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Abstract: Characterizing compositional and structural aspects of vegetation is critical to effectively
assessing land function. When priorities are placed on ecological integrity, remotely sensed estimates
of fractional vegetation components (FVCs) are useful for measuring landscape-level habitat structure
and function. In this study, we address whether FVC estimates, stratified by dominant vegetation
type, vary with different classification approaches applied to very-high-resolution small unoccupied
aerial system (UAS)-derived imagery. Using Parrot Sequoia imagery, flown on a DJI Mavic Pro micro-
quadcopter, we compare pixel- and segment-based random forest classifiers alongside a vegetation
height-threshold model for characterizing the FVC in a southern African dryland savanna. Results
show differences in agreement between each classification method, with the most disagreement in
shrub-dominated sites. When compared to vegetation classes chosen by visual identification, the
pixel-based random forest classifier had the highest overall agreement and was the only classifier
not to differ significantly from the hand-delineated FVC estimation. However, when separating out
woody biomass components of tree and shrub, the vegetation height-threshold performed better than
both random-forest approaches. These findings underscore the utility and challenges represented by
very-high-resolution multispectral UAS-derived data (~10 cm ground resolution) and their uses to
estimate FVC. Semi-automated approaches statistically differ from by-hand estimation in most cases;
however, we present insights for approaches that are applicable across varying vegetation types and
structural conditions. Importantly, characterization of savanna land function cannot rely only on
a “greenness” measure but also requires a structural vegetation component. Underscoring these
insights is that the spatial heterogeneity of vegetation structure on the landscape broadly informs
land management, from land allocation, wildlife habitat use, natural resource collection, and as an
indicator of overall ecosystem function.

Keywords: savannas; vegetation composition; Africa; random forest classifier; vegetation structure;
unoccupied aerial systems

1. Introduction

Dryland environments represent approximately 40% of land cover globally [1], and,
under climate change, they will expand 10–23% over the 21st century [2]. Savannas are
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transitional drylands [3] that vary from open grassland, characterized by tall grasses and
minimal woody composition, to predominantly woody and minimal herbaceous cover [4].
Savanna composition is driven largely by the interactions of precipitation, soil moisture,
fire, and herbivory [5] with legacy impacts of human land management on land function [6].
Vegetation composition and structure is important as shifts along the woody-herbaceous
continuum have implications for global carbon cycling, ecosystem health, and human
livelihoods [7]. Remote sensing is valuable for mapping these heterogeneous landscapes
at a variety of spatiotemporal scales [8] and numerous studies highlight the relevance of
object-based image analysis (OBIA) [9], pixel-based analysis [10], and/or certain machine-
learning classification techniques (e.g., random forest) [11,12]. However, considerations
behind the selection of scale and unit of analysis tend to be under-reported, as are those
behind the choice of algorithm, especially as it pertains to the fine-scale characterization
of heterogeneous landscapes. This paper addresses that gap for savannas, a notably
challenging landscape, where the composition and the structure of the landscape have
important implications for land function.

Land function, expressed in terms of ecological and spatial vegetation heterogene-
ity [13], is often assessed by quantifying not only spectral measures but also the three-
dimensional nature of woody and herbaceous cover [14]. Estimating the relative proportion
of trees, other woody vegetation, and grasses informs our understanding of key savanna
ecological processes including the rate of carbon and nutrient uptake [15,16], fire intensity
and duration [17], and seasonal signal response to precipitation [17]. These fractional vege-
tation components (FVCs), determining savanna composition, largely relate to variability in
herbaceous and woody components on the landscape [18], but structural attributes (canopy
height, spacing, etc.) of woody species also play an important role in overall land system
functioning. In expanding our focus to the estimation of the vegetation components of
the landscape, beyond coverage alone, we characterize habitat composition and structure,
two components needed to address landscape level patterns beyond photosynthesizing
“greenness” metrics.

The remotely sensed characterization of vegetation structure is becoming more tractable
due to the availability of increasingly fine-scale resolution imagery, from satellite, airborne,
and small unoccupied aerial system (UAS) platforms [19]. However, separating structural
and compositional aspects of savanna shrub and tree components with the spatial grain of
optical satellite sensors remains challenging and results in a loss of important information
about ecological integrity [20]. An emerging option for capturing structural landscape
characteristics along with compositional properties is photogrammetric techniques with
UAS [21,22]. UAS have become increasingly popular in vegetation analysis and are ar-
guably necessary in mapping detailed information for heterogeneous landscapes [23–25].
The use of UAS allows for operator-determined flight dates and times, while they are rela-
tively inexpensive, and can fly multiple sensor payloads, which can then be used to derive
3D surface models, allowing for the integration of structural and spectral information in
subsequent analyses [26].

Advances are being made in characterizing UAS-derived vegetation patterns and link-
ing multiple remotely sensed spatial scales of analysis [27,28], yet careful consideration is
still needed in broader land-cover characterization [29] as well as accuracy assessments [30].
While there are many methods for classifying land cover [31,32], machine-learning tech-
niques are a major focus in remote sensing studies [11,32]. For our purposes, we selected a
random forest (RF) ensemble classifier [33] which extends the concept of the decision tree
classifier to a “forest” of trees and majority “vote” to determine final classes in the classifi-
cation. An RF classifier is a useful modeling technique for handling multidimensional data
subject to potential multicollinearity, allowing for ease of parameter selection, accuracy
of output, and ability to deal with overfitting [11]. We pair the RF classifier with both a
pixel- and object-based approach to characterize savanna FVC [34]. Pixel-based approaches
rely on spectrally separable signatures at the spatial grain of the sensor which may help to
infer variation in landscape characteristics. However, that variation can also include noise,



Remote Sens. 2022, 14, 551 3 of 18

shadow, and environmental or atmospheric effects, in addition to pixels containing mixed
information from multiple objects of interest. OBIA techniques may better ameliorate
these by segmenting images into more homogeneous objects or areal units, as a function of
aggregated factors (e.g., averages per spectral band and variance within segments, non-
spectral attributes such as texture and geometry) [35,36]. However, the RF classifier still
demands input data and a set of ancillary data layers to train the model. An alternative is
a straightforward thresholding that uses UAS imagery and photogrammetric techniques
for extracting densified point clouds that translate into height-related information to best
characterize the FVC of a landscape [37].

In this study, we examine variation across FVC estimates using three different clas-
sification techniques applied to three savanna landscapes representing variation across
the herbaceous–woody continuum. The techniques compared include vegetation height
thresholding, pixel-based RF classification, and segment-based RF classification. Two main
questions of interest drive this study: (1) Do the FVC estimates change in a meaningful way
depending on the choice of classification strategy? (2) If classification strategies differ, do these
differences vary by dominant savanna land-cover type (grass/other vs. shrub vs. tree-dominated)
when compared to expert classification by visual interpretation? Answering these questions will
provide insight to determine the most robust technique for estimating FVC by leveraging
both structural and compositional landscape properties extracted from UAS data.

2. Materials and Methods
2.1. Study Area and Permissions

We conducted UAS flights in the Chobe Enclave, a community conservation area in
northern Botswana, centrally situated within the larger Kavango Zambezi Transfrontier
Conservation Area (KAZA) (Figure 1) [38]. There are five villages within the Enclave,
spread at varying distances from the perennial water source, the Chobe River, which marks
the Namibian border. The study area is situated within semiarid savanna on Kalahari
sands and open floodplains surrounding the river. Precipitation averages between 400 and
600 mm/year [39]. Most precipitation occurs between November and April. Significant
vegetation and land-use changes have been occurring in KAZA over the past decades,
with implications for both ecosystem functioning and wildlife habitats, as well as human
livelihoods [40].

Research permits were obtained from the Botswana Government Civil Aviation Au-
thority to operate a UAS, and permission was granted by village authorities. Local meetings
were held with traditional authorities and community members for each village area. We
provided information on the project objectives and research intents for the collected UAS
imagery. Additionally, we conducted UAS demonstrations for interested community mem-
bers. These meetings helped enhance community understanding and buy-in to the value of
the overarching research, as well as pilot/operator safety, which followed best practices for
low-altitude UAS data collection [41].
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Figure 1. Individual sites (N = 9) for UAS flights in the study area. RGB composites shown for the
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and (Row C) tree-dominated landscapes in the Chobe Enclave of northern Botswana.
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2.2. Field Data and UAS-Derived Canopy Height Model

We used a DJI Mavic Pro micro-quadcopter outfitted with two sensors. Along with
the default three-axis, gimbal-stabilized 12 MP RGB camera of the Mavic Platform, we also
attached a Sequoia Parrot, four-band multispectral sensor with the accompanying sunlight
irradiance sensor. The multispectral sensor collects narrowband imagery in visible green
(530–570 nm), red (630–670 nm), red-edge (REG) (730–740 nm), and near-infrared (NIR)
(770–810 nm) portions of the electromagnetic spectrum.

Fieldwork took place May–June during the dry season of 2018 with nine plots iden-
tified for in situ data collection alongside UAS flights. The plots were opportunistically
selected and stratified to ensure equal representation of each category of savanna vegetation
cover. We chose three sites from primarily grass-, shrub-, and tree-dominated areas (n
= 3/site type) representative of the three states of vegetation regimes found in southern
African savannas. All sites were accessible for potential grazing and natural resource
gathering, but excluded human settlements and agricultural fields. We used identical flight
plans via the Pix4D flight app at every site, and each covered an extent of 200 × 200 m in
a double grid pattern flown at 100 m above ground level, in accordance with Civil Avia-
tion Authority regulations. The platform included an on-board global navigation satellite
system and inertial measurement unit. Coupled with midday flight times to minimize
shadow effects, an 85% frontal overlap and 70% side overlap during image acquisition
ensured sufficient point matching in post-processing. These parameters are in line with
the structure from motion (SfM) and multi-view stereo (MVS) photogrammetric workflow
recommendations [42].

We processed all UAS imagery using the Pix4Dmapper version 3.4.31 software package
(Pix4D, Lausanne, Switzerland), including the RGB sensor and each individual sensor band
(green, red, red edge, near-infrared) on the Parrot Sequoia. Through SfM–MVS processing,
we obtained high-resolution orthomosaics (~4 cm nominal grid cell size for Mavic RGB,
~10 cm for each individual Sequoia band), a digital surface model (DSM), and a digital
terrain model (DTM) for each band of data. To produce canopy height models (CHMs),
we subtracted the DTM from the corresponding DSM, which included the above-ground
vegetation structure as generated by the SfM–MVS algorithm. We chose to use NIR-derived
CHMs exclusively for this analysis as previous work determined that increased spectral
detail in vegetation improves canopy height estimates even at the expense of coarser
spatial resolution [37]. Despite significantly lower point cloud densities, NIR point clouds
produced in that study consistently showed better representation of the canopy structure
than denser RGB point clouds, and the same finding was noted elsewhere [43]. For more
details regarding the processing parameters, please see [37].

2.3. Data Processing Overview

Figure 2 provides an overview of the workflow. Initial work indicated that NIR CHMs
showed the most agreement with in situ canopy height and radius measurements despite
relatively coarse spatial resolutions [37], and they provided the baseline NIR-derived
CHMs for each plot. We were unable to apply a radiometric calibration workflow due
to oversaturation in calibration images taken in the field prior to each flight. Since we
relied only on the within-image radiometric calibration applied by the Pix4D software
made possible by the Sequoia sunlight irradiance sensor, we chose to rely exclusively on
ratio-based optical indices rather than single-band reflectance maps with values that may
vary greatly between flights. We extracted the individual normalized difference indices
calculated using the green, red edge, and NIR bands in combination with the visible red
band from the Parrot Sequoia sensor. These are common, easily calculable, and interpretable
indices commonly used in vegetation studies.

(Gr, RE, or IR − Red)/(Gr, RE, or IR + Red). (1)
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Figure 2. Process flow outlining data input, UAS-extracted metrics for segmentation, and the three
different methods for classification: height threshold (green), RF pixel (orange), and RF segments (blue).

For all spectral indices derived (Equation (1)), we calculated 3 × 3 pixel windows
for contrast, dissimilarity, entropy, homogeneity, and second moment using the gray-level
cooccurrence matrices (GLCM) package and local Moran’s I using the raster package in
R (Vienna, Austria) v3.4.0 [44]. By using the GLCM package and outputs, we gathered
textural properties throughout the image that could be useful for distinguishing between
objects that may have had similar spectral reflectance values. We used local Moran’s I to
find areas in the images that exhibited varying degrees of spatial autocorrelation, which
could be useful for segmenting objects (woody individuals) we sought to classify. These
metrics were shown to improve OBIA segmentation in urban areas [45], and they are
useful for describing vegetation structure at coarser resolutions [46]. We then stacked all
layers for each respective plot (CHM, ratio-based spectral indices, and textural properties)
for segmentation.
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2.4. Segmentation Units/Parameters

We iteratively tested a range of shape, compactness, and scale parameters to establish
an appropriate segmentation approach [38]. Due to the relatively high resolution of UAS
products, we selected a scale parameter of 10 to produce a reasonable aggregation of
pixels, striking a balance between over- and under-segmentation [47] to capture tree and
shrub crowns.

We segmented all UAS scenes using eCognition software (Definiens Developer v 9.5,
Sunnyvale, CA, USA), with objects delineated on the basis of CHMs, ratio-based spectral
indices, and textural properties. The band ratios helped alleviate potential radiometric
inconsistencies between flights. Along with spectral properties, segmentation of objects
into high-resolution imagery benefits from considering textural image properties [48,49].

Woody vegetation in our study area (predominantly Vachellia and Senegalia spp.) often
exhibited highly irregular crowns; thus, we assigned a greater weight to layer values by
assigning the shape parameter a value of 0.1. We equally weighted all rasters in the stack
with a value of 1 except for CHM which we assigned a weight of 2 with the rationale
that this layer directly represents the structural attributes of interest. Zonal statistics were
calculated on the final segmentation layer for each site, and those metrics were then used
as an input into the segment-based RF classifier.

2.5. Analytical Framework

For training and assessment of FVC estimates, 100 points were generated randomly
within each site (n = 9) for a total of 900 reference points. Points were classified manually
from the derived ~4 cm RGB orthomosaics as “tree”, “shrub”, or “other” (where other
comprises grass and bare ground) according to visual identification, shadow depth, and
expert site knowledge. Since our comparison measures of ultimate interest were areal
estimates of proportional vegetation coverage at the plot level, compared across estimation
processes, we used only the pixel-based unit of analysis for validation to estimate these
plot-level measures. With the focus of distinguishing between woody vegetation types,
“tree” points were meant to represent woody vegetation greater than 3 m in height, “shrub”
points denoted woody vegetation from 1 to 3 m in height, and “other” comprised all
vegetation less than 1 m in height, as well as bare ground. If points were on the edge
of a given object, we manually moved these to ensure they were completely within an
object of interest.

We then randomly sampled these reference points into points for training and those
withheld for validation. Shrubs were made up the smallest number of expert-classified
points (N = 147). We randomly assigned 70% of these (N = 102) for training and 30% of
these to validation (N = 44). For both “tree” and “other” points, we then selected equal
numbers of training (N = 102) and validation points (N = 44) from the larger number of
total hand-classified points for a class-balanced set for both training and validation (306
training points and 132 validation points total). Class-balancing was used in order to not
bias classification accuracy for more frequently occurring vegetation types.

We compared three different FVC techniques: a pixel-based random forest (P-RF),
an object- or segmentation-based random forest (S-RF), and a thresholding approach,
and we evaluated their mean relative difference from a hand classification of random
points. The P-RF and S-RF leverage a nonparametric decision tree classifier [33], which
provides a robust method to estimate FVC on the basis of a collection of remotely sensed
input variables (Figure 1). As per Breiman’s original description of the random forest
approach to classification and regression [36], a random forest is an ensemble approach,
consisting of a collection of classifiers or trees, {h(x,Θk), k = 1, . . . }, where {Θk} denotes
independent identically distributed vectors randomly sampled from the training data
(bagging), and each tree casts a unit vote for the most popular class at input x. In addition,
the forests use randomly selected inputs or combinations of inputs at each node to grow
each classifier, h(x,Θk), which minimizes correlation between individual trees in the forest
and confers additional robustness to overfitting and bias across the forest [48]. The RF
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algorithm allows for any number of continuous and discrete covariates to inform the
classifier, which can be trained and used to estimate FVC at the pixel or object level.
Individual observations not selected for any one individual tree can be used as independent
or “out-of-bag” (OOB) estimates for RF model explanatory power, in addition to allowing
simple variable importance estimates in conjunction with covariate resampling. Combined,
these techniques result in classifiers that are highly accurate, robust to outliers and noise,
faster than “boosting” techniques, and therefore, highly suitable for classification in remote
sensing contexts [32].

Model estimation, fitting, and classification were conducted using the randomForest
package in R [49], with automated tuning of the number of variables sampled for each
split attained using the tuneRF function. For the P-RF model, the parameter settings used
500 trees, with five variables tried for each split in the forest. For the S-RF, the number of
variables tried at each split was 20. These parameters were selected after automated tuning.
The training data for the P-RF used covariate measures based on individual pixel values
sampled at the points that were visually classified and randomly sampled (n = 28). The
S-RF included the mean, standard deviation, maximum, and minimum values for each
covariate layer’s pixels whose center fell inside the training object (n = 112). Lastly, as a
comparison to the two RF modeling approaches, we also employed a threshold approach
based on the UAS-derived canopy height model (CHM). All pixels with a CHM value
greater than 3 m were classified as “tree”, those with a CHM value from 1 to 3 m were
classified as “shrub”, and those with a CHM value below 1 m were classified as “other”
following previous studies in the savanna context [37,50]. The 3 m threshold was used in
the field to objectively separate woody biomass into tree or shrub categories.

2.6. Technique Agreement Measures

To determine whether there are meaningful differences between classification methods,
we calculated a series of standard classification metrics using the withheld validation points.
Because these were aggregated across all nine sites, we present metrics unweighted by class
representation, which would otherwise be preferred [51]. Weighted values would result
in different outputs due to changing site-to-site composition of tree/shrub/other in each
site as a whole. Since our points are representative across all sites, the unweighted values
provide a means to compare classification techniques but not assess site-level accuracies.

The calculated agreement measures include error matrices (also known as contingency
tables or confusion matrices) [52], Cohen’s kappa index [53], omission, commission, and
agreement measures [54], and a set of metrics known as quantity, exchange, and shift [51].
Table 1 provides a definition and rationale for the chosen metrics.

Lastly, to quantitatively compare classification approaches across vegetation structural
conditions, within the context of estimating FVC, we estimated FVCs at the site level using
four approaches. The first approach uses the by-hand classification of randomly selected
points and the remaining three approaches use the classified, rasterized estimates from the
UAS-derived, multispectral imagery for each of the nine study area sites. Site selection
was stratified by dominant vegetation condition, with three of each grass-, shrub-, and
tree-dominated condition chosen.
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Table 1. Technique comparison agreement measures.

Type Description References

Error matrix Cross tabulation of n × n array of land-cover classes. Columns
represent the reference data; rows denote mapped land-cover class. [51]

Omission Number of reference points left out from the intended mapped
land-cover class. [54]

Commission Number of reference points for a given class incorrectly mapped to
a different land-cover class in the land-cover output. [54]

Agreement Total number of correctly classified reference points in the final
mapped output. [54]

Quantity
Amount of absolute difference between the reference map and a

comparison map due to the less than perfect match in the
proportions of the categories.

[51]

Exchange
Exchange occurs as a one-to-one difference between two categories.

These differences do not reflect the quantity differences of the
classes, but rather a spatial mismatch.

[51]

Shift
Shift represents the leftover disagreement after subtracting quantity
and exchange differences from the total. These differences are due

to exchanges occurring among >2 map classes.
[51]

Cohen’s kappa (unweighted) Measure of agreement between a land-cover map and a set of
reference points, corrected for chance uncertainty. [53]

3. Results
3.1. Random Forest Models

The P-RF classification model had an OOB classification error rate of 21.24%. OOB
errors are calculated using a random sample of reference observations that are withheld for
each tree in the random forest. These are then classified for each tree, and the error rate
is then calculated across all trees in the random forest. In Figure 3a, the most important
covariate informing the P-RF classification is the CHM, as indicated by the mean decrease
in Gini metric. The mean decrease in Gini captures the average of a variable’s total decrease
in node impurity, a metric of per-class sorting, weighted by the proportion of training
samples that reach a particular node in each individual decision tree, and then averaged
across all trees in the random forest. For the P-RF, the CHM covariate was followed by
red-edge NDVI covariates and then the NIR-based NDVI metrics.

For the S-RF classification model, zonal statistics (mean, maximum, minimum, and
standard deviation) of each covariate were calculated from the rasterized covariate pixels
within each segmented polygon. Polygons containing a training point were assigned
to that point’s class and used as reference and holdout data for the RF. The OOB error
for the S-RF was lower than the P-RF at 13.4%. Similar to the P-RF, variable importance
metrics indicate that the CHM variables were the most important covariates for classifying
land components (Figure 3b). However, in the segment-based RF model, the additional
CHM-derived segment metrics (i.e., maximum canopy height and the standard deviation
of canopy height) were ranked higher than individual band metrics (e.g., red-edge NDVI),
although red-edge metrics made it into the top five.
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3.2. Classification Approach—Accuracy Assessment

Figure 4 is a visualization from a representative of each site type (tree-, shrub-, and
grass-dominated), which illustrates qualitative differences between the classification ap-
proaches. FVC estimates from each approach will naturally vary, as shown overlaid with
the hand-classified points and accompanied by high-resolution imagery. Each panel in Fig-
ure 4 gives the Mavic-derived orthomosaic for the full flight extent and a zoomed-in portion
of the site to highlight the overlay of visually inspected points relative to FVC-estimated
land cover. The FVC surfaces are shown for each classification approach. The S-RF includes
the segmented polygons overlayed in gray. Notably, for the S-RF FVC output, since it is
“object-based,” the classified vegetation is more contiguous than the pixel-based approach
as entire polygons are classified as a single vegetation type. These are contrasted with the
simpler CHM threshold approach and its three height classes. Qualitatively, the threshold
approach also produces relatively more contiguous areas than the P-RF classification.
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the predicted S-RF output. Black crosses represent visual inspection points that fall within each site
area. The site area imagery and the inset (~4 cm nominal ground resolution) are also displayed for
each using the Mavic orthomosaics.
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Table 2 quantitatively compares the classification results across the class-balanced set
of held-out reference points for each classification approach (the complete, unbalanced
validation data are presented in Table S1). The quantitative metrics outlined in the meth-
ods show that, at the reference point level, the P-RF has the highest overall agreement.
Examining only the error matrix for each classifier, “tree” and “shrub” points were more
likely to be misclassified than the “other” class. The quantity metric showed the most
change in the CHM threshold approach between the classified map and reference points.
This directly relates to the exchange, or confusion, between “shrub” and “other” borne
out in the error matrix. The RF-based classification showed higher quantity disagreement
with the segment-based approach than the pixel-based approach, but both RF-models
showed more confusion in the exchange and shift metrics when compared to the CHM
threshold approach.

Table 2. Classification assessment output for (a) P-RF, (b) S-RF, and (c) threshold techniques for
quantifying fractional vegetation coverage.

(a) Pixel-Based RF (P-RF)

Error Matrix Unweighted

Other Shrub Tree
Other 42 6 0
Shrub 2 35 5
Tree 0 3 39

Kappa Unweighted
Value ASE z Pr(>|z|)
0.8182 0.04253 19.24 1.79E-82

Difference Table
Category Omission Agreement Commission Quantity Exchange Shift

1 Other 2 42 6 4 4 0
2 Shrub 9 35 7 2 10 4
3 Tree 5 39 3 2 6 0
4 Overall 16 116 16 4 10 2

(b) Segment-Based RF (S-RF)

Error Matrix Unweighted

Other Shrub Tree
Other 36 3 2
Shrub 8 37 10
Tree 0 4 32

Kappa Unweighted
Value ASE z Pr(>|z|)
0.6932 0.05247 13.21 7.69E-40

Difference Table
Category Omission Agreement Commission Quantity Exchange Shift

1 Other 8 36 5 3 6 4
2 Shrub 7 37 18 11 14 0
3 Tree 12 32 4 8 8 0
4 Overall 27 105 27 11 14 2

(c) Canopy Height Threshold

Error Matrix Unweighted

Other Shrub Tree
Other 43 15 0
Shrub 1 27 6
Tree 0 2 38

Kappa Unweighted
Value ASE z Pr(>|z|)
0.7273 0.04947 14.7 6.30E-49

Difference Table
Category Omission Agreement Commission Quantity Exchange Shift

1 Other 1 43 15 14 2 0
2 Shrub 17 27 7 10 6 8
3 Tree 6 38 2 4 4 0
4 Overall 24 108 24 14 6 4
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3.3. Site Type Characterization

We present these site-level FVC estimates separated by vegetation type (each panel)
and broken down by dominant site type (x-axis category) and image classification approach
(symbol) in Figure 5.
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Figure 5. Classification approaches are compared by plotting the site-level FVC estimates from the
entire classified image alongside visually hand-classified random points. Vegetation percentages of
(a) trees, (b) shrubs, and (c) other by panel, by dominant vegetation site type (columns within each
panel), separated by classification technique (color).

These results show that, at the site level, estimates of FVC do vary between classifi-
cation approaches. The widest range of disagreement between classification approaches
occurred for shrub and other coverage estimates. These variations, as indicated in Table 2,
were driven primarily by differences in the classification accuracy for shrubs across all sites
and were particularly high in shrub-dominated sites. To further refine these differences
between the classified output and the by-hand approach, Figure 6 shows the mean relative
difference in fractional vegetation cover, estimated by each classified and rasterized ap-
proach, from which the FVC estimated from the random sample of reference points within
each study site was subtracted. These differences were aggregated across all sites and site
types, yielding a point estimate (N = 9) and a 95% confidence interval. This yielded statisti-
cally significant differences at the α = 0.05 level between any one classification approach
and the by-hand estimates in FVC when the CI did not overlap zero.
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Figure 6. Mean relative difference in FVC classification technique as compared to the expert, image-
based delineation of reference points. Confidence intervals (95%) that do not cross the dotted line
indicate a statistically significant difference for each FVC estimate for a given classification approach
and the by-hand estimation.
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These results suggest that the pixel-based classification approach (P-RF) has the highest
level of agreement with FVC estimated by hand classification of random points, across all
site structural types. The CHM threshold approach tended to overestimate the amount
of “other” vegetation cover, and the S-RF approach tended to overestimate the amount of
“shrub” vegetation.

4. Discussion

In this study, we provided an illustration of classification techniques and remotely
sensed approaches for mapping FVC using UAS imagery. We build on the use of the
UAS NIR band in delineating structural and compositional landscape features [36] to
demonstrate the value of structural vegetation information in the infrared spectral range in
classifying savanna landscape function. We also emphasize, through our set of classifica-
tion comparisons, the importance of integrating remote sensing methods and underlying
statistical considerations for mapping FVC and structural conditions.

With respect to whether estimates of FVC vary with classification strategy, our findings
denote statistically significant differences in the agreement of the classification methods
(Table 2), with the most disagreement between approaches occurring for shrub-dominated
sites (Figure 5). Additionally, the P-RF method had the highest overall agreement across
classification techniques and was the only approach not to differ significantly from a
hand-delineated FVC estimation.

Image acquisition times concurred with onset of the dry season, when “greenness”
signatures corresponded to the “tree” and “shrub” components, with the senesced grass
cover combined with bare soil and non-photosynthesizing components for the “other”
class. Using the NIR output from the UAS point cloud processing, we were able to leverage
both spectral and structural properties of different vegetation landscape features [55].
Interestingly, while the high spatial fidelity of the UAS lends itself toward OBIA techniques
for differentiating individual species on the landscape [56,57], the P-RF classifier had
higher agreement across classes than the S-RF classifier. This may relate to the additional
covariates included in the S-RF and a subsequent smoothing effect due to segments and
their aggregated, averaged characteristics (not single pixels) informing the final FVC output
(Figure 4). Overlaid with the validation points, that smoothing effect may have masked
actual variability in landscape features better captured by the P-RF and CHM threshold
approaches. In addition, the validation polygons for the S-RF model were assigned the
same class as that of a hand-delineation point located within the polygon. We assumed
that the polygon represents a within-unit homogeneity that may include some level of
error due to either (a) the accuracy in the segmentation process or (b) the “truth” in
the hand-delineated class assignments. We recognize the inherent error and bias in the
hand-delineation approach to identifying reference validation points used in the accuracy
assessment of classification approaches. However, in situ ground reference will have its
own bias and error. CHM variables were the most important covariates for classifying
across FVC land classes.

The CHM variables were the most important covariates in both RF classifications
(Figure 3), as also shown in other studies [58]. There is a reasonable argument that VHR
imagery and visual assessment of landscape features can be used for training a straightfor-
ward CHM threshold classifier to estimate FVC across a landscape. While, in this study,
the CHM threshold classifier did not have the highest overall agreement in the balanced
class case, it performed better than the S-RF classifier and more accurately distinguished
between “shrub” and “tree” classes than either RF classifier. This clearly may relate to
the physical criteria established during field work for delineating trees from other woody
biomass, centered on 3 m exceedance. The ability to hand-delineate points falling on trees
vs. shrubs in high-resolution imagery also relies on contextual clues such as shadow and
configuration that directly relate to vegetation height. Thus, a CHM-based classifier alone,
even one based simply on threshold setting, might be useful. Such an approach reduces the
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model and classification parameterization choices, processing time, and data aggregation
that a machine-learning approach would require [27].

The most challenging and widely varying disagreement in the FVC estimates was shrub
cover. All three classifiers struggled to accurately capture the shrub FVC as estimated from the
by-hand point classification. While the P-RF based classification method was the most robust
classification method overall, if the focus of analysis was based on separating out woody biomass
components on a landscape, the CHM threshold approach more accurately distinguished between
tree and shrubs than either RF-based approach. This underscores the utility of remotely sensed
data, which results in the ability to distinguish some aspects of vegetation structure in this type of
classification context (e.g., LIDAR, UAS-derived point clouds, etc.).

Lastly, we suggest further research regarding ensemble-based, machine-learning ap-
proaches and the application of reference point selection. Prior research has shown that
classification algorithms may be sensitive to unbalanced training data, with respect to the
number of representative observations from each class [59]. While RF-based approaches which
use a combination of covariate randomization and bagging across an ensemble of model
classifiers minimize certain biases [33,49], our results indicate that class imbalance in training
data may be yielding a disconnect between classification accuracy as measured by OOB error
at the model level and the error as measured against a balanced, withheld set of reference
data. We chose to focus the analysis of classifier accuracy on each of three classes by using the
balanced data, at a site level, from which we are interested in estimating FVC. However, it may
be more important to classify the relative amounts of vegetation more accurately. We present
unbalanced, withheld error matrices as supplemental information (Table S1) for comparison
and further consideration, but suggest that more research be conducted on site, sub-site, and
pixel-level classification for FVC estimates that directly explore the impact of balanced vs.
unbalanced training and reference data. In addition, other types of classification optimization
could be undertaken (e.g., [60]), which might further refine the ability to yield site-level FVC
estimates. This may be especially important as it relates to the relative contribution to classifi-
cation accuracy of structural vs. spectral data to the classifier, especially in different contexts
where the relative value of “greenness” versus vegetation height might have different value
(e.g., when using imagery collected during the rainy season or in more vegetated contexts).

5. Conclusions

Differences in the structural aspects of tree and shrub proportions provide valuable
insight into the land function for habitat health, livelihood resources, and ecosystem connect-
edness [13,14]. This study emphasized two important points: (1) the importance of critical
decision points in data processing which in turn should be driven by the type of problem
or question being addressed [59]; (2) identification of a set of considerations that need to be
carefully weighed when selecting a remote sensing approach and classification technique
for landscapes where variation in landscape composition or structural attributes impact
land function. The spectral information on “greenness” combined with canopy structure
information provides an indication of current resource availability and ecological function
of savanna range conditions [61]. The addition of canopy structure information is notable
for savanna environments where landscape-level degradation of ecosystem functioning over
the long term has important implications for wildlife and livestock [50], and which may not
be detectable through “greenness” alone, e.g., in the case of shrub encroachment. Indeed,
canopy structure is arguably the most important variable to inform savanna FVC, as noted in
the variable importance plots (Figure 3) and the comparable accuracy of the CHM threshold
model (Table 2). Identifying the “best” method to extract the remotely sensed ecological
information does not have one right or wrong answer, but decision points for tradeoffs in
different classification methods, sensitivity tests, acceptable error rates, unit of analysis, etc.
will all depend on the research or management objective. Through careful reflection on these
different points of analysis, remotely sensed landscape analyses will translate into relevant
and timely information beyond the “greenness” factor in semiarid landscapes that support
large populations of both people and wildlife.
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