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Abstract: Rice height, as the fundamental biophysical attribute, is a controlling factor in crop phe-
nology estimation and yield estimation. The aim of this study was to use time series Sentinel-1A
images to estimate the spatio-temporal distribution of rice height. In this study, a particle filter
(PF) was applied for the real-time estimation of rice height compared with a simplified water cloud
model (SWCM) on the basis of rice mapping and transplanting date. It was found that the VH
backscatter (σvh

o) can potentially be applied to accurately estimate rice height compared with VV
backscatter (σvv

o), the σvh
o/σvv

0 ratio, and the Radar Vegetation Index (RVI, 4* σvh
o/(σvh

o+σvv
o)).

The results show that the rice height estimation by PF generated a better result with a root-mean-
square error (RMSE) equal to 7.36 cm and a determination factor (R2) of 0.95 compared with SWCM
(RMSE = 12.59 cm and R2 = 0.86). Moreover, rice height in the south and east of the study area was
higher than in the north and west. The reason for this is that the south and east are near to the
South China Sea, and there are higher temperatures and earlier transplanting. Altogether, our results
demonstrate the potential of PF and σvh

o to study the spatio-temporal distribution of crop height
estimation. As a result, the PF method can contribute greatly to improvements in crop monitoring.

Keywords: height estimation; rice; particle filter; time series; Sentinel-1 images

1. Introduction

Rice, as one of the most important crops, has a great impact not only on food security,
but also on water resource management and climate change. For instance, global rice
consumption has increased in general since the 1960s [1], and rice fields consume a large
amount of water and release methane gas and carbon dioxide gas [2]. Moreover, rice
height, as the fundamental biophysical attribute, is a controlling factor in crop phenology
estimation, yield estimation and rice scattering models. Remote sensing technology can be
applied for the retrieval of rice height at a regional or even a global scale, which requires
less manpower and is less expensive than conventional technology. Moreover, the synthetic
aperture radar (SAR) has all-time and all-weather observation capabilities and is sensitive
to the geometric features of scatterers. Thus, Sentinel-1 images with a fine spatio-temporal
scale are used for rice height estimation in our study.

There has been some research on rice height since the advent of the synthetic aperture
radar (SAR). An earlier study on rice height is from Le Toan (1997) [3], which showed
radar backscattering coefficients expressed as a function of rice height using multi-temporal
ERS-1 images. In the years that followed, there were very few studies on rice height
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estimation. After 2005, studies appeared on rice height estimation with SAR images [1,4–7]
or Terrestrial Laser Scanning [8,9]. With the polarimetric SAR (PolSAR) and polarimetric
interferometry SAR (PolInSAR) revolutions, the research teams of Dr. Erten [10–15] and
Dr. Lopez-Sanchez [16–18] used TanDEM-X images for rice height estimation by PolInSAR.
Moreover, Sentinel-1 data have been free to download since autumn 2014; since then, many
studies have been conducted on rice monitoring using time-series Sentinel-1 images due to
the fine spatio-temporal scale of SAR data [19–22].

To date, canopy height estimation with SAR images has been researched in a variety
of studies with various techniques, such as Radiative Transfer Theory (RTT) [13,14,23],
interferometry SAR (InSAR) [11,24,25], differential interferometry (DInSAR) [10,26], polari-
metric interferometry SAR (PolInSAR) [27–29] and tomography SAR (TOMO-SAR) [30].
RTT [13,14,23], InSAR [1,10,15] and PolInSAR [15,17,31,32] are widely used for rice height
estimation. Based on the rice canopy scattering mechanism, RTT is employed to simulate
rice backscatter from flooded rice fields based on the simplified structures, and then rice
height is retrieved by this inversion model [13,23]. For instance, Yuzugullu et al. (2016,
2017a, 2017b, 2018) [13–15,33] proposed a metamodel-based inversion algorithm with a
scattering model for rice height estimation using PolSAR data. However, RTT was built
based on many crop biophysical parameters (e.g., stem radius, leaf width, leaf thickness
and stem mean tilt angle) and complex physics formulas. In addition, InSAR and PolInSAR
have been widely applied for forest canopy height estimation based on the phase differ-
ence between two SAR acquisitions [29,31,34–37]. The interferometric phase in the InSAR
technique has a direct relationship with canopy heights. In contrast with InSAR-based
approaches, PolInSAR makes use of interferometry and polarimetry, to which the Random
Volume over Ground (RVoG) has been widely employed for canopy height estimation. For
instance, Lopez-Sanchez et al. (2011) [18] provided the first demonstration of the retrieval
of crop height by means of PolInSAR-based techniques with airborne data. Since then,
TanDEM data have been favored for crop height estimation due to their short wavelength
(X-band) [11,15,31]. The works of Lopez-Sanchez et al. (2017) [17] and Lee et al. (2018) [1]
presented demonstrations of the retrieval of rice height using the TanDEM-X data (baselines
of 2–3 km) of the RVoG model without external reference information. However, current
satellite missions cannot fulfill the RVoG model for crop height retrieval, which requires at
least two acquisitions with suitable spatial baselines and no temporal baseline. Recently,
other satellite data (e.g., Sentinel-1) have been applied for crop height estimation using
a modified water cloud model (MWCM) [5,38,39]. For instance, Yang et al. (2016) [5]
proposed a modified water cloud model (MWCM) to estimate rice height with a root-mean-
square error (RMSE) of 10.37 cm and a determination factor (R2) of 0.89, and the results
indicated that MWCM could predict the temporal behaviors of rice variables at all growth
stages. In addition, dynamic models (e.g., Kalman filtering (KF), extended Kalman filtering
(EKF), or particle filter (PF)) have been applied for the real-time phenology estimation of
rice at all growth stages. Moreover, PF can obtain accurate phenology estimation using
time series parameters [40]. For instance, Yang et al. (2021) [41] proposed a modified PF
for rice phenology estimation (R2 = 0.96 and RMSE = 5.82 cm) with accurate transplanting
dates. Then, we hold that PF can also be applied for the real-time estimation of rice height.
Therefore, we used the PF for rice height estimation with a comparison of a simplified water
cloud model (SWCM) based on time series Sentinel-1 images. Specifically, the objectives of
this study were as follows: (1) to conduct parameter optimization for SWCM and PF, (2) to
estimate rice height in the spatio-temporal distribution using SWCM and PF and (3) to
compare rice height estimations using SWCM and PF.

2. Study Area and Datasets

The study area is located in Taishan County in Guangdong province of China, adjacent
to the South China Sea, which is almost completely surrounded by mountains (Figure 1).
The site has a humid, moderate four-season climate. The annual average precipitation,
temperature, relative humidity and sunshine duration (based on the period from 1981 to
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2010) of the study area are 2002.6 mm, 22.3 °C, 79 and 2006 h, respectively. The geographical
and climate conditions are advantageous for double and single-paddy rice cultivation.
The main crop is double-paddy rice, and the height estimation of early season rice was
conducted in our study.

Figure 1. (a) The location of Guangdong Province in China; (b) Location of the study area in Taishan
County, Guangdong Province.

Sentinel-1A Level 1 (L1) Ground Range Detected (GRD) products with 12-day temporal
resolution were freely downloaded from the Copernicus Open Access (COA) Hub (https:
//scihub.copernicus.eu/dhus/, accessed on 1 January 2019) of the European Space Agency
(ESA). The attributes of Sentinel-1A data are shown in Table 1, and Figure 2 shows twenty-
seven Sentinel-1A images from 1 January 2019 to 21 November 2019. The pre-processing of
Sentinel-1 GRD included orbit correction, calibration, a speckle filter, range Doppler terrain
correction and the conversion to dB scale, which was carried out with the SNAP (Sentinel
Application Platform) toolbox provided by the ESA.

Table 1. Specifications for Sentinel-1A images.

Parameters Sentinel-1A Parameters Sentinel-1A

Product type GRD Center frequency 5.4 GHz
Mode IW Look direction Right
Polarization VV, VH Pass direction Ascending

Incidence angle 30.8°–46.2° Range/Azimuth
looks 5/1

Band C Resolution 10 m

During the campaign, the ground measurements of paddy rice were collected in one
period (26 March to 30 June 2019) over 20 paddy rice fields. During this experimental
period, rice advanced from transplanting to harvest (see Figure 2). Nine ground campaigns
were performed at the same time with SAR Sentinel-1 image acquisition (Figure 2). Twenty
field locations (see Figure 1) were identified during the campaign using Google Earth
and GPS. A total of 28,332 pixels were collected during nine field campaigns. Training
samples with a total of 180 pixels were selected randomly from each field from the nine
images. Test samples with a total of 28,152 pixels were used to validate the model for rice
height estimations.

https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
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Figure 2. Acquisition dates of ground campaigns and Sentinel-1A images. Crosses denote a lack of
images, and black circles denote acquired data. The backscattering coefficients of the missing image
were the mean value of two adjacent images.

Rice above-ground height and Biologische Bundesanstalt, Bundessortenamt und
CHemische Industrie (BBCH) were collected during field campaigns. Considering the
interest in the relationship of rice height with other rice variables, Figures 3 and 4a show
the rice above-ground height at different growth stages. It is noteworthy that rice height
rapidly increased up to approximately BBCH 60, and small changes occurred after this
stage. Both days from transplanting and BBCH showed good correlations with rice above-
ground height.

Figure 3. The relationship between BBCH and rice above-ground height.

Figure 4. (a) Relation between the age (days after transplanting) and the reference above-ground
height (black circle); the model was obtained from the fitting of the Sigmoidal Richards model (red
line). (b) Relation between the reference above-ground height and VH backscatter (black circle); the
model was obtained from the fitting of a polynomial curve (red line).
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3. Methodology

Two approaches, namely, the water cloud model and particle filter, were applied for
rice height estimation. These approaches are based on rice mapping and transplanting date
retrieval. Paddy rice was differentiated by Spectral Similarity Measures (SSMs) [41,42],
and the transplanting date was retrieved by a dynamic threshold algorithm [41]. Table 2
shows the input and output parameters of SWCM and PF, respectively. In addition to σo

and the observed height of rice, the number of days after transplanting is indispensable
to PF.

Table 2. Model parameters of SWCM and PF.

Model Input Parameters Output Parameters

SWCM σo, the observed height of rice height estimation

PF σo, the observed height of rice,
days after transplanting height estimation

3.1. Simplified Water Cloud Model

The Water Cloud Model [43], as a semi-empirical model, was applied for the estima-
tion of vegetation variables. It was proposed that the vegetation canopy and vegetation
layer were assumed as a homogeneous anisotropic scatter, and the multiple scattering
contributions from the vegetation soil were ignored. The backscattering coefficient mainly
consisted of the direct backscattering of the vegetation and soil after two-way attenuation,
as follows:

σo = σo
veg + τ2 · σo

soil (1)

with
σo

veg = A · V1 · cos(θ) ·
(

1 − τ2
)

(2)

τ2 = exp(−2 · B · V2 · sec(θ)) (3)

where σo is the total backscattering coefficient; σveg
o and σsoil

o are the backscatter coefficient
of the vegetation cover and soil surface, respectively; θ is the angle of incidence; τ2 is the
two-way attenuation. In our study, A, B and σsoil

o are regarded as constants. V1 and V2,
as vegetation descriptors, describe the effect of canopy water content and its geometry on
the backscatter [43,44]. Consequently, canopy height, as an important vegetation variable,
was represented by both V1 and V2 in our study, and the Water Cloud Model was simplified
as much as possible.

Simplified Water Cloud Model (SWCM) inversion comprised three steps, as shown in
Figure 5. (1) Model parameter optimization was conducted by the nonlinear least-square
fitting algorithm using in situ datasets. A, B and σsoil

o were determined by the minimization
between the simulated and observed backscattering coefficient of rice [45]. (2) The look-
up table (LUT), which was generated by SWCM with optimized parameters, contained
rice height and the corresponding simulated backscattering coefficients. It was of great
significance to rice height retrieval. (3) The nearest neighbor algorithm was used for rice
height estimation based on LUT. Height estimation was obtained by finding the nearest σo

in the LUT. Accuracy estimation was performed for test samples with R2 and RMSE.

3.2. Particle Filter

PF, which consists of a prediction model (Equation (5)) and an observation model
(Equation (6)), was used for rice above-ground height estimations. In order to generate
a prediction model, we determined the above-ground height evolution of rice fields as a
function of age (days after transplanting) (Figure 4a). The effect of above-ground height on
the behavior is better described by the Sigmoidal Richards model [45]. The equation is as
follows:

x(t) = a2 + (a1 − a2)/(h1 + exp(t − x0/d)) (4)
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where t is the time in days; x(t) is the height at time t; a1, a2, x0 and d are −16.39447,
126.49631, 35.59066 and 24.00643, respectively. The prediction model is described by (5).

xk+1 = (a1 − a2)/((a1 − xk) · exp(∆t/d)/(xk − a2) + 1) + a2 (5)

where xk is the rice height at instant ∆t; xk+1is the rice height at the next instant; ∆t is 12,
which is the number of days between xk and xk+1. The observation model (Equation (6)) is
fitted by a polynomial curve, as shown in Figure 5b.

y(xk) = b0 + b1 · x + b2 · x2 + b3 · x3 + b4 · x4 + b5 · x5 (6)

where b0, b1, b2, b3, b4 and b5 are−16.23676, −0.5135, 0.02047,−3.14814 × 10−4 , 2.19213 × 10−6

and −5.73078 × 10−9, and y is the backscattering coefficient of rice, respectively. The PF
approach comprises five steps, namely, initialization, the prediction of the sample, the
updating of the weight of particles, normalization of the weight of particles and the re-
sampling of these particles. For a more detailed description of PF, see De Bernardis et al.
(2014) [40]. For the first step, we assumed that the initial heights were 16.55 cm on the
transplanting date. The mean (16.55) of the rice height was obtained by the fitting curve
(Figure 4a), which was from fitted data within 12 days after transplanting.

Figure 5. Flow diagram of the methodology for rice above-ground height estimation. Rice was
harvested when the growing duration from transplanting to harvest was larger than 100 days.

4. Results
4.1. Parameter Optimization

The parameter optimization of SWCM for rice height was performed individually
by both the VH and VV polarization channels using a training dataset. In our study, we
focused on accurate height estimation and developing an uncomplicated model. Thus,
WCM was simplified as much as possible. Therefore, as with A and B, σsoil

o is regarded
as a constant. In addition, although the backscattering coefficient was affected by the
angle of incidence, the volume scattering of paddy rice changed only slightly across the
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range [46]. Thus, the incidence angle was the mean value of all incidence angles in our
study area. A, B and σs

o were determined by the minimization between the simulated and
observed backscattering coefficient of paddy rice, as shown in Table 3. The performance of
parameter optimization was assessed in terms of the R2 and RMSE between the simulated
and observed backscattering coefficient of paddy rice, as shown in Table 3. The simulated
backscattering coefficient for VH polarization was significantly correlated with rice height
by SWCM with optimized parameters (R2 = 0.824267). The R2 and RMSE values calculated
at VH polarization were approximately 0.595 higher and 0.577 lower, respectively, than
those calculated at VV polarization. Consequently, VH polarization was used for rice height
estimation.

Table 3. Model parameters and comparison of simulated and observed backscatter coefficient of rice.

Polarization A B σsoil
o RMSE R2

VH 0.001 −0.08 0.014 0.789488 0.824267
VV 0.015 −0.12 0.065 1.366691 0.229191

4.2. Comparison of Rice Above-Ground Height Estimation by Two Methods

SWCM with optimized parameters and PF with initial rice height were used for
rice height estimation based on the VH backscattering coefficient. Accuracy estimation
was performed when rice and the transplanting dates were retrieved correctly from
Yang et al. (2021) [41]. SWCM had a slope of the fitted line that is similar to that of PF,
as shown in Figure 6. However, the RMSE values (7.362) and R2 (0.953) using PF were
approximately 5.231 lower and 0.091 higher, respectively, than those obtained using SWCM.
Height estimation using SWCM at a rice above-ground height of less than 30 cm had a
larger error than at a height of more than 30 cm. Additionally, the error of height estimation
by SWCM was larger than that of PF at the early vegetative stage (Figures 6 and 7), such as
the height estimation of DoY 85 (Figure 7). The main reason for this was that PF was based
on a better fitting curve for a prediction model and an observation model, and SWCM
was influenced more by the various incidence angle and soil moisture contents, especially
during the early vegetative stage. Moreover, compared with the PF, the variation of the
estimated above-ground height by SWCM on DoY 157 and DoY 169 was large, and the
estimated above-ground height by SWCM from DoY 133 to 157 decreased (Figure 7), which
was not in accordance with the growth rule of rice. In addition, the rice above-ground
height was underestimated by SWCM or PF (Figure 6).

Figure 6. RMSE and R2 of estimated rice above-ground height (a) for SWCM with optimized
parameters and (b) for PF with initial height. The red line is a fitted line.
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Figure 7. Estimation of rice above-ground height for field 9 by two methods. (A) represents DoY and
(B) represents the ground truth of rice above-ground height. (C,D) are the results calculated using
the SWCM and PF, respectively.

4.3. The Spatio-Temporal Distribution of Above-Ground Height Estimation

The spatio-temporal distribution of above-ground height estimation for early season
rice was calculated using PF, as shown in Figure 8. We found that there was a dramatic
fluctuation in the above-ground height from DoY 121 to 145, while there was a small
fluctuation in the above-ground height from DoY 85 to 109. In terms of spatial distribution,
the rice above-ground height on one day was lower than that in the east and south of the
study area, especially on DoY 109 and 121. The reason for this is that air temperature is
a determining factor driving the growth of rice [41,47,48]. Additionally, the south and
east in this area have higher temperatures at the early vegetative stage of rice due to their
proximity to the South China Sea. On DoY 169 and 181, most rice was harvested with an
above-ground height estimation of 43 cm.

Figure 8. The spatio-temporal distribution of rice above-ground height, analyzed using PF.

5. Discussion
5.1. Polarization Analysis

The backscattering coefficient at the VV polarization channel increased first and then
decreased with the increase in rice height, as shown in Figure 9a. However, the backscat-
tering coefficient at the VH polarization channel increased as the rice height increased, as
shown in Figure 9b. The σvh

o/σvv
0 ratio and the Radar Vegetation Index (RVI, 4 * σvh

o/(σvh
o

+ σvv
o)) decreased first within a rice height of 40 cm and then increased, as shown in
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Figure 9c,d. The increase in the backscattering coefficient resulted mainly from the decrease
in irrigated water in the paddy rice field and the fast development of rice leaves and
tillering. Dominated scattering gradated from double scattering to volume scattering. The
decrease in the backscattering coefficient at the VV polarization channel was caused by the
longer propagation path inside the vegetation volume. At the maximum above-ground
height, backscatter variation was more affected by the gradual drying of plants. In addition,
VV backscatter increased and then decreased as rice grew (Figure 9a), while VH backscatter
increased as rice grew (Figure 9b). The reason for this could be the stronger attenuation of
vertical stems in the VV backscatter [3,17].

Using the polynomial fitting algorithm, rice height had a better fit with VH backscatter
with an R2 of 0.828. However, for VV backscatter, the σvh

o/σvv
0 ratio and RVI, R2 were

0.4796, 0.552 and 0.561, respectively. Hence, the relationship between rice above-ground
height and VH backscatter was stronger than that of VV backscatter. The main reason for
this is that the longer propagation path inside the vegetation volume at the VV channel
is more affected by surface roughness, the water content of the soil and rice and different
parts of rice (leaves, stems and ears) in the vegetation layer than that at the VH chan-
nel [41]. In addition, although the RVI and the σvh

o/σvv
0 ratio were used for crop growth

monitoring [49–51], our results indicated that the RVI and the σvh
o/σvv

0 ratio are not suit-
able for rice height estimation compared with VH backscatter (see Figure 9). Moreover,
Yang et al. (2021) [41] found that the RVI and the σvh

o/σvv
0 ratio are not the best variables

for rice phenology estimation. Therefore, it was found that the VH backscatter has great
potential for rice height estimation.

Figure 9. Relationships between the rice above-ground height and (a) VV backscatter, (b) backscatter-
ing coefficients for VH, (c) the σvh

o/σvv
0 ratio and (d) RVI.

5.2. Features for SWCM and PF

Under the condition that the precision of rice height estimation is assured, two parts
of SWCM were simplified as much as possible in our study. First, the effect of the incidence
angle on rice canopy backscattering was ignored, as there is a small fluctuation in the
volume scattering of paddy rice across the range of 31–46 degrees in Sentinel-1 images [46],
and volume scattering from the vegetation canopy dominates in radar backscattering at
all growing periods of rice, except for the sowing–transplanting period and early vege-
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tative stage. Second, in our study, soil backscattering was regarded as a constant, as the
soil was covered by the rice canopy in all the growing periods for rice, except for the
sowing–transplanting period and early vegetative stage, and the C-band showed shal-
low penetration [52]. The larger variation in the above-ground height estimation of early
vegetative rice resulted from the two parts outlined above.

At present, the PF approach has been applied for the phenology estimation of rice
(De Bernardis et al., 2014, 2015, 2016) [40,48,53], and the initialization of PF was an important
parameter for the spatio-temporal distribution of phenology estimation [41]. Likewise,
initialization is of great significance for rice height estimation. This is due to the fact
that the first Sentinel-1A acquisition date after transplanting, which is regarded as the
transplanting date, as well as rice height, was varied in the spatial distribution dataset. This
showed further variation when the rice height was estimated. Hence, transplanting dates
were retrieved using a dynamic threshold algorithm in the literature of rice phenology
estimation [41], and the initial height was the mean value (16.55 cm) of the fitted data,
which were within 12 days of transplanting (Figure 4a).

Compared with the rice above-ground height estimation of SWCM, the accuracy and
convergence of PF were higher, as shown in Figure 6. The main reason for this was that the
PF approach not only described the evolution of rice height but also further estimated rice
height using the relationships between rice height and radar scattering. We proved that the
Sigmoidal Richards model could predict the next height (xk+1) using the last known height
(xk), and the polynomial curve could be used to conduct accurate height estimation. This
was also the reason that the estimation of the above-ground height was consistent with the
ground truth data, with a slight variation in backscatter powers at the ripening stage.

6. Conclusions

In this study, the spatio-temporal distributions of rice above-ground height estimation
were determined by PF and SWCM using Sentinel-1A time-series data on the basis of rice
map and transplanting date. Rice height had a better fit with VH backscatter compared
to VV backscatter, the σvh

o/σvv
0 ratio and RVI. Therefore, the VH backscatter parameter

was used for rice height estimation in our studies. The results depicted that rice height
estimation by PF had a better result, with an RMSE equal to 7.36 cm and R2 of 0.95 compared
to SWCM (RMSE = 12.59 cm and R2 = 0.86). The reason for this was that PF was based on
a better fitting curve for a prediction model and an observation model, and SWCM was
influenced more by the various incidence angle and soil moisture contents, especially at
the early vegetative stage. In terms of spatial distribution, rice height in the south and east
of the study area was higher than that in the north and west. The reason for this is that the
south and east are near to the South China Sea, and they have higher temperatures at the
early vegetative stage of rice. From our results, it is evident that the VH backscatter of the
Sentinel-1A time-series images and PF method have the desired effect for the estimation of
the spatio-temporal distribution of rice’s above-ground height. As a result, the PF method
could contribute greatly to improvements in crop mapping, crop health modeling and crop
yield predictions.
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