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Abstract: Instance segmentation in remote sensing images is challenging due to the object-level
discrimination and pixel-level segmentation for the objects. In remote sensing applications, instance
segmentation adopts the instance-aware mask, rather than horizontal bounding box and oriented
bounding box in object detection, or category-aware mask in semantic segmentation, to interpret
the objects with the boundaries. Despite these distinct advantages, versatile instance segmentation
methods are still to be discovered for remote sensing images. In this paper, an efficient instance
segmentation paradigm (EISP) for interpreting the synthetic aperture radar (SAR) and optical images
is proposed. EISP mainly consists of the Swin Transformer to construct the hierarchical features of
SAR and optical images, the context information flow (CIF) for interweaving the semantic features
from the bounding box branch to mask branch, and the confluent loss function for refining the
predicted masks. Experimental conclusions can be drawn on the PSeg-SSDD (Polygon Segmentation—
SAR Ship Detection Dataset) and NWPU VHR-10 instance segmentation dataset (optical dataset):
(1) Swin-L, CIF, and confluent loss function in EISP acts on the whole instance segmentation utility;
(2) EISP* exceeds vanilla mask R-CNN 4.2% AP value on PSeg-SSDD and 11.2% AP on NWPU
VHR-10 instance segmentation dataset; (3) The poorly segmented masks, false alarms, missing
segmentations, and aliasing masks can be avoided to a great extent for EISP* in segmenting the SAR
and optical images; (4) EISP* achieves the highest instance segmentation AP value compared to the
state-of-the-art instance segmentation methods.

Keywords: instance segmentation; synthetic aperture radar images; optical images; convolutional
neural networks; context information flow; loss function

1. Introduction

Thanks to the advances brought about by remote sensing (RS) technology, the capac-
ity and quality of synthetic aperture radar (SAR) and optical images have significantly
improved, which, to some extent, assists researchers in characterizing the targets in high-
resolution Earth observation. Meanwhile, the interpretation of SAR and optical images
exerts essential influence on various applications, e.g., urban management, land changes,
and environmental monitoring [1–4]. Correspondingly, with the dramatically increased
volume of RS images, efficient and universal methods in interpreting SAR and optical
images have raised the attention of the RS field.

In recent years, the deep convolutional neural network (DCNN) has been applied
in various fields that have benefited from its advantages such as automatic feature ex-
traction, end-to-end training capability, minimal prior knowledge demand, etc. As for
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the application in the remote sensing field, DCNN-based methods enable fast and accu-
rate classification, location, and segmentation when interpreting the targets compared to
the traditional methods. Generally, according to the practical demand, the DCNN-based
methods for SAR and optical images can be roughly categorized into image-level (image
classification [3,5–7]), object-level (object detection [8–10]), and pixel-level (image segmenta-
tion [1,11,12]) with increasing challenge. Image-level methods predict the category of each
image with simple yet effective networks. Object-level methods adopt horizontal or ori-
ented bounding boxes to interpret the objects with positional coordinates (basic four-points
bounding box coordinates or containing additional angle direction). As for pixel-level
methods, semantic segmentation-based methods predict the objects in a pixel-by-pixel
scheme without categorizing objects within the same category. However, objects in SAR
and optical images could be dense but compactly distributed. Therefore, in this paper,
we adopt instance segmentation to interpret objects in pixel-wise fashion and distinguish
individual objects within the same category.

So far, researchers have achieved continuous breakthroughs in automatically inter-
preting SAR and optical images. In terms of constructing the prerequisite SAR and optical
datasets for developing and testing the DCNN-based methods, quite a few SAR and optical
datasets are presented. In the optical remote sensing field, Xia et al. introduced the large-
scale dataset for object detection in aerial images (DOTA [13]) with various orientations,
scales, and categories. Based on DOTA, Zamir et al. supplemented pixel-level segmentation
annotation for each object and constructed the benchmark instance segmentation in aerial
images dataset (iSAID [14]). Analogously, Cheng et al. constructed the NWPU VHR-10
dataset [15] with limited data volume but very high-resolution (VHR) optical images; Su
et al. extended NWPU VHR-10 dataset with pixel-level segmentation annotation for each
object [16]. In the SAR field, Su et al. extended the SAR ship detection dataset (SSDD)
with enclosed polygon annotation for pixel-level ship interpretation [17]. By eliminating
the defects of low image quality, incorrect annotations, and limited data volume in ex-
isting SAR datasets such as SSDD, Wei et al. constructed a high-resolution SAR images
dataset (HRSID [18]) which supports ship detection and instance segmentation in qualified
SAR data.

Correspondingly, with the increasing volume of SAR and optical datasets, multitude
DCNN-based methods are developed, accounting for the increasing demand of SAR and
optical image intelligent interpretation. Among them, object detection with horizontal
bounding boxes or oriented bounding boxes have drawn much attention. Cheng et al.
proposed a rotation-invariant convolutional neural network (RICNN) which imposes a reg-
ularization constraint to achieve the rotation invariance in object detection [19]. Similarly,
to reduce the background interference of geospatial object detection, An et al. adopted the
oriented bounding box to detect ships with arbitrary orientation [20]. As for horizontal-
bounding-box-based object detection, Zhang et al. proposed a balanced scene learning
mechanism (BSLM) to detect inshore and offshore ships in SAR images [21]; Wei et al.
combined the high-resolution and low-resolution convolutions in representation learning
when detecting the SAR ships [2]. To transplant the ship detectors into hardware platforms,
Zhang et al. adopted fewer convolutional layers and depthwise separable convolution to
develop the lightweight, but precise, attribute of the proposed ship detector [9]. Distin-
guished from object detection, semantic segmentation aims at predicting the pixel-level
semantic category for the objects. In terms of promoting the convergence performance
of semantic segmentation, Bokhovkin et al. proposed the boundary loss for sufficiently
penalizing the misalignment of boundaries in RS imagery [22]. To maintain the feature
representation ability of the upsampling process, Wang et al. proposed the Content-Aware
ReAssembly of FEatures (CARAFE) to capture the contextual information in dense pre-
diction tasks [23]. As for intraclass variance and small interclass variance in semantic
segmentation, Li et al. integrated the lightweight spatial and channel attention modules to
remedy them [24]. Zhang et al. [25] proposed the multiscale context aggregation module to
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improve the localization accuracy and preserve the spatial details of semantic segmentation
in RS images.

Compared to object detection and semantic segmentation, instance segmentation in
SAR and optical images inherits the characteristic of pixel-level prediction in semantic seg-
mentation and supplements the localization and interclass classification in object detection,
which provides comprehensive interpretation to SAR and optical images. However, related
works in the RS field are scarce. In terms of the general instance segmentation methods, Su
et al. proposed the high-quality instance segmentation network (HQ-ISNet) to interpret RS
images under the complex background [17]. As for high-resolution aerial images, consistent
proposals of instance segmentation network (CPISNet) integrates the cascaded detection
branches and residual convolution networks to precisely segment the aerial instances [26].
Inspired by object detection, Chen et al. designed the instance segmentation network with
the bounding box attention module and bounding box filter module [27].

In this paper, to resolve the instance segmentation task under the complex background
and the situation of densely distributed small objects in SAR and optical images, we
proposed the efficient instance segmentation paradigm (EISP) for interpreting SAR and
optical images. EISP inherits the top-down instance segmentation paradigm and introduces
three main components for the counterpart characteristics of SAR and optical images. First,
the Swin Transformer is adopted for extracting the hierarchical feature maps of SAR and
optical images and to model the long-range dependencies of the small objects in SAR and
optical images with non-overlapping window based self-attention). Second, the flattened
features for object detection are transferred by a context information flow (CIF) module to
interact with the features for mask prediction. Third, the proposed confluent loss function
can converge the predicted segmentation masks with the combination of distribution,
regional, and boundary manner for general segmentation tasks.

The main contributions of this paper are summarized as below:

• EISP is proposed for efficient instance segmentation of remote sensing images.
• Effects of Swin Transformer, CIF, and confluent loss function to the EISP are individu-

ally verified, which boost the integral network performance.
• EISP achieves the highest AP value of instance segmentation in remote sensing images

compared to the other state-of-the-art methods.

2. Related Work
2.1. Semantic Segmentation

Semantic segmentation is a subtask of image segmentation. It aims at endowing
each pixel of the input image a semantic category. Each pixel within a certain semantic
category is marked by the same color. By defining and detailing the space of the fully
convolutional networks (FCNs), Long et al. first apply it into the dense prediction task of
semantic segmentation [28]. In the field of biomedical image segmentation, Ronneberger
et al. proposed the medical image segmentation network which consists of a contracting
path for capturing context and a symmetric expanding path for precise location, termed
U-Net [29]. Inheriting the encoder and decoder architecture, Badrinarayanan et al. mapped
the low-resolution feature maps in the encoder to full-input-resolution feature maps in the
decoder for pixel-wise classification [30]. In a pyramid scene parsing network (PSPNet),
Zhao et al. introduced the which provides global prior representation for pixel-level
prediction [31]. By further exploiting Deeplab v3 [32], Chen et al. proposed Deeplab v3+,
which refines the segmentation results along the object boundaries [33].

2.2. Instance Segmentation

Distinguished from semantic segmentation, instance segmentation performs pixel-
wise prediction in an image and enables the discrimination of objects within the same
category. Instance segmentation methods can be divided into three categories, including
top-down methods, bottom-up methods, and direct methods. As stated literally, top-down
methods follow the formula of detect first, then segment. Based on the object detection
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architecture of faster R-CNN [34] (with prior bounding box detection), He et al. parallels a
mask branch to the object detection branch for mask prediction, termed mask R-CNN [35].
Following the original architecture of mask R-CNN, mask scoring R-CNN calibrates the
misalignment between mask quality and mask score [36]. Analogous to the process of
mask R-CNN, cascade mask R-CNN [37] parallels a mask branch to the object detection
branch in each stage of cascade R-CNN [37] for precise instance segmentation. To bridge
the gap of limited performance gain by simply integrating the mask branch in cascade
mask R-CNN, hybrid task cascade (HTC) [38] interweaves the mask branches in cascade
mask R-CNN for joint multi-stage processing and adopts a fully convolutional branch
to provide spatial context. Moreover, SCNet [39] incorporates feature relay and global
contextual information to further reinforce the reciprocal relationships of object detection
and instance segmentation in cascaded architectures.

The two-stage process in top-down instance segmentation methods slows down the
segmentation speed. In contrast, bottom-up instance segmentation methods segment
the objects directly and they are superior in segmentation speed. By generating a set of
prototype masks, Yolact [40] predicted the mask coefficients of each instance for instance
segmentation. BlendMask [41] implemented instance segmentation by combining instance-
level information with semantic information with lower-level fine-granularity. Prior to the
center classification and distance regression, PolarMask [42] generated the instance mask by
predicting the object contour in a polar coordinate. Inspired by mask R-CNN, conditional
convolutions, for instance segmentation (CondInst [43]), achieved fast inference speed
via dynamically-generated conditional convolutions and FCNs. Segmenting objects by
locations (SOLO [44]) viewed instance segmentation as the task of assigning categories to
each pixel within an instance according to the instance’s location and size. Despite the fast
inference speed, bottom-up instance segmentation methods are inferior in segmentation
precision to top-down instance segmentation methods.

3. The Proposed Method

An overview of the proposed EISP is illustrated in Figure 1. It consists of the Shifted
Windows (Swin) Transformer [45] to extract the hierarchical features of the input SAR
and optical images, the region proposal network (RPN [46,47]) and region of interest (RoI)
extractor to generate the region proposals, the context information flow (CIF) to interweave
the semantic features from the bounding box branch to mask branch, and the confluent
loss function to refine the predicted masks.

Transformer

Proposals

RoIAlign

Pooled RoIs

Cls

Reg

FC FC

Conv 3×3

FCN 

FC

Reshape

7

7
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CARMCARM

14
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Pooled RoIs
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Swin

Figure 1. The network architecture of EISP.
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3.1. Swin Transformer

Transformers use the attention mechanism to model the long-range dependencies in
the data, and they achieve tremendous success in the natural language processing (NLP)
domain. Here, we introduce the Swin Transformer to extract the multilevel features of
SAR and optical images. The Swin Transformer computes the self-attention within the
non-overlapping local windows to reduce the network complexity, and constructs the
hierarchical architecture to capture the multilevel feature maps for multiscale segmentation.
As the small objects occupy the vast majority of satellite objects, the non-overlapping
window-based self-attention in Swin Transformer can effectively capture the long-range
dependencies of them, due to the relatively large object-to-background ratio, and eliminate
interference from the complex background at the same time. The overall architecture of the
Swin Transformer is illustrated in Figure 2. It contains the operations of patch partition,
linear embedding, Swin Transformer block, and patch merging. Given the input RS image
with the size of H ×W × 3, patch partition transforms it into image patches with the size
of H/4×W/4× 48 by the non-overlapping shifting window. Then, the linear embedding
layer projects the channel of the image patches into the arbitrary number C. Next, the
Swin Transformer block processes the image patches by the shifted window based self-
attention in non-overlapped windows. With the consecutive patch merging layer and Swin
Transformer block, the hierarchical architecture of the Swin Transformer is constructed.
Consequently, the output of Stage1 to Stage4 are H/4 ×W/4 × C, H/8 ×W/8 × 2C,
H/16×W/16× 4C, H/32×W/32× 8C, respectively.
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Figure 2. The network architecture of the Swin Transformer.

3.1.1. Swin Transformer Block

In terms of the segmentation tasks, they require per-pixel prediction on the input
images. However, the computational complexity of the self-attention module in transform-
ers is quadratic to image size in such application scenes, which is prone to be intractable
for the transformer to segment the high-resolution remote sensing images. Therefore, the
Swin Transformer block replaces the multihead self-attention (MSA) module in the block of
vision transformer (ViT) to window-based multihead self-attention (W-MSA) module and
shifted window-based multihead self-attention (SW-MSA) module. Assuming the size of
input feature is H ×W × C, the computational complexity OMSA of the traditional MSA
module is computed via

OMSA = 4HWC2 + 2(HW)2C. (1)

It is obvious that OMSA is quadratic in regards to HW. However, as W-SMA and
SW-MSA compute the self-attention of each evenly partitioned window (with the size of
S× S) of the image, the computational complexity of W-SMA and SW-MSA is

OW-MSA,SW-MSA = 4HWC2 + 2S2HWC, (2)

which shows a linear relationship to HW. Compared to the computational complexity of
MSA, it is scalable for W-SMA and SW-MSA to process the high-resolution remote sensing
images. W-MSA evenly splits the image into 2× 2 windows with the size of M×M. In the
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two consecutive Swin Transformer blocks, as in Figure 3, SW-MSA shifts the partitioned
windows in W-MSA by (bM/2c, bM/2c) pixels, which can also be formulated as follows:

ml = W − SMA(LN(ml−1)) + ml−1, (3)

nl = MLP(LN(ml)) + ml , (4)

ml+1 = SW − SMA(LN(nl)) + nl , (5)

nl+1 = MLP(LN(ml+1)) + ml+1, (6)

where LN denotes the layer normalization operation; MLP is the module in the transformer
architectures. ml and nl represent the output of (S)W-SMA module and MLP module,
respectively. In terms of the Swin Transformer, it adopts the consecutive Swin Transformer
block in each stage.

M
L
P

L
N

W
-S
M
A

L
N

M
L
P

L
N

S
W
-S
M
A

L
N

ml nl ml+1
nl+1ml-1

Figure 3. Illustration of two consecutive Swin Transformer blocks.

3.1.2. Hyperparameters Setting

As illustrated in Figure 2, the number of successive Swin Transformer blocks in each
stage and the number of output channel C in the linear embedding layer formulates
the network space (the width and depth) of Swin Transformer. Consequently, the Swin
transformer small (Swin-S) is endowed with C = 96 and the number of successive blocks
{2, 2, 18, 2} in Stage1 to Stage4. Analogously, Swin Transformer basic (Swin-B) has C = 128
and successive blocks of {2, 2, 18, 2}; Swin Transformer large (Swin-L) has C = 192 and
successive blocks of {2, 2, 18, 2}. In terms of the window size, we maintain the size of 7× 7
pixels for each evenly partitioned image.

3.2. Context Information Flow

Motivated by exploring the implicit mutual information between the sub-tasks of
classification, location, and mask prediction, we have designed the context information
flow (CIF) to explicitly incorporate the deep representative features in object detection
with the mask RoI features to improve the performance of mask prediction. Generally,
the bounding box features provide the prior information for mask prediction. However,
the predicted masks can in turn supervise the bounding box features via backpropagation.
Therefore, we supplemented the CIF to build the shortcut connection among detection
branch and mask branch to benefit both tasks. The architecture of CIF is streamlined in
Figure 1.

Assuming the pooled bounding box RoI features from FPN are φ (N × 256× 7× 7),
we flatten φ to φ′ and apply two fully connected (FC) layers to map the distributed feature
to the target feature Q (N × 1024), which can be presented as follows:

Q = FC(FC(φ′; θ1); θ2), (7)

where FC(∗; θi) denotes the FC layer with parameter θi. To be consistent with the space
of samples in the mask branch, Q is sliced to Q′ with the size of P× 256× 7× 7. Next, a
supplemented FC layer is attached to Q′ for reassembling the context information from the
detection branch. Immediately afterwards, the distributed represented features from FC
layer are reconstructed to multidimensional feature M (P× 256× 7× 7). The process is
formulated as follows:

M = Reconstruct(FC(Q′; θ3)). (8)
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To match the input size (P× 256× 7× 7) of the mask branch and enlarge the receptive
field when processing the feature M, we upsample M with the content-aware reassembly
module (CARM) in two steps: content-aware kernel generation and feature reassemble.
The overall process is shown in Figure 4.

W

H

C

H

W

=×

k

k

2W

2H

H

WCp

Pixel
Shuffle

3x3 conv

Context
Encode

1x1 conv

Channel
Refactor

k

k

,k

softmax

Channel wise
Normalize

Input Output

C

2H

2W 2W

2H

(a)

(b)

Figure 4. Detailed network architecture of the content-aware reassembly module (CARM). Detailed
network architecture of the content-aware reassembly module (CARM), where sub-figure (a) repre-
sents the content-aware kernel generation step and sub-figure (b) represents the feature reassemble
step.

• Step 1: Content-aware Kernel Generation

Figure 4a illustrates the intuitive implementation of Step 1, which is responsible for
generating the kup × kup kernel corresponding to each object location. Analogously, it is
composed of four sub-tasks: (1) A channel refactor is applied to compress the channel of Ψ
for reducing the computational cost and model complexity. We choose a 1× 1 convolutional
kernel to compress the input channel from C to Cm, making CIF lightweight but efficient.
(2) The content encoder which relies on a 3× 3 convolutional kernel excites the feature
with 4 ∗ k2

up output channels. (3) Assuming the encoded feature is M′, we upsample it with
pixel shuffle kernel to generate the reassembly kernel W with the size of P× k2

up × 28× 28.
(4) Before being implemented to feature reassemble process, each spatial location of W is
transmitted to Ω by a softmax function, which normalizes the sum of channel-wise kernel
to 1. The procedure can be formulated as follows:

M′ = Conv3×3(Conv1×1(Ψ; ω1); ω2), (9)

Ω = so f tmax(pixelshu f f le(M′), dim = 1), (10)

where Conv(∗; wi) represents the convolutional kernel with parameter wi.

• Step 2: Feature Reassemble

Figure 4b illustrates the intuitive implementation of Step 2, which applies the content-
aware kernel to reassemble the input feature in the spatial dimension. Each location
α = (i, j) in input feature Ψ is associated with a Ψ-centered square region N(Ψα, k). Corre-
spondingly, each k× k content-aware kernel Ω′α in Ω enables pixel-wise summation with
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N(Ψα, k) which contributes to each pixel α = (i′, j′) of the upsampled Ψ1 synergistically.
The reassembly is described via

Ψ1α′ =
2

∑
n=−2

2

∑
n=−2

Ψ(i+n,j+m) ·Ωα′(n,m), (11)

where · represents the weighted element-wise summation between Ψ(i,j) and Ωα′ . The
upsampled feature by CARM contains stronger semantic information than traditional
upsample methods, e.g., bilinear interpolation, as it leverages the underlying context
information in the original feature map.

Through the context information flow from Φ to Ψ, the distribution represented
feature for object detection is reconstructed to the size of P× 256× 14× 14 as that in mask
prediction. Finally, we implement element-wise summation for Ψ1 and input mask feature
(P) to generate the shortcut connection, which is shown below:

P′ = Ψ1 + P, (12)

where P′ is the CIF enhanced feature for mask prediction.

3.3. Confluent Loss Function

Similar to object detection, instance segmentation retains the object-level discrimi-
nation in the segmentation task. Empirically, researchers extend the Cross Entropy (CE)
loss function in object detection to binary cross entropy (BCE) loss function, for instance
segmentation. BCE loss function is calculated via:

LBCE = − 1
n

n

∑
i=1

(T i(x,y)log(P̂i(x,y)) + (1− T i(x,y))log(1− P̂i(x,y))), (13)

P̂i(x,y) =
1

1 + e−Pi(x,y)
, (14)

where T i(x,y) is the pixel located at (x, y) of the ith level of the ground truth feature
map and Pi(x,y) is the pixel of the predicted feature map. However, the characteristic of
pixel-level prediction intrinsically requires instance segmentation to consider the regional
dependencies and reduce the boundary migration in the counterpart semantic segmentation
tasks. As for regional dependencies, assuming there are two numerical sets X and Y, the
dice score coefficient (DSC) can be expressed as Equation (15):

s =
2|X ∩Y|
|X|+ |Y| . (15)

Analogously, as for P̂ and T , operator ∩ equals elementwise dot product, and operator
| | equals numerical square. Therefore, the binary dice (BD) loss function can be formulated
as Equation (16):

LBD = 1−
2

n
∑

i=1
P̂i(x,y) · T i(x,y)

n
∑

i=1
P̂2

i(x,y) +
n
∑

i=1
T2

i(x,y)

. (16)

In the next part, we supplement the boundary information to supervise the predicted
mask. Given the distance map DG of the ground truth mask, the nonsymmetric L2 distance
of the predicted boundary (∂P) and ground truth boundary (∂G) can be calculated via the
regional integrals:

Dis(∂P, ∂G) =
∫

P
DG(q) dq−

∫
G

DG(q) dq =
∫

Ω
DG(q)s(q) dq−

∫
Ω

DG(q)g(q) dq, (17)
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where q represents the pixel on the ground truth boundary, Ω is the enclosed area of the
predicted contour and ground truth contour. Considering the result of

∫
Ω DG(q)g(q) dq

hinges on the ground truth mask, and that it should be a constant, we formulate the
boundary distance with

∫
Ω DG(q)s(q) dq. Therefore, the binary boundary (BB) loss for

instance segmentation is calculated as follows:

LBB =
n

∑
i=1

κi(x,y) · P̂i(x,y), (18)

κi(x,y) = ι(T̃ i(x,y)) · T̃ i(x,y) − ι(T i(x,y) − 1) · T i(x,y), (19)

where ι(∗) denotes the distance map of mask; T̃ i(x,y) is the inverse of ground truth mask
T i(x,y); κi(x,y) is the normalized distance map of T̃ i(x,y). Thus, our confluent loss for mask
prediction can be formulated as follows:

LC = γ · LBD + λ · LBB + LBCE, (20)

where γ and λ represent the loss weight for the BD loss (LBD) and BB loss (LBB), respectively.
Following [26], we set γ + λ = 3 here to maintain the ratio of 3:1 for regional loss function
and distributional loss function. Therefore, LC can be transformed to

LC = (3− λ) · LBD + λ · LBB + LBCE. (21)

Note that the value of λ will be determined in our subsequent ablation experiments.

4. Experiments

In this section, we introduce the datasets for experiments, evaluation metrics, and
implementation details in advance. Then, comprehensive experiments on the SAR Ship De-
tection Dataset (SSDD) and NWPU VHR-10 Instance Segmentation Dataset are conducted
on our proposed EISP to verify its effectiveness.

4.1. Datasets
4.1.1. SAR Ship Detection Dataset

The SAR Ship Detection Dataset (SSDD) is the first dataset for SAR imagery-based
intelligent interpretation presented by Li et al. In [48], vanilla SSDD with horizontal
bounding box annotation is extended to pixel-level polygon segmentation SSDD (PSeg-
SSDD), which supports the instance segmentation of SAR imagery in our work. Consistent
with the data volume in SSDD, PSeg-SSDD contains 1160 SAR images in total with various
polarizations, resolutions, and scenes. In our experiments, we randomly divided the
PSeg-SSDD into the training set and test set with the ratio of 7:3 for training and testing,
respectively. The annotations of ships are standardized to COCO format with ground truth
mask, area, and related bounding box for instance segmentation.

4.1.2. NWPU VHR-10 Instance Segmentation Dataset

The NWPU VHR-10 Instance Segmentation Dataset is extended by Wei et al. [17] with
pixel-level polygon annotation from the vanilla NWPU VHR-10 Dataset, which supports
the tasks of object detection, semantic segmentation, and instance segmentation in very
high-resolution (VHR) optical remote sensing imagery. The NWPU VHR-10 Instance
Segmentation Dataset contains 650 VHR images with annotated targets and 150 VHR
images with a pure background. There are 10 classes of targets scattered in the dataset,
including bridge (BR), basketball court (BC), storage tank (ST), harbor (HB), tennis court
(TC), ship (SH), vehicle (VC), ground track field (GTF), baseball diamond (BD), and airplane
(AI). Following the original division ratio of 7:3 in [15] that is used for generating the
training set and test set, we obtain the training set and test set for our experiments.
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4.2. Evaluation Metrics

Standard Microsoft Common Objects in Context (MS COCO [49]) evaluation metrics
are adopted for evaluating the quantitative instance segmentation results generated on the
test set. Based on the intersection over union (IoU) of the predicted results and ground
truth results, the IoU ratio of each predicted result is defined by

IoU =
Pmask ∩ Gmask
Pmask ∪ Gmask

, (22)

where the predicted mask and ground truth mask are, respectively, represented by Pmask
and Gmask. Setting a prior IoU threshold criterion, the predictions of instance segmenta-
tion results can be categorized into true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). Then, the corresponding precision value and recall value is
calculated via

Precision =
TP

TP + FP
, (23)

Recall =
TP

TP + FN
. (24)

Constructing the Cartesian coordinate system with recall value as the abscissa and
precision value as the ordinate, the average precision (AP) of the prior IoU threshold is
calculated by

APIoU =
∫ 1

0
P(r) dr, (25)

where P(r) is the precision value of the counterpart recall value, and r is the recall value.
Considering the MS COCO evaluation metrics in our experiments, the AP value is the
average of 10 APIoU value from 0.5 to 0.95 with the stride of 0.05, which is calculated
as follows:

AP =
1

10
·

0.95

∑
IoU=0.5

APIoU . (26)

As for the dataset with N classes, the mean AP (mAP) is average AP value of
the classes:

mAP =
1
N
·

N

∑
i=1

APith . (27)

4.3. FLOPs

In computer vision, the number of trainable parameters are calculated via

P = (CinK2 + 1) · Cout, (28)

where Cin and Cout are the number of input and output channels of K × K convolution
kernel. If the width and height of the input image are given, the floating-point operations
(FLOPs) for computing the model complexity of CNN-based architectures are defined by:

FLOPs = HW · (CinK2 + 1) · Cout. (29)

4.4. Implementation Details

In our experiments, all of the methods are modeled by Pytorch framework. The
training and test schemes are based on a single Nvidia Quadro RTX 6000 GPU. While
training, the Adam is selected as the model optimizer. Each model is trained for 12 epochs
with the mini-batch size of two. The initial learning rate is set at 0.0025 and attenuated by
the ratio of 0.1 in 8th and 11th epoch. While testing, we select soft non-maximal suppression
(Soft NMS) with 0.5 threshold to filter the finest bounding box among the predictions. Note
that the images in NWPU VHR-10 instance segmentation dataset and PSeg-SSDD are,
respectively, resized to 1000× 600 pixels and 512× 512 pixels for training and testing.
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4.5. Effects of the EISP

To verify the effects of the Swin Transformer, CIF, and confluent loss function to vanilla
mask R-CNN and the overall utility to EISP, we individually measured the AP of each
module and the integral AP of EISP. As per the results reported in Table 1, Swin-L, CIF,
and confluent loss function, respectively, yield 2.3%, 1.7%, and 1.8% AP value with regard
to vanilla mask R-CNN in PSeg-SSDD. In addition, EISP achieves 3.6%, 4.7%, and 4.8%
improvement in AP, AP50, and AP75, respectively. In the scale-differentiated AP indicators,
EISP even achieves 8.1% APM improvement. Under the counterpart experimental results of
NWPU instance segmentation dataset, Swin-L, CIF, and confluent loss function, respectively,
yield 5.2%, 1.5%, and 4.9% AP value with regard to vanilla mask R-CNN. In regards to
EISP, it respectively achieves 8.2%, 4.8%, and 12.0% AP, AP50, and AP75 improvement. As
for the scale-differentiated AP indicators, it even achieves ∼9.0% improvement. In terms
of computational complexity, the proposed confluent loss function receives considerable
AP value improvement without adding the FLOPs. Relatively, CIF and Swin Transformer
require additional FLOPs to drive. The qualitative results of EISP are illustrated in Figure 5,
where the contour of the objects fits the counterpart ground truth mask well.

Table 1. Effects of EISP. Note that all results are evaluated on the test set.

Dataset Model Swin-L CIF Conf Loss AP AP50 AP75 APS APM APL FLOPs

PSeg-SSDD

Mask R-CNN 56.7 88.6 70.8 56.8 57.8 27.6 134.2G

Modules
X 59.0 91.3 72.8 58.5 61.7 40.0 283.9G

X 58.4 89.8 73.0 58.2 60.0 17.9 150.7G
X 58.5 89.8 72.5 58.0 61.4 15.6 134.2G

EISP X X X 60.3 93.3 73.3 58.9 65.9 35.6 293.9G

NWPU VHR-10

Mask R-CNN 57.9 90.2 61.0 41.5 58.6 53.1 229.1G

Modules
X 63.1 94.2 68.9 47.5 63.0 72.4 577.8G

X 59.4 92.1 64.1 42.9 60.3 62.0 245.5G
X 62.8 91.5 69.2 46.3 63.8 70.2 229.1G

EISP X X X 68.1 95.8 74.5 52.7 68.4 76.9 594.2G

Figure 5. Effects of EISP with multiscale training. Note that row 1 is the ground truth and row 2
denotes the predicted results.

4.6. Ablation Experiments

In this section, we conduct experiments to select the optimal network structure for
each module of the proposed EISP.

4.6.1. Experiments on Swin Transformer

Apart from the various architectures of Swin Transformers mentioned in Section 3.1.2,
we supplement several mainstream backbone networks, including Res2Net [50], HR-
Net [51,52], and RegNetx [53], for comprehensive contrast experiments. As shown in
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Table 2, the mainstream backbone networks for experiments serve as the efficient fea-
ture extractors for SAR and optical images. In the experimental results of PSeg-SSDD,
HRNetv2-w32 yields 0.4% AP value in relation to ResNet-101; RegNetx and Res2Net
achieve∼0.9% AP improvement than ResNet-101. Overall, the Swin-S, Swin-B, and Swin-L
achieve 0.5%, 1.1%, and 2.3% AP improvement in segmenting the SAR images, respec-
tively. In the counterpart experimental results of NWPU VHR-10 instance segmentation
dataset, HRNetv2-w32 and RegNetx4.0G yields 2.4% AP value in relation to ResNet-101;
Res2Net achieves 3.0% AP improvement over ResNet-101. Overall, the Swin-S, Swin-B,
and Swin-L achieve 5.6%, 6.0%, and 6.4% AP improvement in segmenting the optical
images, respectively. Experimental results on PSeg-SSDD and NWPU VHR-10 instance
segmentation dataset indicate that the Swin Transformer is efficient in segmenting the SAR
and optical images.

Table 2. Effects of the Swin Transformer.

Dataset Backbone AP AP50 AP75 APS APM APL

PSeg-SSDD

ResNet-101 56.7 88.6 70.8 56.8 57.8 27.6
HRNetv2-w32 57.1 87.8 72.2 56.8 59.7 18.2
RegNetx-3.2G 57.5 89.1 70.3 57.2 60.7 12.9
RegNetx-4.0G 57.7 89.7 71.4 57.5 60.4 14.2
Res2Net-101 57.6 89.4 71.9 57.2 60.7 24.2

Swin-S 57.2 89.7 68.8 56.4 60.1 30.2
Swin-B 57.8 90.5 71.1 57.2 60.6 26.7
Swin-L 59.0 91.3 72.8 58.5 61.7 40.0

NWPU VHR-10

ResNet-101 57.9 90.2 61.0 41.5 58.6 53.1
HRNetv2-w32 60.3 90.7 66.3 45.9 61.1 65.6
RegNetx-3.2G 59.1 91.2 62.0 44.6 60.1 63.2
RegNetx-4.0G 60.3 91.8 67.4 45.8 60.9 65.4
Res2Net-101 60.9 93.3 68.1 44.6 61.9 65.9

Swin-S 62.3 92.9 69.3 46.7 62.3 71.9
Swin-B 62.7 92.6 69.6 47.5 63.2 63.9
Swin-L 63.1 94.2 68.9 47.5 63.0 72.4

4.6.2. Experiments on CIF

Considering the efficient context information flow from the bounding box branch to
the mask branch, we compress the number of feature channels in the feature reassemble
step. Here, we select the channel numbers 32, 64, 128, and 256 for experiments and the
results are listed in Table 3. As for the results in PSeg-SSDD, the channel number of
64 achieves salient AP performance (58.4% AP value) compared to the rest of the situations.
In the counterpart results of NWPU VHR-10, the channel number of 32 shows competitive
performance to the channel number of 64 (59.3% AP value vs. 59.4% AP value). In general,
for segmenting the SAR and optical images, we choose the channel number of 64 for our
CIF module.

Table 3. Effects of the channel number.

Dataset No. of Channels AP AP50 AP75 APS APM APL

PSeg-SSDD

32 57.5 89.4 71.8 57.1 60.1 18.0
64 58.4 89.8 73.0 58.2 60.0 17.9

128 57.9 89.8 70.9 57.4 60.8 16.6
256 57.7 90.4 70.6 57.6 60.2 12.4

NWPU VHR-10

32 59.3 92.4 66.3 42.3 60.0 66.1
64 59.4 92.1 64.1 42.9 60.3 62.0

128 59.0 91.6 64.5 41.5 59.5 66.7
256 58.5 91.4 64.1 42.3 59.3 59.7
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4.6.3. Experiments on Confluent Loss Function

As described in Section 3.3, we conduct ablation experiments on the value of λ to
select the optimal choice for segmenting the SAR and optical images in Table 4. In the
results of PSeg-SSDD, λ = 0 and λ = 0.3 retain competitive performance for SAR images
(58.4% AP value vs. 58.5% AP value). With the increase of λ value, the AP value gradually
decreases from 58.5% to 55.6%. In the counterpart results of NWPU VHR-10, the AP value
increases at λ = 0.3 then decreases, and the numerical span is 8.1% (62.8% AP value vs.
54.7% AP value). For comprehensive consideration of the results of PSeg-SSDD and NWPU
VHR-10 instance segmentation dataset, λ = 0.3 should be the optimal selection for instance
segmentation of SAR and optical images.

Table 4. Selection of the λ value.

Dataset λ AP AP50 AP75 APS APM APL

PSeg-SSDD

0 58.4 90.0 72.3 58.0 61.4 13.5
0.3 58.5 89.8 72.5 58.0 61.4 15.6
0.9 57.4 89.4 72.0 57.0 60.3 14.8
1.5 57.1 89.2 71.2 56.8 59.5 7.6
2.1 56.2 87.6 71.1 55.7 59.2 8.5
2.7 55.6 88.0 69.3 55.5 58.0 7.2

NWPU VHR-10

0 61.9 91.3 68.1 47.1 62.8 68.6
0.3 62.8 91.5 69.2 46.3 63.8 70.2
0.9 60.9 90.8 67.9 45.8 62.2 68.1
1.5 59.3 88.1 66.3 44.8 59.8 71.7
2.1 58.4 87.9 64.2 42.1 59.2 65.7
2.7 54.7 82.4 62.0 41.6 55.5 62.2

4.7. Ship Segmentation Result of PSeg-SSDD

To verify the general effects of the proposed EISP, we selected seven mainstream
instance segmentation methods, including Yolact [40], mask R-CNN, Instaboost [54],
masksScoring R-CNN (MS R-CNN), cascade mask R-CNN (CM R-CNN), hybrid task
cascade (HTC), and HQ-ISNet for comparison, which contains the categories of top-down,
bottom-up, and RS images dedicated instance segmentation methods. The training and
test hyperparameters follow the default settings in [55] except for that described in Sec-
tion 4.3. Note that the top-down and bottom-up instance segmentation methods adopt
the ResNet-101 and FPN as the feature extraction structure. The quantitative results are
summarized in Table 5. As a bottom-up instance segmentation method, Yolact merely
achieves 44.5% AP value in segmenting the SAR images. However, benefiting from the
direct segmentation to the SAR ships, Yolact gains 37.2% APL value, which is superior in
segmenting the large ships compared to the top-down instance segmentation methods.
Instaboost and MS R-CNN optimize mask R-CNN with location probability map guided
mask annotations and mask quality to mask score calibration, respectively. Integrating the
cascaded architectures, CM R-CNN and HTC further exceed the mask R-CNN by 1.5%
and 1.8% AP, respectively. In the remote sensing field, HQ-ISNet achieves state-of-the-art
performance in segmenting the RS images. By refactoring the HQ-ISNet and applying our
training and test conditions, HQ-ISNet gains 59.4% AP value, pioneering IoU-differentiated
(AP50 and AP75) and scale-differentiated (APS, APM, and APL) AP value.

As presented in Table 5, our proposed EISP obtains the highest (60.9%) AP compared
to the state-of-the-art methods. It exceeds Yolact, mask R-CNN, and HQ-ISNet by 16.4%,
4.2%, and 1.5% AP in segmenting the SAR ships, respectively. In addition, it achieves the
highest (93.3%) AP50 and (73.3%) AP75 value. As for segmenting the medium ships, EISP
still yields 4.0% AP increments with regard to HQ-ISNet. Considering the scale variance of
RS images, we supplement the multiscale training for further improving the performance
of EISP. In the training phase, the images are resized to the size of 512× 448, 512× 480,
512× 512, 512× 544, 512× 576, and 512× 608 pixels. In the test phase, the images retain
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the size of 512× 512 pixels. We name the EISP with multiscale training scheme as EISP*.
Without whistles and bells, EISP* achieves 60.9% AP value, which further improves by
0.6% on the AP value of EISP. In addition, it exceeds Yolact, Mask R-CNN, and HQ-ISNet
by 17.0%, 4.8%, and 2.1% AP in segmenting the SAR ships, respectively. With the cost
of 20.8G FLOPs, EISP and EISP* yields HQ-ISNet 0.9% and 1.5% AP value, respectively.
In addition, we provide the precision–recall (PR) curve of AP50 for each state-of-the-art
method in Figure 6, where the enclosed area of the x-axis, y-axis, and the curve represent
the AP50. As presented in the left part of Figure 6, EISP and EISP* perform better than the
state-of-the-art methods with AP50 metric.

Table 5. Ship segmentation results on PSeg-SSDD.

Dataset Model AP AP50 AP75 APS APM APL FLOPs

PSeg-SSDD

Yolact [40] 44.5 84.7 40.4 43.2 51.6 37.2 67.14G
Mask R-CNN [35] 56.7 88.6 70.8 56.8 57.8 27.6 134.2G

Instaboost [54] 57.7 88.4 71.6 57.6 59.4 19.9 134.2G
MS R-CNN [36] 57.9 88.7 73.1 57.6 59.6 16.4 134.2G
CM R-CNN [37] 58.2 89.5 71.8 57.6 61.0 21.9 265.0G

HTC [38] 58.5 90.1 72.9 58.0 60.6 33.1 279.0G
HQ-ISNet [17] 59.4 90.0 73.3 58.7 61.9 36.2 279.6G

EISP 60.3 93.3 73.3 58.9 65.9 35.6 300.4G
EISP* 60.9 92.0 75.1 60.2 63.9 47.3 300.4G

Figure 6. The precision–recall (PR) curve of the state-of-the-art methods and EISP on PSeg-SSDD test
set (left) and NWPU VHR-10 test set (right).

Apart from the quantitative results, we visualize the qualitative ship segmentation
results in Figure 7. In the inshore scenes, such as the port, the state-of-the-art methods
find it hard to distinguish the ships surrounded by the high-reflective artificial facilities.
Thus, they are prone to generate false alarms (highlighted by purple rectangle), missing
segmentations (highlighted by orange rectangles), aliasing masks (highlighted by red
rectangles), and poorly segmented masks (highlighted by blue rectangle). In the offshore
scenes, the aliasing masks and missing segmentations selectively appear in the densely
distributed ships; however, in the counterpart results of EISP*, such defects are effectively
suppressed and the fitness of the segmented masks are comparable to the ground truth,
which cross-validates the effectiveness of EISP* in SAR images. Correspondingly, the false
alarms appearing in line 9, column 4, and aliasing masks appearing in line 9, column 5 of
Figure 7 indicate that EISP* can be further improved to cope with these cases.
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Figure 7. Qualitative instance segmentation results of the state-of-the-art methods and the proposed
EISP* on PSeg-SSDD. Row 1 represents the ground truth annotations of the objects. Note that the red
rectangle, blue rectangle, orange rectangle, and purple rectangle denote the aliasing masks of dense
objects, poorly segmented mask, missing segmentations, and false alarms, respectively.
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4.8. Instance Segmentation Result of NUPU VHR-10

In accordance with the instance segmentation experiments on PSeg-SSDD, the seven
state-of-the-art instance segmentation methods are used for comparison with our proposed
EISP, where the setting of training and test hyperparameters follows the same criterion.
Considering the scale variance of the optical images in NWPU VHR-10 instance segmen-
tation dataset, we define the image size of the multiscale training scheme for EISP* as
1000× 800, 1000× 700, 1000× 600, 1000× 500, and 1000× 400 pixels, and the image size of
test remains 1000× 600 pixels. Distinguished from the counterpart results of PSeg-SSDD,
EISP and EISP* bridge the gap in the segmentation precision compared to the state-of-the-
art instance segmentation methods. The quantitive results are summarized in Table 6. The
size of the input image is scaled to 800× 800 pixels in training the Yolact model. Specifically,
Yolact still poorly performs in segmenting the optical RS images; Instaboost, MS R-CNN,
CM R-CNN, and HTC have the progressively increased AP value of 58.7%, 59.4%, 60.7%,
and 61.9%. In accordance with the results in PSeg-SSDD, HQ-ISNet achieves the highest
(62.7%) AP value among the state-of-the-art methods.

Table 6. Instance segmentation results on NWPU VHR-10 test set.

Dataset Model AP AP50 AP75 APS APM APL FLOPs

NWPU
VHR-10

Yolact [40] 38.6 70.4 38.5 24.3 39.9 46.2 164.8G
Mask R-CNN [35] 57.9 90.2 61.0 41.5 58.6 53.1 229.1G

Instaboost [54] 58.7 91.9 65.9 42.8 59.1 65.6 229.1G
MS R-CNN [36] 59.4 90.4 66.4 40.2 59.9 63.9 229.1G
CM R-CNN [37] 60.7 92.8 66.6 47.9 61.4 62.1 360.2G

HTC [38] 61.9 92.4 67.7 49.0 62.1 64.1 390.0G
HQ-ISNet [17] 62.7 91.2 69.7 54.6 63.5 64.3 391.4G

EISP 68.1 95.8 74.5 52.7 68.4 76.9 594.2G
EISP* 69.1 96.3 76.1 55.6 69.3 78.2 594.2G

As for the proposed EISP and EISP*, they receive the unprecedented 68.1% and 69.1%
AP value, respectively. Specifically, EISP exceeds Yolact, mask R-CNN, and HQ-ISNet by
29.5%, 10.2%, and 5.4% AP in segmenting the SAR ships, respectively. As for EISP*, it yields
30.5%, 11.2%, 6.4% AP better values with regard to Yolact, Mask R-CNN, and HQ-ISNet,
respectively. Under the scale-differentiated AP indicators, EISP* yields HQ-ISNet 5.1% in
AP50 value and 6.4% in AP75 value. As for the scale-differentiated AP indicators, EISP*
yields HQ-ISNet 1.0%, 5.8%, and 13.9% in APS, APM, and APL value, respectively. With
the cost of 202.8G FLOPs, EISP and EISP* respectively receive a leap of 5.4% and 6.4% AP50
value compared to HQ-ISNet. As presented in the right part of Figure 6, the PR curves of
EISP and EISP* are raised more than the remaining methods.

Similar to the procedure in PSeg-SSDD, we visualized the qualitative instance seg-
mentation results in Figure 8. As illustrated in column 1, Figure 8, state-of-the-art methods
encounter difficulties, e.g., missing segmentations (highlighted by orange rectangles), alias-
ing masks (highlighted by red rectangles), and poorly predicted masks (highlighted by blue
rectangles), in segmenting the bridges with a large aspect ratio. In terms of the objects, e.g.,
the tennis court in column 2, the harbor in column 4, and the basketball court in column
5, with dense distribution, state-of-the-art methods tend to produce the aliasing masks
among the objects. As for the airplanes with complicated contour, the predicted masks of
state-of-the-art methods cannot fit the ground truth masks well. Incidentally, false alarms
occasionally appeared in these methods. However, as illustrated in row 9, Figure 8, our
proposed EISP* can effectively suppress these defects and generated the fitted masks for the
objects regardless of the category, which cross-validates the effectiveness of the proposed
method in optical images. Meanwhile, the false alarms in row 9, column 4 indicate that
EISP* can be further improved to cope with the densely packed objects.
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Figure 8. Qualitative instance segmentation results of the state-of-the-art methods and the proposed
EISP* on NWPU VHR-10 instance segmentation dataset. Row 1 represents the ground truth anno-
tations of the objects; row 2 to row 7 represent the results of state-of-the-art methods; row 8 shows
the results of the proposed EISP*. Note that the red rectangle, blue rectangle, orange rectangle,
and purple rectangle denote the aliasing masks of dense objects, poorly segmented mask, missing
segmentations, and false alarms, respectively.
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The NWPU VHR-10 instance segmentation dataset contains 10 categories of aerial
objects. Therefore, we further measured the class-wise instance segmentation results of
each method and we summarize them in Table 7. Among the categories, the ground track
field achieves the highest (93.0%) AP value in EISP* and yields a 7.2% AP improvement
compared to mask R-CNN; the airplane receives the highest (19.9%) AP improvement
(from 27.1% to 47.0%) compared to mask R-CNN, while the AP value of 47.0% still needs
to be improved. Similarly, as the top-down instance segmentation methods are inferior in
handling the large variance of length and width, the bridge receives the lowest (45.4%) AP
value with regard to EISP* due to its large aspect ratio. Relatively, the class-wise instance
segmentation results of EISP* are visualized in Figure 9. Identical to the quantitative results,
each category in NWPU VHR-10 instance segmentation dataset are segmented with fitted
masks by the proposed EISP*.

Baseball Diamond Tennis Court Bridge Harbor

Airplane Basketball Court Ground Track Field

Ship Storage Tank

Vehicle

Figure 9. Class-wise instance segmentation results of EISP* on the NWPU VHR-10 instance segmen-
tation dataset.

Table 7. Class-wise instance segmentation results on the NWPU VHR-10 test set.

Model AI BD GTF VC SH TC HB ST BC BR

Yolact 5.1 77.0 67.6 33.0 47.5 24.9 31.6 55.5 36.7 6.9
Mask R-CNN 27.1 81.1 85.8 51.8 53.3 58.6 55.2 71.5 67.1 27.3

Instaboost 26.5 81.6 83.8 52.4 55.9 61.0 60.0 71.7 65.2 28.8
MS R-CNN 27.0 79.7 87.5 52.0 51.6 60.9 60.2 70.0 74.3 30.6
CM R-CNN 28.0 83.5 87.6 53.6 56.9 65.3 59.6 71.5 74.2 26.6

HTC 28.1 83.6 88.8 54.8 55.0 67.1 61.6 73.5 77.3 28.8
HQ-ISNet 38.7 85.8 87.9 57.8 59.2 72.2 60.2 75.1 69.2 20.9

EISP 46.6 86.5 92.0 59.3 58.6 73.0 65.3 76.3 80.3 42.9
EISP* 47.0 86.6 93.0 62.9 60.1 73.4 66.4 75.4 80.4 45.4
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5. Discussion

Mainstream deep-learning-based methods for interpreting SAR and optical objects
adopt horizontal bounding box or oriented bounding box, which contain four coordinates
for location and the azimuth coordinate for adjusting the orientation of the predicted results.
However, these methods merely interpret the objects with an enclosed rectangular area;
the contour and appearance of objects are missed. In this paper, we adopt the efficient
instance segmentation paradigm (EISP) to interpret the SAR and optical images in a pixel-
wise manner. Intuitively, as illustrated in Figures 5 and 7–9, the predicted masks of EISP*
are capable of interpreting the SAR and optical objects with the fitted boundary, pixel-
level category, and mask-aware location. Despite the effectiveness of EISP and EISP* in
segmenting the SAR images and optical images, they still encounter mistakes in precisely
predicting the inshore ships in SAR images, e.g., row 9, column 5 of Figure 7, due to the
complex inshore background and grayscale features and the densely packed objects in
optical images, e.g., the aliasing masks in row 9, column 4 of Figure 8. Future work will
focus on reducing the signal noise of SAR images and adapting the characteristics of small
SAR ships for segmentation. As for optical images, except for the densely packed objects,
we will focus on segmenting the objects with complicated contour, e.g., the airplane, to
further improve the segmentation adaptability of the detector.

6. Conclusions

In this paper, we proposed an efficient instance segmentation paradigm (EISP) to
interpret the RS images (including SAR image and optical image). Following the top-
down instance segmentation formula, EISP adopts the Swin Transformer to construct the
hierarchical features of RS images. Then, the region proposal network (RPN) and region
of interest (RoI) extractor generate the region proposals for object detection and mask
prediction. Next, the context information Flow (CIF) is responsible for interweaving the
semantic features from the bounding box branch to the mask branch. Finally, the confluent
loss function is proposed for refining the predicted masks. Experimental conclusions can be
drawn on the PSeg-SSDD and NWPU VHR-10 instance segmentation datasets: (1) Swin-L,
CIF, and confluent loss function in EISP acts on the whole instance segmentation utility;
(2) EISP* exceeds vanilla mask R-CNN (by 4.2%) AP value on PSeg-SSDD and (by 11.2%)
AP on the NWPU VHR-10 instance segmentation dataset; (3) The poorly segmented masks,
false alarms, missing segmentations, and aliasing masks can be avoided to a great extent for
EISP* in segmenting the RS images; (4) EISP* achieves the highest instance segmentation
AP value compared to the state-of-the-art instance segmentation methods.
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