipitation was lower, de-
spite a higher correlation coefficient, which implied that these factors interact to affect
the SOS across the Tibetan Plateau. The contributions of temperature and precipitation
to the grassland spring phenology varied across space on the Tibetan Plateau, and these
spatial heterogeneities can be mainly explained by the spatial gradient of long-term average
precipitation over 2000–2017.

For meadow, the interannual variations in SOS were dominated by Tspring in the
eastern I ecoregion with relatively mild climate. In these wetter areas, the soil moisture
constraints were released. Without limitation of water resources, vegetation tended to
maximize the thermal benefit and showed higher sensitivity to temperature than to pre-
cipitation [12,28,53]. In other words, better thermal-hydraulic conditions would accelerate
the rates of chemical reactions because of the effect on Rubisco enzymatic activity and
then speed up development processes in photosynthetic organisms [54,55]. Consequently,
the individual contribution of temperature to SOS would be significant and largest, that
is, the increasing preseason temperature would significantly stimulate plant growth and
advance the SOS under this better thermal-hydraulic conditions. Similarly, Shen et al. [12]
showed that the sensitivity of SOS to temperature was negative and significant in east-
ern and northeastern part of the Plateau, and Piao et al. [28] showed that the SOS could
advance by an extra 4.5 days with an increase in spring temperature of 1 ◦C. In contrast,
the interannual variations in SOS were strongly negatively correlated with Pspring in the
western IV ecoregion with less precipitation. In those relatively dry ecoregions with spring
precipitation of less than 100 mm [50], vegetation growth initiation after winters with low
rainfall would be limited by water availability [56]. Limited water potential would inhibit
plant growth and photosynthesis activities, increase the risk of chlorophyll degradation
and plant mortality [57], and consequently delay the SOS. In addition, the soil moisture
would be suboptimal because of the high evapotranspiration caused by increasing temper-
ature [58]. Hence, the preseason precipitation would determine the water availability, and
revealed a high individual contribution to the interannual variation in SOS.

Previous studies showed that meadow and steppe responded differently to climate
change [50,53,59]. The different habitat conditions were primarily responsible for these
various responsive characteristics. The steppe adapted to the long period of colder and
drier weather with a shorter growth cycle. Thus, the steppe’s ecological functions showed
increased sensitivity to climate change [39,40,60–63]. Moreover, although the warming
accelerates plant growth, it can also cause the decline of soil moisture, and then increase the
sensitivity of vegetation phenology to precipitation [5,27,53], which indicated that warming
and precipitation would additionally interact to affect plant spring phenology in the drier
area. Hence, changes and interaction between temperature and precipitation would affect
the SOS for steppe significantly. Nonetheless, the long-term average precipitation gradient
also dominated the spatial disparity of the individual contribution of precipitation and
temperature; that is, the vegetation SOS would be less sensitive to temperature changes due
to the lower long-term average precipitation, while the relative contribution of preseason
precipitation would increase. These dynamic response patterns can be well explained by
the vegetation adaptation strategy, which would maximize the benefit from the limiting
climate factors and reduce the risk imposed by other factors [12].

Generally, precipitation and temperature were considered as two main regulators
of vegetation activity on the Tibetan Plateau [24]. Their underlying combined effect on
vegetation phenology suggested a vegetation adaptation strategy that achieves a balance
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between maximizing benefit and minimizing risk; that is, the vegetation would make
the most of limiting climate factors and reduce the risks from other factors [12]. In the
northeastern Tibetan Plateau, the vegetation spring phenology was strongly advanced by
increasing temperature and slightly advanced by precipitation. The plant photosynthetic
rate would be directly accelerated due to the effect of Rubisco enzymatic activity in these
better thermal-hydraulic conditions [54]. In contrast, in the drier area, the higher spring
temperature would cause the decline of soil moisture, and then increase the sensitivity
of vegetation phenology to precipitation [5,27,53], which indicated that warming and
precipitation would additionally interact to affect plant spring phenology. Alternatively,
the higher individual contribution of preseason precipitation to SOS in more arid areas
indicated that plant would intensify spring drought because bulk canopy water needs to
be increased with an advanced SOS under future climate warming. Overall, our analysis
highlighted stronger interactions between warming and precipitation and quantified the
relative contribution of each factor, which would benefit to gain an accurate mechanism
and a better understanding of terrestrial ecosystem processes and their responses to future
climate change.

4.2. Uncertainties and Further Studies

To account for the potential interactions and the individual contribution of each
factor, we employed two different methods to detect SOS and conducted redundancy
analysis. Although a similar spatial pattern of the SOS trend was revealed by these two
methods, distinct values in the interannual variations still existed. The proportion of
delayed trend of SOS from Polyfit was 25.74% (Figure 3a), which was slightly less than that
from HANTS, which was 28.19% (Figure 3b). This distinction maybe caused by the spurious
oscillations of the NDVI time series conducted in the HANTS and Polyfit methods [8,64–67].
Therefore, the results need to be further tested with more models to characterize more exact
interannual variation in the SOS. In addition, previous studies showed that many other
factors would also affect the vegetation phenology, for example, large diurnal temperature
range [14,17,68,69], soil moisture [24,70–72], and some vegetation functions [73–75]. In
addition, some studies also showed that the photoperiod could coregulate the vegetation
spring phenology through its interaction with temperature or its influence on the stomata
aperture and photosynthetic active radiation [22,23,56]. However, Fan et al. [76] showed
that sunshine duration in the mountain plateau zone displayed an insignificantly negative
trend (p > 0.05) at the rates of−0.001 h year−1 during 1986–2015. Thus, the photoperiod was
roughly assumed to be a valid constant without the effect of cloudiness during the study
period. Our study also found that Twinter was the most significant factor for the interannual
variation of the steppe in the central Plateau, which could be attributed to warming-
induced changes in soil moisture. Moreover, the vegetation would require adequate
chilling conditions (vernalization) during endodormancy; therefore, grassland phenology
is expected to be sensitive to winter warming [13,21]. Clearly, further analysis with more
factors should be conducted to estimate more robust contribution of each factor, and
then support these inferences and their role in the control over phenology. Nevertheless,
our present work highlighted a stronger interaction between warming and precipitation,
quantified the relative contribution of each factor, and identified temporal-spatial aspects
of grassland SOS responses to critical climate factors on the Tibetan Plateau, which would
provide a helpful reference and establish a better understanding for further studies on
climate plant interactions.

5. Conclusions

This study quantified the individual contribution of warming and precipitation for
the interannual variations in start of growing season (SOS) in the world’s largest cold
and arid/semiarid regions. Our results further confirmed the strong impacts of preseason
precipitation on satellite-derived estimates of spring phenology of grassland across the
Tibetan Plateau. First, the relative contribution of the accumulated precipitation in spring
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to interannual variations in SOS was higher in more arid than wetter areas. Alternatively,
Pspring (the accumulated precipitation in spring) strongly dominated vegetation SOS over
most pixels located in the western part of the Plateau. Second, although the responses of
SOS to each factor were complex and fragmented across the Tibetan Plateau, these spatial
heterogeneities can be mainly explained by the long-term average precipitation during
spring. Specifically, the increase in long-term average precipitation during spring resulted
in an increase in the individual contribution of Tspring to the SOS of grassland, while the
individual contribution of the accumulated precipitation in spring would increase with the
decrease in long-term average precipitation during spring. Alternatively, climate warming
would have less impact on SOS than precipitation, which would lead to complex responses
to climates change in these arid or semiarid regions. In addition, temperature in winter
made a larger contribution, which would change soil moisture and strongly affect the SOS
in the central Plateau. For the Tibetan plateau dominated by the arid/semiarid climate, con-
sidering the interactions of preseason temperature and precipitation and their stronger and
more complex effect on SOS, vegetation would experience greater SOS advancement, with
substantial warming in relatively wetter regions than in drier areas. Instead, substantial
warming would slightly advance vegetation SOS and might delay SOS in the arid/semiarid
regions because of the increase in evapotranspiration. Thus, the combined impacts and
the quantitative contribution of warming and precipitation on SOS should be considered,
while assessing the responses of vegetation to climates change rather than the unitary effect
of one or more factors directly.
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